
Vol:.(1234567890)

Automotive Innovation (2019) 2:178–189
https://doi.org/10.1007/s42154-019-00065-1

1 3

Numerical Implementation of High‑Order Vold–Kalman Filter Using
Python Arbitrary‑Precision Arithmetic Library

Linhe Ge1 · Fangwu Ma1  · Jinzhu Shi1 · Hongbin Yin1 · Ying Zhao1

Received: 31 January 2019 / Accepted: 1 May 2019 / Published online: 22 August 2019
© China Society of Automotive Engineers (China SAE) 2019

Abstract
The Vold–Kalman (VK) order tracking filter plays a vital role in the order analysis of noise in various fields. However, owing
to the limited accuracy of double-precision floating-point data type, the order of the filter cannot be too high. This problem
of accuracy makes it impossible for the filter to use a smaller bandwidth, meaning that the extracted order signal has greater
noise. In this paper, the Python mpmath arbitrary-precision floating-point arithmetic library is used to implement a high-order
VK filter. Based on this library, a filter with arbitrary bandwidth and arbitrary difference order can be implemented whenever
necessary. Using the proposed algorithm, a narrower transition band and a flatter passband can be obtained, a good filtering
effect can still be obtained when the sampling rate of the speed signal is far lower than that of the measured signal, and it
is possible to extract narrowband signals from signals with large bandwidth. Test cases adopted in this paper show that the
proposed algorithm has better filtering effect, better frequency selectivity, and stronger anti-interference ability compared
with double-precision data type algorithm.

Keywords  Noise order analysis · Vold–Kalman filter · Arbitrary-precision arithmetic library

1  Introduction

Order analysis is used in a variety of applications, from basic
plant machinery testing to complex automotive engine test-
ing. It is often combined with acoustic measurements to ana-
lyze the noise, vibration, and harshness (NVH) qualities of
an engine or vehicle as a whole. Automotive engineers often
use order tracking methods for product evaluation and devel-
opment, design validation, production testing, quality evalu-
ation, and trouble shooting. The paper [1] reviewed some
basic ideas behind different kinds of order analysis methods
and compared their main advantages and limitations.

Particularly, the VK filter is a vital technique in order
analysis. The main framework of the filter have been basi-
cally presented [2–4] and then on this basis, the algorithm
appears in almost all NVH-related commercial software
presently on the market. Because of the importance of
these researches, the algorithm is also named after the main

author. Based on the conventional Kalman filter, the VK
filter was proposed by Vold and Leuridan in 1993 [2]. The
authors found that normal tracking filters (analog or digital
implementations) have limited resolution in situations where
the reference RPM is rapid. Thus, the authors proposed the
application of nonstationary Kalman filters for the tracking
of periodic components in such noise and vibration signals,
namely, the VK filter. Vold then introduced the mathematical
background of the VK filter [3]. This was the first presenta-
tion of the second-generation algorithm and its theoretical
foundations. This new algorithm enables the simultaneous
estimation of multiple orders, effectively decoupling close
and crossing orders. In another paper published the same
year [4], the authors explored the advantages of the filter
in detail, including: (1) RPM estimation accuracy, even for
fast-changing events such as gear shifts, (2) higher-order
Kalman filters, with improved shapes for extracting modu-
lated orders, and (3) decoupling of close and even crossing
orders by use of multiple RPM references. Vold et al. [5]
reported the development of a new VK filter for decoupling
interacting orders in multi-axle systems. Based on the foun-
dation of the first- and second-generation VK filters, a num-
ber of studies provided further understanding of the math-
ematical derivation of the filters, the physical meaning of

 *	 Fangwu Ma
	 mikema_pro@163.com

1	 State Key Laboratory of Automotive Simulation and Control,
Jilin University, 5988, Renmin Ave., Changchun 130025,
China

http://orcid.org/0000-0001-5037-5159
http://crossmark.crossref.org/dialog/?doi=10.1007/s42154-019-00065-1&domain=pdf

179Numerical Implementation of High-Order Vold–Kalman Filter Using Python Arbitrary-Precision…

1 3

their parameters, and the relationship between these param-
eters [6–11]. Herlufsen et al. [6] described the filter charac-
teristics of the VK order tracking filter, investigating both
the frequency response and time response of their time–fre-
quency relationship. Pelant et al. [7] derived the detailed
formulation of the filter, while Tuma [8] reported the band-
width calculation formula for the 1st–4th order of the filter
and established the relationship between the bandwidth and
the weight coefficient. As an extension, the present paper
presents a calculation formula for the filter bandwidth at
arbitrary orders. Blough [9] explained the formulations and
behavior of the filter in very straightforward and practical
terms through the use of both equations and example data-
sets. Čala and Beneš [10] described the implementation of
both first- and second-generation VK order tracking filters,
with a focus on optimizing the calculations. It is worth men-
tioning that Vold et al. [11] considered the bandwidth of the
VK filter to be limited by the numerical conditioning of the
least-squares normal equations associated with its applica-
tion. This suggests that even narrower bandwidths may be
achieved by a direct least-squares solution using a banded
version of the QR algorithm. As a more general approach,
the present study adopts another method based on an arbi-
trary-precision floating-point arithmetic library. Similar to
the VK filter, the method of transforming the filter problem
into an optimization problem appears, although this has not
yet become the mainstream approach. Amadou et al. [12]
proposed another method that converges quickly and pro-
vides a small estimation error compared to those used for the
linear time-invariant model. An offline processing approach
using the preconditioned conjugate gradient method has also
been proposed [13]. Pan et al. [14] further studied theoreti-
cal basis, numerical implementation and parameter of VK
filter. It should be pointed out that VK filter is very useful in
many fields of sound analysis, even fault diagnosis [15, 16].

When the order of the VK filter is large, it has the advan-
tages of a flat passband and a fast-changing transition band.
At the same time, smaller filter bandwidths can better isolate
the influence of noise and other vibration signals. However,
both cases result in larger matrix values, even beyond the
precise representation of double-precision data. None of the
research mentioned above can solve this problem effectively.
This is the main problem considered in this paper—how to
obtain higher-order and narrower passband VK filters for an
arbitrary desired order and bandwidth.

To better understand how this problem is solved, there
sections are introduced as follows. Section 2 describes the
relevant VK filter in detail and gives the pseudocode of the
related algorithm. Using an arbitrary-precision floating-
point arithmetic library, the extension of this VK filter to
any higher orders is explained. Section 3 presents the results
from three test cases to verify the effectiveness of the algo-
rithm. Finally, Sect. 4 gives the conclusions to this study.

2 � VK Filter Formulation

This section discusses the VK filter algorithm and its numer-
ical implementation in detail. The numerical implementa-
tion of the algorithm is given in the form of pseudocode.
Readers can use the Python programming language and its
arbitrary-precision numerical operation library to realize this
algorithm, or contact the author to obtain the source code.
The author will accept any requests with an open mind, and
later relevant source code will be released on GitHub.

2.1 � Analytical Solution of VK Filter

In this section, the analytical solution of the VK filter will be
derived. Firstly, two basic equations, i.e., data equation and
structural equation, correspond to the measurement equation
and state equation of the standard Kalman filter, respectively.
Based on minimizing the weighted sum of squares of the
error terms of the two equations, the analytic solution of the
VK filter is obtained.

The recorded signal y(t) is modeled as follows:

where �(n) is the phase of an ideal signal, that is, the integral
of the angular velocity, �(n) =

n∑
i=0

�(i)Δt , η represents the

noise item. The complex envelope x(n) represents the signal
amplitude and phase fluctuations. This equation is named
the data equation.

The matrix representation is

and the square of the error vector norm is

The structural equation can be described by the following
higher-order difference equation:

where Δ represents the difference computation symbol, nd
is the order of the difference equation, and the value of �(n)
should be sufficiently small so that the complex envelope
x(n) changes very slowly. The difference equation is

To deduce the formula and programming conveniently,
the coefficients of the difference equation are expressed as
dv . This is a vector of elements

Thus, the difference equation can be described as follows:

(1)y(n) = x(n) exp (j�(n)) + �

(2)y − Cx = �

(3)�T� = (y − Cx)T (y − Cx)

(4)Δndx(n) = �(n)

(5)Δrf (x) =

r∑
i=0

(−1)iCi
r
f (x + r − i)

(6)dv(i) = (−1)iCi
nd

(i = 0, 1, 2… nd)

180	 L. Ge et al.

1 3

where i = 0, 1,… , nd . The matrix representation is

which can be written as

The dimension of A is
(
N − nd + 1

)
× N.

The optimization objective is to minimize

where r is the weight factor. We compute

which can be expressed as

and so

The above formula gives the analytical solution of the VK
filter for a single-order signal. For the purpose of conveni-
ence, define a new matrix

When using regular data types, the limitations of the
accuracy of double-precision floating data type mean that
the identity matrix E will be submerged in addition opera-
tions if the weight factor r is too large. In the following sec-
tions, this issue will be discussed further and the relationship
between r and the bandwidth of the filter in the steady state
will be considered.

2.2 � Frequency Response of VK Filter in Steady State

In this section, the basic principles of the VK filter are
described from the perspective of the frequency domain,
which contributes to a deeper understanding of the filter
and provides a reference for setting reasonable weight coef-
ficients in engineering practice. Before giving the exact

(7)
dv(0)x(n) + dv(1)x(n − 1) +⋯ + dv

(
nd
)
x
(
n − nd

)
= �(n)

(8)

⎡⎢⎢⎢⎣

dv(0) dv(1) dv(2) … dv
�
nd
�

0 … 0

0 dv(0) dv(1) … dv
�
nd-1

�
dv
�
nd
�
… 0

… … … … … … …

0 0 0 dv(0) dv(1) dv(2) … dv
�
nd
�

⎤⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎣

�
�
nd
�

�
�
nd + 1

�
⋯

�(N)

⎤
⎥⎥⎥⎦

(9)Ax = �

(10)J = r2�T� + �T�

(11)
�J

�xH
=
(
r2ATA + E

)
x − CHy = 0

(12)
(
r2ATA + E

)
x = CHy

(13)x =
(
r2ATA + E

)−1
CHy

(14)B =
(
r2ATA + E

)

calculation process, it should be emphasized that a larger
weight coefficient always means a narrower bandwidth.
Thus, larger weight coefficients are needed to achieve nar-
rower bandwidths, even beyond the computational range of
double-precision floating-point numbers. Firstly, by exploit-
ing the structure of the analytical solution of the VK filter,
the frequency response of the filter is obtained. The pseu-
docode for calculating the frequency response of the filter
is then given.

The dimension of matrix A is
(
N − nd + 1

)
× N , and its

elements can be represented as follows:

According to the matrix multiplication formula:

Thus, according to (15), assuming that ATA(i, j) is
nonzero, the following relationship holds:

This transforms to

Let Su = min
(
N − nd, i, j

)
 and Sd = max

(
i − nd, j − nd, 1

)
 .

According to (15)–(18), the following relationships can be
obtained:

Further,

If ATA(i, j) is nonzero, then Su ≥ Sd , that is, |i − j| ≤ nd ,
which means each row of the matrix ATA has at most 2nd + 1
nonzero elements on the diagonal.

Let us exploit the structure of ATA and go a step fur-
ther. As ATA is symmetric, the case i ≥ j is first considered.
Assuming that i ≥ nd + 1 and j ≤ N − nd , then

(15)A
(
ir, ic

)
=

{
dv
(
ic − ir

) (
0 ≤ ic − ir ≤ nd

)
0 other

(16)ATA(i, j) =

N−nd∑
k=1

AT (i, k)A(k, j)

(17)
{

0 ≤ i − k ≤ nd
0 ≤ j − k ≤ nd

(18)
{

i − nd ≤ k ≤ i

j − nd ≤ k ≤ j

(19)ATA(i, j) =

⎧⎪⎨⎪⎩

Su∑
k=Sd

AT (i, k)A(k, j)
�
Su ≥ Sd

�

0 other

(20)ATA(i, j) =

⎧⎪⎨⎪⎩

Su∑
k=Sd

dv(i − k)dv(j − k)
�
Su ≥ Sd

�

0 other

181Numerical Implementation of High-Order Vold–Kalman Filter Using Python Arbitrary-Precision…

1 3

In the same way, when i < j , assuming that j ≥ nd + 1
and i ≤ N − nd,

From (21) and (22), it can be seen that the 2nd + 1
nonzero diagonal elements of each row of the matrix are
the same, except for the first nd rows and the last nd rows of
the matrix. Because ATA is symmetric, B = (r2ATA + E ) has
the same structure as ATA . Abbreviate the diagonal elements
of each row and nd elements after the diagonal element of
matrix B as the vector b. The elements of b can be calculated
as follows:

As mentioned above, B has the same structure as ATA ,
which means B is a sparse symmetric matrix with 2nd + 1
nonzero diagonal elements. According to the following
relations:

we have that

After performing a Z transformation, the following for-
mulas are obtained:

Substituting z = ej� into the above, the frequency
response of the filter is obtained as

(21)ATA(i, j) =

⎧
⎪⎨⎪⎩

j∑
k=i−nd

dv(i − k)dv(j − k)
��i − j� ≤ nd

�

0 other

(22)ATA(i, j) =

⎧
⎪⎨⎪⎩

i∑
k=j−nd

dv(i − k)dv(j − k)
��i − j� ≤ nd

�

0 other

(23)
bib = r2ATA

(
i, i + ib

)
= r2

nd−ib∑
k=0

dv(k)dv
(
ib + k

)

(ib = 1, 2… nd)

(24)bib =

(
r2

nd∑
k=0

dv(k)dv(k)

)
+ 1(ib = 0)

(25)
(
r2ATA + E

)
x = CHy

(26)Bx = y�

(27)y�(k) =

k+nd∑
m=k−nd

B(k,m)x(m)

(28)
y�(z) =

(
bndZ

−nd + bnd−1Z
−(nd−1) +⋯ + b0

+b1Z
1 +…+ bndZ

nd
)
x(z)

Through Euler’s formula, the following mathematical
relations are obtained:

Substituting (30) into (29), the final frequency response
function of the filter is:

The pseudocode for calculating the frequency response
of the VK filter in the steady state is given in Algorithm 1.

In the following deduction process, both ATA and B play
an important role, but because both matrices are N × N
dimensional, the number of elements in these matrices
increases sharply with the signal dimension N, resulting in
a dramatic increase in memory requirements. Thus, the ele-
ments of these two matrices are not all stored but are instead

(29)
y�
(
ej�

)
=
(
bnde

−ndj� + bnd−1e
−(nd−1)j� +⋯

+b0 + b1e
j� +⋯ + bnde

ndj�
)
x
(
ej�

)

(30)
e−kj� + ekj� = cos (k�) − j sin (k�)

+ cos (k�) + j sin (k�) = 2 cos (k�)

(31)
H
�
ej�

�
=

x
�
ej�

�

y�
�
ej�

� =
1

b0 + 2
nd∑
k=1

bk cos (k�)

182	 L. Ge et al.

1 3

calculated when they are needed. The method of calculating
ATA and B is given in Algorithm 2.

2.3 � Relationship Between the Filter Bandwidth
and the Weighting Coefficient

On the basis of the frequency response function derived
in the previous section, the relationship between the filter
bandwidth and the weighting coefficient r is now discussed.
Finally, an analytical solution for the weight coefficients
is obtained for a certain bandwidth. For convenience, a
new vector ata is introduced, which satisfies the following
relations:

Substituting this into (23) and (24) yields

Substituting this into (31) gives

(32)
ata

[
ib
]
=

nd−ib∑
k=0

dv(k)dv
(
ib + k

)

(ib = 0, 1, 2… nd)

(33)bib = r2ata
[
ib
]

(ib = 1, 2… nd)

(34)b0 = r2ata[0] + 1

The cutoff frequency satisfies the following relationship:

By specifying the bandwidth of the filter, the weight coef-
ficient can be calculated as

The above formula describes the relationship between the
weight coefficient and the bandwidth, and gives the physical
meaning of the weight coefficient. That is, the bandwidth of
the filter depends directly on the value of the weight coeffi-
cient. The larger the weight coefficient, the smaller the band-
width of the filter. This relationship is established when the
signal enters the steady state, but this does not mean that the
VK filter is only suitable for steady-state systems; in fact, it
is highly suitable for the unsteady state. When the bandwidth
is known, the weight coefficients are computed as described
in Algorithm 3.

Once the order and bandwidth of the filter have been
determined, the weight coefficient of the filter can be

(35)
H
�
ej�

�
=

1

r2ata[0] + 1 + 2r2
nd∑
k=1

ata[k] cos (k�)

(36)r2

�
ata[0] + 2

nd�
k=1

ata[k] cos
�
k�c

��
+ 1 =

√
2

(37)r =

������
√
2 − 1

ata[0] + 2
nd∑
k=1

ata[k] cos
�
k�c

�

183Numerical Implementation of High-Order Vold–Kalman Filter Using Python Arbitrary-Precision…

1 3

obtained. The frequency response function of the filter
is then given by (35). As shown in Fig. 1, the frequency
response of the filter varies with the difference order. The
higher the order, the better the flatness of the passband and
the narrower the transition band. In other words, filters with
high differential orders offer better frequency selection. Note
that, when the difference order is 7, the response curve fluc-
tuates at the passband. For difference orders of 8 or more,
the filter cannot be designed at this bandwidth. Of course,
this phenomenon is the result using double-precision float-
ing-point numbers.

As shown Fig. 2, there is no such problem for an algo-
rithm using arbitrary-precision floating-point numbers.
After using a high-precision floating-point number, the filter
passband response fluctuation at difference order 7 disap-
pears, and filters with a differential order of 8 or more can
be designed without fluctuation.

2.4 � Maximum of Weight Coefficient

The results in the previous section indicate that higher-order
filters produce flatter passband bandwidths and faster tran-
sition band changes. The higher order also means that the
diagonal elements of ATA are larger. A smaller bandwidth
ensures better frequency selectivity and a greater weight
factor r. Both these factors increase the value of the diago-
nal elements of r2ATA . If the diagonal elements of r2ATA
are too large, the limitations of double-precision floating-
point accuracy imply that, when the diagonal elements of
r2ATA are added to 1, the value 1 is ignored, and the solution
will fail. In this section, the minimum bandwidth, i.e., the
maximum weight coefficient, is derived under different filter
orders. Firstly, the double-precision data type is examined,
and then arbitrary-precision numbers are explored.

Firstly, the method of measuring the precision of arbi-
trary-precision floating-point numbers is introduced. There
are two terms involved, referred to as prec and dps. The
term prec denotes the binary precision (measured in bits),
whereas dps denotes the decimal precision. Binary and deci-
mal precisions are approximately related through the for-
mula prec = 3.33 × dps. For example, a precision of roughly
333 bits is required to hold an approximation of dps, that
is, accurate to 100 decimal places (actually, slightly more
than 333 bits are used). Double-precision floating-point
numbers, on most systems, correspond to 53 bits of pre-
cision. For double-precision floating-point numbers, the
maximum number that can be accurately represented is
253 = 9,007,199,254,740,992.

However, approaching this number should be avoided,
because the missing decimal part will affect the accuracy
of the result.

Assuming that a 10-bit binary number is reserved to
ensure the accuracy of the calculation, the maximum value
of the diagonal element of a matrix should be less than
243 = 8,796,093,022,208.

The maximum element value of ATA is found on the
diagonal of the matrix. More accurately, it will be the first
element of the ata vector, that is, ata[0] . To ensure the accu-
racy of the calculation results, the following equation should
be satisfied:

The weight coefficients corresponding to different orders
of difference are shown in Fig. 3.

The relation between the cutoff frequency and the
weight coefficient of the filter is given by (35). Using
this formula, the minimum bandwidth, corresponding to
the maximum weight coefficient, can be calculated. How-
ever, from the point of view of the equation, solving the

(38)r2ata[0] ≤ 243

Fig. 1   Frequency response of VK filter under double-precision float-
ing data type

Fig. 2   Frequency response of VK filter under 50-decimal-place float-
ing data type

184	 L. Ge et al.

1 3

weight coefficient is fairly straightforward, assuming that
the bandwidth, namely, the cutoff frequency, is known.
However, the reverse process is quite complicated. Obvi-
ously, it is necessary to solve nonlinear equations. The
analytical solution cannot be obtained but can only be
realized through some numerical algorithm. At the same
time, to realize an algorithm for an arbitrary difference
order and avoid the inaccuracy of double-precision float-
ing-point numbers, an algorithm for solving nonlinear
equations based on arbitrary-precision numbers will be
needed. For this purpose, intersection-based solvers such
as ‘anderson’ or ‘ridder’ are recommended. Usually, they
converge quickly and are very reliable. These solvers are
especially suitable for cases where only one solution is
available and the interval of the solution is known, which
is the case for determining the cutoff frequency, assuming

that the bandwidth is known. The minimum bandwidth
under the dps = 53 floating data type is shown in Fig. 4.

The following describes an extension to arbitrary-preci-
sion floating-point numbers, based on which the maximum
allowable weight coefficients under the corresponding accu-
racy can be calculated (or parameters with more practical
physical significance, i.e., the minimum bandwidth). Simi-
lar to double-precision data, two parameters are required,
dps , which again denotes the number of decimal places, and
dpsre , which denotes the number of reserved decimal places
needed to ensure the accuracy of the calculation. The maxi-
mum weight coefficient can be calculated by the following
formula:

2.5 � Numerical Implementation of VK Filter

This section describes how a numerical method can be used
to solve the analytic solution of the filter. Although various
numerical methods have been developed to solve the above
equation, the relevant numerical algorithms should be dis-
cussed for two main reasons. The first, and most important,
reason is that an arbitrary-precision floating-point arithmetic
library is used to implement the filter. The second reason is
that full use should be made of the structural characteristics
of sparse matrices to accelerate the calculation. Thus, the
problem is not whether the problem can be solved, but how
to solve it efficiently and how to embed it into the arbitrary-
precision floating-point arithmetic library.

The filter solution can be obtained by solving the lin-
ear equation Bx = y� using Cholesky factorization. In this
method, the matrix is decomposed into the product of a
lower-triangular and an upper-triangular matrix, which can
be expressed as B = LLT . The Cholesky–Banachiewicz and
Cholesky–Crout algorithms can be expressed as follows:

The lower-triangular matrix L has only nd + 1 nonzero
diagonal elements (this is proved below).

(39)r2ata[0] ≤ 2dps−dpsre

(40)L1,1 =
√

B1,1

(41)Li,1 = Bi,1∕L1,1

(42)Lj,j =
1

Lj,j

√√√√
Bj,j −

j−1∑
k=1

L2
j,k

(43)Li,j =
1

Lj,j

√√√√
Bi,j −

j−1∑
k=1

Li,kLj,k (i > j)

Fig. 3   Maximum weight coefficients under double-precision floating
data type

Fig. 4   Minimum bandwidth under dps = 53 floating data type

185Numerical Implementation of High-Order Vold–Kalman Filter Using Python Arbitrary-Precision…

1 3

For the first column of L,

For the second column of L

and so on. It can be inferred that

From a rigorous point of view, mathematical induction
can be used to prove that the above equation holds. Through
the above method, it can be proved that L is a lower-trian-
gular matrix with nd + 1 nonzero diagonal elements. This
structural feature greatly reduces the computational com-
plexity of Cholesky factorization. Equations (40)–(43) can
be rewritten as follows:

As L is diagonally sparse, the memory requirements can
be reduced by storing only the nonzero elements of L. This
matrix is called Ls . L is a N × N dimensional matrix, but Ls
is N × nd dimensional.

(44)Bi,j = 0 if |i − j| > nd

(45)Li,1 =
Bi,1

L1,1
= 0 if i − 1 > nd

(46)Li,2 =
1

L1,1

(
Bi,2 − Li,1L2,k

)
= 0 if i − 2 > nd

(47)Li,m =
1

L1,1

(
Bi,2 −

m−1∑
k=1

Li,kLm,k

)
= 0 i − m > nd

(48)L1,1 =
√

B1,1

(49)Li,1 =

{
Bi,1

L1,1
(i ≤ nd + 1)

0 else

(50)Lj,j =
1

Lj,j

√√√√√Bj,j −

j−1∑
k=max(1,j−nd)

L2
j,k

(51)

Li,j =

⎧⎪⎨⎪⎩

1

Lj,j

����Bi,j −
j−1∑

k=max(1,max(1,j−nd))
Li,kLj,k (0 < i − j ≤ nd)

0 other

186	 L. Ge et al.

1 3

After LU factorization, the solution of the VK filter can
be obtained by forward reduction and backward substitution:

Let

Then,

Equations (53) and (54) can be solved using a row-by-
row method. Firstly, y′ is obtained; this is equal to CHy . The
pseudocode for this process is given in Algorithm 5.

The process of solving (52) is forward reduction using the
following equations:

The process of solving (53) is backward substitution
using the following equations:

Ultimately, the filter solution is obtained. As mentioned
above, the complex envelope xk represents the signal

(52)Bx = LUx = LLTx = y�

(53)LTx = z

(54)Lz = y�

(55)z1 = y�
1
∕L1,1

(56)
zk =

�
y�
k
−

k−1∑
i=max(1,k−nd)

Lkizi

�

Lk,k
k = 2, 3,… ,N

(57)xN = zN∕LNN

(58)
xk =

zk −

min(N,nd+k)∑
i=k

Li,kxi

Lk,k
k = N − 1,… , 2, 1

amplitude and phase fluctuations. It does not represent the
time-domain solution of the filter. In fact, the time-domain
solution of the filter can be calculated as follows:

where real represents the real part of the complex number.
Equations (55)–(59) can be represented by the pseudocode
in Algorithm 6.

3 � Validation of VK Filter Algorithm

This section presents three test cases that verify the effec-
tiveness of the proposed algorithm. In the first test case,
the filter effectiveness is tested under different intensities of
background white noise by adding white noise to a sine wave
signal. The second test case is similar to the first, but another
sine wave signal with a different frequency is added. In the

(59)xk = 2real
((
xk
)
exp (j�(k))

)

187Numerical Implementation of High-Order Vold–Kalman Filter Using Python Arbitrary-Precision…

1 3

second test case, the two sine wave signals with different
frequencies are accurately extracted and the noise is isolated.
In the third case, actual measurement data are used. This is
a MATLAB example, and so the MATLAB algorithm is
compared with the algorithm presented in this paper.

3.1 � Extraction of a Signal from Background White
Noise

In this section, the VK filter is used to extract a sine wave-
form signal from background white noise. The data for test-
ing the algorithm are shown in Fig. 5. The added noise obeys
a Gaussian probability distribution. Three sets of noise with
different expectations are added to the sine wave signal with
an amplitude of 1 and frequency of 2 Hz. The expectations
of the noise signals are 0.5, 1, and 1.5, respectively. As can
be seen from Fig. 5, the greater the expected white noise,
the more violent the fluctuation is. Note that the sampling
frequency of the signal is 800 Hz.

A 4th order VK filter with bandwidth of 2Hz is designed.
Note that the arbitrary-precision arithmetic capability allows
an arbitrary bandwidth and order to be allocated. The filter-
ing effect is shown in Fig. 6. More noise is introduced when
the bandwidth is 2 Hz, and the greater the noise, the greater
the distortion of the result.

As a contrast, a 4th order VK filter with bandwidth of
0.8 Hz is designed. As shown in Fig. 7, although the greater
noise results in greater distortion of the waveform from a
microscopic point of view, from a macroscale point of view,
the filtering results almost coincide with the sine wave sig-
nal. This shows that a narrower bandwidth can better isolate
the influence of noise. Note that the design parameters of the
filter are beyond the range of double-precision data. With
the help of an arbitrary-precision arithmetic library, a nar-
rowband signal can be extracted from the full signal with
high sampling frequency. This is the advantage of arbitrary-
precision floating-point arithmetic algorithms.

3.2 � Extraction of a Multi‑component Signal
from Background White Noise

In this section, two sine waveform signals of different fre-
quencies are extracted from background white noise. The
frequencies of these two signals are 2 Hz and 4 Hz, respec-
tively, and both have an amplitude of 1. Similarly, the added
noise obeys a Gaussian probability distribution and has an
expectation of 1.5. The signals with and without noise are
shown in Fig. 8. The signal without noise is obtained by
adding two sine wave signals. This signal, with added white
noise, yields the signal with noise.

A 4th order VK filter with bandwidth of 1 Hz is designed.
As shown in Fig. 9, the amplitude and frequency of the two
extracted signals are basically 2 Hz and 4 Hz, respectively, the
same as the original signal. The two sine wave signals can be
extracted from the noise, and there is no interference between
them. There is a slight fluctuation in the amplitude, and a
smaller bandwidth could be set to suppress this fluctuation.
However, without using the algorithm based on arbitrary-pre-
cision floating-point arithmetic, this cannot be achieved, which

Fig. 5   Single sine waveform signal with white noise
Fig. 6   Extracted single sine waveform with bandwidth of 2 Hz

Fig. 7   Extracted single sine waveform with bandwidth of 0.8 Hz

188	 L. Ge et al.

1 3

demonstrates the advantages of the arbitrary-precision algo-
rithm. Obviously, test cases with more than two signals could
be considered, but this would make the figure appear very clut-
tered. Two signals are sufficient to verify the feasibility of the
algorithm and are easier to understand and demonstrate.

3.3 � Extraction from Real Measurement Signal

The data processed in this section are derived from actual
measurement signals, namely, vibration data from an accel-
erometer in the cabin of a helicopter during a run-up and
coast-down of the main motor. The data are taken from the
MATLAB Signal Processing Toolbox.

A helicopter has several rotating components, including
the engine, gearbox, and the main and tail rotors. Each com-
ponent rotates at a known, fixed rate with respect to the main
motor, and each may contribute some unwanted vibrations.
The frequency of the dominant vibration components can be
related to the rotational speed of the motor to investigate the
source of high-amplitude vibrations. The helicopter in this

example has four blades in both the main and the tail rotors.
Important components of vibration from a helicopter rotor
may be found at integer multiples of the rotational frequency
of the rotor when the vibration is generated by the rotor
blades. The signal in this test case is a time-dependent volt-
age, vib, sampled at a rate of 500 Hz. The data include the
angular speed of the turbine engine, and a vector t of time
instants. The ratios of rotor speed to engine speed for each
rotor are stored in the variables main Rotor Engine Ratio
and tail Rotor Engine Ratio and have values of 0.0520 and
0.0660, respectively. The signal is shown in Fig. 10.

A filter with a difference order of 4 and bandwidth of
1 Hz was designed. The orders to be extracted are 0.0520
and 0.0660, which have the two largest amplitudes of all the
orders. The filtering result is shown in Fig. 11. In contrast,
Fig. 12 shows the filtering result of the 3rd order filter using
the MATLAB algorithm. From these figures, it can be seen
that the envelope fluctuation is obviously more violent than
that given by the algorithm proposed in this paper. Because
the graphs are also drawn in MATLAB, they are slightly
different from those given by the Python code.

Fig. 8   Two added sine waveform signals with white noise

Fig. 9   Two sine waveform signals extracted from white noise

Fig. 10   Real helicopter vibration signal

Fig. 11   Extracted orders of 0.0520 and 0.0660 from the helicopter
vibration signal

189Numerical Implementation of High-Order Vold–Kalman Filter Using Python Arbitrary-Precision…

1 3

4 � Conclusions

This paper has presented the relevant theoretical and numeri-
cal implementations of a VK filter in detail. Using the pseu-
docode given in this paper, the VK filter algorithm based on
arbitrary-precision floating-point numbers can be easily real-
ized. The main body of this paper is Sect. 2, where the ana-
lytical solution of an arbitrary-order VK filter was given and
the relationship between the filter bandwidth and the weight-
ing coefficient r was obtained. The frequency response of
various difference orders was also derived. In this process,
the use of arbitrary-precision floating-point numbers suc-
cessfully avoids the problem of high-order filter passband
fluctuations. Finally, the proposed numerical method was
used to determine the VK filter with reduced computational
complexity by facilitating the use of arbitrary-precision
algorithms.

Three test cases show that the proposed algorithm has bet-
ter filtering effect, better frequency selectivity, and stronger
anti-interference ability compared with double-precision
data type algorithm. The main contribution of this paper is
to overcome the problem whereby the bandwidth of the VK
filter cannot be too narrow by using an arbitrary-precision
floating-point arithmetic library. Based on this library, a fil-
ter with arbitrary bandwidth and arbitrary difference order
can be implemented whenever necessary. From the practical
application point of view, the numerical implementation of
the algorithm is also given in detail, so that according to the
ideas and methods of this paper, using Python to implement
related algorithms is a brisk job.

Acknowledgements  The paper is supported by the National Science
Foundation for Young Scientists of China, Intelligent collaboration
control of all-terrain vehicle via active attitude, and four-wheel steering
control systems (Grant No. 51705185).

Conflict of interest  The authors declare that they have no conflict of
interest.

References

	 1.	 Brandt, A., Lagö, T.L., Ahlin, K., et al.: Main principles and limi-
tations of current order tracking methods. Sound Vib. 39, 19–22
(2005)

	 2.	 Vold, H., Leuridan, J.: High resolution order tracking at extreme
slew rates, using Kalman tracking filters. SAE Paper Number
931288 (1993)

	 3.	 Vold, H., Mains, M., Blough, J.: Theoretical foundations for high
performance order tracking with the Vold–Kalman tracking filter.
SAE Paper Number 972007 (1997)

	 4.	 Vold, H., Deel, J.: Vold–Kalman order tracking: new methods
for vehicle sound quality and drive train NVH applications. SAE
Paper Number 972033 (1997)

	 5.	 Vold, H., Mains, M., Corwin-Renner, D.: Multiple axle order
tracking with the Vold–Kalman tracking filter. Sound Vib. Mag.
31, 30–34 (1997)

	 6.	 Herlufsen, H., Gade, S., Konstantin-Hansen, H., et al.: Character-
istics of the Vold–Kalman order tracking filter. In: Proceedings
of the IEEE International Conference on Acoustics, Speech and
Signal Process 6, 3895–3898 (2000)

	 7.	 Pelant, P., Tuma, J., Benes, T.: Vold–Kalman order tracking filtra-
tion in car noise and vibration measurements. In: Proceedings of
Internoise, Prague (2004)

	 8.	 Tuma, J.: Setting the passband width in the Vold–Kalman order
tracking filter. In: 12th International Congress on Sound and
Vibration, (ICSV12), Paper 719, Lisabon (2005)

	 9.	 Blough, J.R.: Understanding the Kalman/Vold–Kalman order
tracking filters formulation and behavior. In: Proceedings of the
SAE Noise and Vibration Conference, SAE paper No. 2007-01-
2221 (2007)

	10.	 Čala, M., Beneš, P.: Implementation of the Vold–Kalman order
tracking filters for online analysis. In: 23rd International Congress
on Sound and Vibration 2016 (ICSV 23) 1, 367–374 (2016)

	11.	 Vold, H., Miller, B., Reinbrecht, C., et al.: The Vold–Kalman order
tracking filter implementation and application. In: 2017 Interna-
tional Operational Modal Analysis Conference

	12.	 Amadou, A., Julien, R., Edgard, S., et al.: A new approach to tune
the Vold–Kalman estimator for order tracking. Ciba-Geigy A-G,
Switz (2016)

	13.	 Feldbauer, C., Holdrich, R.: Realisation of a Vold–Kalman track-
ing filter—a least square problem. In: Proceedings of the COST
G-6 Conference on Digital Audio Effects (DAFX-000), Verona,
Italy (2000)

	14.	 Pan, M.C., Chu, W.C., Le, D.D.: Adaptive angular-velocity
Vold–Kalman filter order tracking–theoretical basis, numerical
implementation and parameter investigation. Mech. Syst. Signal.
Process. 81, 148–161 (2016)

	15.	 Zhao, D., Li, J.Y., Cheng, W.D., et al.: Vold-Kalman generalized
demodulation for multi-faults detection of gear and bearing under
variable speeds. Procedia Manuf. 26, 1213–1220 (2018)

	16.	 Feng, Z.P., Zhu, W.Y., Zhang, D.: Time-frequency demodulation
analysis via Vold-Kalman filter for wind turbine planetary gearbox
fault diagnosis under nonstationary speeds. Mech. Syst. Signal.
Process. 128, 93–109 (2019)

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

A
m

pl
itu

de
Order Waveforms for Peak Orders

Order 0.052

Order 0.066

Fig. 12   Order signals extracted in MATLAB

	Numerical Implementation of High-Order Vold–Kalman Filter Using Python Arbitrary-Precision Arithmetic Library
	Abstract
	1 Introduction
	2 VK Filter Formulation
	2.1 Analytical Solution of VK Filter
	2.2 Frequency Response of VK Filter in Steady State
	2.3 Relationship Between the Filter Bandwidth and the Weighting Coefficient
	2.4 Maximum of Weight Coefficient
	2.5 Numerical Implementation of VK Filter

	3 Validation of VK Filter Algorithm
	3.1 Extraction of a Signal from Background White Noise
	3.2 Extraction of a Multi-component Signal from Background White Noise
	3.3 Extraction from Real Measurement Signal

	4 Conclusions
	Acknowledgements
	References

