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Abstract
The Vold–Kalman (VK) order tracking filter plays a vital role in the order analysis of noise in various fields. However, owing 
to the limited accuracy of double-precision floating-point data type, the order of the filter cannot be too high. This problem 
of accuracy makes it impossible for the filter to use a smaller bandwidth, meaning that the extracted order signal has greater 
noise. In this paper, the Python mpmath arbitrary-precision floating-point arithmetic library is used to implement a high-order 
VK filter. Based on this library, a filter with arbitrary bandwidth and arbitrary difference order can be implemented whenever 
necessary. Using the proposed algorithm, a narrower transition band and a flatter passband can be obtained, a good filtering 
effect can still be obtained when the sampling rate of the speed signal is far lower than that of the measured signal, and it 
is possible to extract narrowband signals from signals with large bandwidth. Test cases adopted in this paper show that the 
proposed algorithm has better filtering effect, better frequency selectivity, and stronger anti-interference ability compared 
with double-precision data type algorithm.
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1  Introduction

Order analysis is used in a variety of applications, from basic 
plant machinery testing to complex automotive engine test-
ing. It is often combined with acoustic measurements to ana-
lyze the noise, vibration, and harshness (NVH) qualities of 
an engine or vehicle as a whole. Automotive engineers often 
use order tracking methods for product evaluation and devel-
opment, design validation, production testing, quality evalu-
ation, and trouble shooting. The paper [1] reviewed some 
basic ideas behind different kinds of order analysis methods 
and compared their main advantages and limitations.

Particularly, the VK filter is a vital technique in order 
analysis. The main framework of the filter have been basi-
cally presented [2–4] and then on this basis, the algorithm 
appears in almost all NVH-related commercial software 
presently on the market. Because of the importance of 
these researches, the algorithm is also named after the main 

author. Based on the conventional Kalman filter, the VK 
filter was proposed by Vold and Leuridan in 1993 [2]. The 
authors found that normal tracking filters (analog or digital 
implementations) have limited resolution in situations where 
the reference RPM is rapid. Thus, the authors proposed the 
application of nonstationary Kalman filters for the tracking 
of periodic components in such noise and vibration signals, 
namely, the VK filter. Vold then introduced the mathematical 
background of the VK filter [3]. This was the first presenta-
tion of the second-generation algorithm and its theoretical 
foundations. This new algorithm enables the simultaneous 
estimation of multiple orders, effectively decoupling close 
and crossing orders. In another paper published the same 
year [4], the authors explored the advantages of the filter 
in detail, including: (1) RPM estimation accuracy, even for 
fast-changing events such as gear shifts, (2) higher-order 
Kalman filters, with improved shapes for extracting modu-
lated orders, and (3) decoupling of close and even crossing 
orders by use of multiple RPM references. Vold et al. [5] 
reported the development of a new VK filter for decoupling 
interacting orders in multi-axle systems. Based on the foun-
dation of the first- and second-generation VK filters, a num-
ber of studies provided further understanding of the math-
ematical derivation of the filters, the physical meaning of 
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their parameters, and the relationship between these param-
eters [6–11]. Herlufsen et al. [6] described the filter charac-
teristics of the VK order tracking filter, investigating both 
the frequency response and time response of their time–fre-
quency relationship. Pelant et al. [7] derived the detailed 
formulation of the filter, while Tuma [8] reported the band-
width calculation formula for the 1st–4th order of the filter 
and established the relationship between the bandwidth and 
the weight coefficient. As an extension, the present paper 
presents a calculation formula for the filter bandwidth at 
arbitrary orders. Blough [9] explained the formulations and 
behavior of the filter in very straightforward and practical 
terms through the use of both equations and example data-
sets. Čala and Beneš [10] described the implementation of 
both first- and second-generation VK order tracking filters, 
with a focus on optimizing the calculations. It is worth men-
tioning that Vold et al. [11] considered the bandwidth of the 
VK filter to be limited by the numerical conditioning of the 
least-squares normal equations associated with its applica-
tion. This suggests that even narrower bandwidths may be 
achieved by a direct least-squares solution using a banded 
version of the QR algorithm. As a more general approach, 
the present study adopts another method based on an arbi-
trary-precision floating-point arithmetic library. Similar to 
the VK filter, the method of transforming the filter problem 
into an optimization problem appears, although this has not 
yet become the mainstream approach. Amadou et al. [12] 
proposed another method that converges quickly and pro-
vides a small estimation error compared to those used for the 
linear time-invariant model. An offline processing approach 
using the preconditioned conjugate gradient method has also 
been proposed [13]. Pan et al. [14] further studied theoreti-
cal basis, numerical implementation and parameter of VK 
filter. It should be pointed out that VK filter is very useful in 
many fields of sound analysis, even fault diagnosis [15, 16].

When the order of the VK filter is large, it has the advan-
tages of a flat passband and a fast-changing transition band. 
At the same time, smaller filter bandwidths can better isolate 
the influence of noise and other vibration signals. However, 
both cases result in larger matrix values, even beyond the 
precise representation of double-precision data. None of the 
research mentioned above can solve this problem effectively. 
This is the main problem considered in this paper—how to 
obtain higher-order and narrower passband VK filters for an 
arbitrary desired order and bandwidth.

To better understand how this problem is solved, there 
sections are introduced as follows. Section 2 describes the 
relevant VK filter in detail and gives the pseudocode of the 
related algorithm. Using an arbitrary-precision floating-
point arithmetic library, the extension of this VK filter to 
any higher orders is explained. Section 3 presents the results 
from three test cases to verify the effectiveness of the algo-
rithm. Finally, Sect. 4 gives the conclusions to this study.

2 � VK Filter Formulation

This section discusses the VK filter algorithm and its numer-
ical implementation in detail. The numerical implementa-
tion of the algorithm is given in the form of pseudocode. 
Readers can use the Python programming language and its 
arbitrary-precision numerical operation library to realize this 
algorithm, or contact the author to obtain the source code. 
The author will accept any requests with an open mind, and 
later relevant source code will be released on GitHub.

2.1 � Analytical Solution of VK Filter

In this section, the analytical solution of the VK filter will be 
derived. Firstly, two basic equations, i.e., data equation and 
structural equation, correspond to the measurement equation 
and state equation of the standard Kalman filter, respectively. 
Based on minimizing the weighted sum of squares of the 
error terms of the two equations, the analytic solution of the 
VK filter is obtained.

The recorded signal y(t) is modeled as follows:

where �(n) is the phase of an ideal signal, that is, the integral 
of the angular velocity, �(n) =

n∑
i=0

�(i)Δt , η represents the 

noise item. The complex envelope x(n) represents the signal 
amplitude and phase fluctuations. This equation is named 
the data equation.

The matrix representation is

and the square of the error vector norm is

The structural equation can be described by the following 
higher-order difference equation:

where Δ represents the difference computation symbol, nd 
is the order of the difference equation, and the value of �(n) 
should be sufficiently small so that the complex envelope 
x(n) changes very slowly. The difference equation is

To deduce the formula and programming conveniently, 
the coefficients of the difference equation are expressed as 
dv . This is a vector of elements

Thus, the difference equation can be described as follows:

(1)y(n) = x(n) exp (j�(n)) + �

(2)y − Cx = �

(3)�T� = (y − Cx)T (y − Cx)

(4)Δndx(n) = �(n)

(5)Δrf (x) =

r∑
i=0

(−1)iCi
r
f (x + r − i)

(6)dv(i) = (−1)iCi
nd

(i = 0, 1, 2… nd)
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where i = 0, 1,… , nd . The matrix representation is

which can be written as

The dimension of A is 
(
N − nd + 1

)
× N.

The optimization objective is to minimize 

where r is the weight factor. We compute

which can be expressed as

and so

The above formula gives the analytical solution of the VK 
filter for a single-order signal. For the purpose of conveni-
ence, define a new matrix

When using regular data types, the limitations of the 
accuracy of double-precision floating data type mean that 
the identity matrix E will be submerged in addition opera-
tions if the weight factor r is too large. In the following sec-
tions, this issue will be discussed further and the relationship 
between r and the bandwidth of the filter in the steady state 
will be considered.

2.2 � Frequency Response of VK Filter in Steady State

In this section, the basic principles of the VK filter are 
described from the perspective of the frequency domain, 
which contributes to a deeper understanding of the filter 
and provides a reference for setting reasonable weight coef-
ficients in engineering practice. Before giving the exact 

(7)
dv(0)x(n) + dv(1)x(n − 1) +⋯ + dv

(
nd
)
x
(
n − nd

)
= �(n)

(8)

⎡⎢⎢⎢⎣

dv(0) dv(1) dv(2) … dv
�
nd
�

0 … 0

0 dv(0) dv(1) … dv
�
nd-1

�
dv
�
nd
�
… 0

… … … … … … …

0 0 0 dv(0) dv(1) dv(2) … dv
�
nd
�

⎤⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎣

�
�
nd
�

�
�
nd + 1

�
⋯

�(N)

⎤
⎥⎥⎥⎦

(9)Ax = �

(10)J = r2�T� + �T�

(11)
�J

�xH
=
(
r2ATA + E

)
x − CHy = 0

(12)
(
r2ATA + E

)
x = CHy

(13)x =
(
r2ATA + E

)−1
CHy

(14)B =
(
r2ATA + E

)

calculation process, it should be emphasized that a larger 
weight coefficient always means a narrower bandwidth. 
Thus, larger weight coefficients are needed to achieve nar-
rower bandwidths, even beyond the computational range of 
double-precision floating-point numbers. Firstly, by exploit-
ing the structure of the analytical solution of the VK filter, 
the frequency response of the filter is obtained. The pseu-
docode for calculating the frequency response of the filter 
is then given.

The dimension of matrix A is 
(
N − nd + 1

)
× N , and its 

elements can be represented as follows:

According to the matrix multiplication formula:

Thus, according to (15), assuming that ATA(i, j) is 
nonzero, the following relationship holds:

This transforms to

Let Su = min
(
N − nd, i, j

)
 and Sd = max

(
i − nd, j − nd, 1

)
 . 

According to (15)–(18), the following relationships can be 
obtained:

Further,

If ATA(i, j) is nonzero, then Su ≥ Sd , that is, |i − j| ≤ nd , 
which means each row of the matrix ATA has at most 2nd + 1 
nonzero elements on the diagonal.

Let us exploit the structure of ATA and go a step fur-
ther. As ATA is symmetric, the case i ≥ j is first considered. 
Assuming that i ≥ nd + 1 and j ≤ N − nd , then

(15)A
(
ir, ic

)
=

{
dv
(
ic − ir

) (
0 ≤ ic − ir ≤ nd

)
0 other

(16)ATA(i, j) =

N−nd∑
k=1

AT (i, k)A(k, j)

(17)
{

0 ≤ i − k ≤ nd
0 ≤ j − k ≤ nd

(18)
{

i − nd ≤ k ≤ i

j − nd ≤ k ≤ j

(19)ATA(i, j) =

⎧⎪⎨⎪⎩

Su∑
k=Sd

AT (i, k)A(k, j)
�
Su ≥ Sd

�

0 other

(20)ATA(i, j) =

⎧⎪⎨⎪⎩

Su∑
k=Sd

dv(i − k)dv(j − k)
�
Su ≥ Sd

�

0 other
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In the same way, when i < j , assuming that j ≥ nd + 1 
and i ≤ N − nd,

From (21) and (22), it can be seen that the 2nd + 1 
nonzero diagonal elements of each row of the matrix are 
the same, except for the first nd rows and the last nd rows of 
the matrix. Because ATA is symmetric, B = (r2ATA + E ) has 
the same structure as ATA . Abbreviate the diagonal elements 
of each row and nd elements after the diagonal element of 
matrix B as the vector b. The elements of b can be calculated 
as follows:

As mentioned above, B has the same structure as ATA , 
which means B is a sparse symmetric matrix with 2nd + 1 
nonzero diagonal elements. According to the following 
relations:

we have that

After performing a Z transformation, the following for-
mulas are obtained:

Substituting z = ej� into the above, the frequency 
response of the filter is obtained as

(21)ATA(i, j) =

⎧
⎪⎨⎪⎩

j∑
k=i−nd

dv(i − k)dv(j − k)
��i − j� ≤ nd

�

0 other

(22)ATA(i, j) =

⎧
⎪⎨⎪⎩

i∑
k=j−nd

dv(i − k)dv(j − k)
��i − j� ≤ nd

�

0 other

(23)
bib = r2ATA

(
i, i + ib

)
= r2

nd−ib∑
k=0

dv(k)dv
(
ib + k

)

(ib = 1, 2… nd)

(24)bib =

(
r2

nd∑
k=0

dv(k)dv(k)

)
+ 1(ib = 0)

(25)
(
r2ATA + E

)
x = CHy

(26)Bx = y�

(27)y�(k) =

k+nd∑
m=k−nd

B(k,m)x(m)

(28)
y�(z) =

(
bndZ

−nd + bnd−1Z
−(nd−1) +⋯ + b0

+b1Z
1 +…+ bndZ

nd
)
x(z)

Through Euler’s formula, the following mathematical 
relations are obtained:

Substituting (30) into (29), the final frequency response 
function of the filter is:

The pseudocode for calculating the frequency response 
of the VK filter in the steady state is given in Algorithm 1.

In the following deduction process, both ATA and B play 
an important role, but because both matrices are N × N 
dimensional, the number of elements in these matrices 
increases sharply with the signal dimension N, resulting in 
a dramatic increase in memory requirements. Thus, the ele-
ments of these two matrices are not all stored but are instead 

(29)
y�
(
ej�

)
=
(
bnde

−ndj� + bnd−1e
−(nd−1)j� +⋯

+b0 + b1e
j� +⋯ + bnde

ndj�
)
x
(
ej�

)

(30)
e−kj� + ekj� = cos (k�) − j sin (k�)

+ cos (k�) + j sin (k�) = 2 cos (k�)

(31)
H
�
ej�

�
=

x
�
ej�

�

y�
�
ej�

� =
1

b0 + 2
nd∑
k=1

bk cos (k�)
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calculated when they are needed. The method of calculating 
ATA and B is given in Algorithm 2.

2.3 � Relationship Between the Filter Bandwidth 
and the Weighting Coefficient

On the basis of the frequency response function derived 
in the previous section, the relationship between the filter 
bandwidth and the weighting coefficient r is now discussed. 
Finally, an analytical solution for the weight coefficients 
is obtained for a certain bandwidth. For convenience, a 
new vector ata is introduced, which satisfies the following 
relations:

Substituting this into (23) and (24) yields

Substituting this into (31) gives

(32)
ata

[
ib
]
=

nd−ib∑
k=0

dv(k)dv
(
ib + k

)

(ib = 0, 1, 2… nd)

(33)bib = r2ata
[
ib
]

(ib = 1, 2… nd)

(34)b0 = r2ata[0] + 1

The cutoff frequency satisfies the following relationship:

By specifying the bandwidth of the filter, the weight coef-
ficient can be calculated as

The above formula describes the relationship between the 
weight coefficient and the bandwidth, and gives the physical 
meaning of the weight coefficient. That is, the bandwidth of 
the filter depends directly on the value of the weight coeffi-
cient. The larger the weight coefficient, the smaller the band-
width of the filter. This relationship is established when the 
signal enters the steady state, but this does not mean that the 
VK filter is only suitable for steady-state systems; in fact, it 
is highly suitable for the unsteady state. When the bandwidth 
is known, the weight coefficients are computed as described 
in Algorithm 3.

Once the order and bandwidth of the filter have been 
determined, the weight coefficient of the filter can be 

(35)
H
�
ej�

�
=

1

r2ata[0] + 1 + 2r2
nd∑
k=1

ata[k] cos (k�)

(36)r2

�
ata[0] + 2

nd�
k=1

ata[k] cos
�
k�c

��
+ 1 =

√
2

(37)r =

������
√
2 − 1

ata[0] + 2
nd∑
k=1

ata[k] cos
�
k�c

�
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obtained. The frequency response function of the filter 
is then given by (35). As shown in Fig. 1, the frequency 
response of the filter varies with the difference order. The 
higher the order, the better the flatness of the passband and 
the narrower the transition band. In other words, filters with 
high differential orders offer better frequency selection. Note 
that, when the difference order is 7, the response curve fluc-
tuates at the passband. For difference orders of 8 or more, 
the filter cannot be designed at this bandwidth. Of course, 
this phenomenon is the result using double-precision float-
ing-point numbers.

As shown Fig. 2, there is no such problem for an algo-
rithm using arbitrary-precision floating-point numbers. 
After using a high-precision floating-point number, the filter 
passband response fluctuation at difference order 7 disap-
pears, and filters with a differential order of 8 or more can 
be designed without fluctuation.

2.4 � Maximum of Weight Coefficient

The results in the previous section indicate that higher-order 
filters produce flatter passband bandwidths and faster tran-
sition band changes. The higher order also means that the 
diagonal elements of ATA are larger. A smaller bandwidth 
ensures better frequency selectivity and a greater weight 
factor r. Both these factors increase the value of the diago-
nal elements of r2ATA . If the diagonal elements of r2ATA 
are too large, the limitations of double-precision floating-
point accuracy imply that, when the diagonal elements of 
r2ATA are added to 1, the value 1 is ignored, and the solution 
will fail. In this section, the minimum bandwidth, i.e., the 
maximum weight coefficient, is derived under different filter 
orders. Firstly, the double-precision data type is examined, 
and then arbitrary-precision numbers are explored.

Firstly, the method of measuring the precision of arbi-
trary-precision floating-point numbers is introduced. There 
are two terms involved, referred to as prec and dps. The 
term prec denotes the binary precision (measured in bits), 
whereas dps denotes the decimal precision. Binary and deci-
mal precisions are approximately related through the for-
mula prec = 3.33 × dps. For example, a precision of roughly 
333 bits is required to hold an approximation of dps, that 
is, accurate to 100 decimal places (actually, slightly more 
than 333 bits are used). Double-precision floating-point 
numbers, on most systems, correspond to 53 bits of pre-
cision. For double-precision floating-point numbers, the 
maximum number that can be accurately represented is 
253 = 9,007,199,254,740,992.

However, approaching this number should be avoided, 
because the missing decimal part will affect the accuracy 
of the result.

Assuming that a 10-bit binary number is reserved to 
ensure the accuracy of the calculation, the maximum value 
of the diagonal element of a matrix should be less than 
243 = 8,796,093,022,208.

The maximum element value of ATA is found on the 
diagonal of the matrix. More accurately, it will be the first 
element of the ata vector, that is, ata[0] . To ensure the accu-
racy of the calculation results, the following equation should 
be satisfied:

The weight coefficients corresponding to different orders 
of difference are shown in Fig. 3.

The relation between the cutoff frequency and the 
weight coefficient of the filter is given by (35). Using 
this formula, the minimum bandwidth, corresponding to 
the maximum weight coefficient, can be calculated. How-
ever, from the point of view of the equation, solving the 

(38)r2ata[0] ≤ 243

Fig. 1   Frequency response of VK filter under double-precision float-
ing data type

Fig. 2   Frequency response of VK filter under 50-decimal-place float-
ing data type
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weight coefficient is fairly straightforward, assuming that 
the bandwidth, namely, the cutoff frequency, is known. 
However, the reverse process is quite complicated. Obvi-
ously, it is necessary to solve nonlinear equations. The 
analytical solution cannot be obtained but can only be 
realized through some numerical algorithm. At the same 
time, to realize an algorithm for an arbitrary difference 
order and avoid the inaccuracy of double-precision float-
ing-point numbers, an algorithm for solving nonlinear 
equations based on arbitrary-precision numbers will be 
needed. For this purpose, intersection-based solvers such 
as ‘anderson’ or ‘ridder’ are recommended. Usually, they 
converge quickly and are very reliable. These solvers are 
especially suitable for cases where only one solution is 
available and the interval of the solution is known, which 
is the case for determining the cutoff frequency, assuming 

that the bandwidth is known. The minimum bandwidth 
under the dps = 53 floating data type is shown in Fig. 4.

The following describes an extension to arbitrary-preci-
sion floating-point numbers, based on which the maximum 
allowable weight coefficients under the corresponding accu-
racy can be calculated (or parameters with more practical 
physical significance, i.e., the minimum bandwidth). Simi-
lar to double-precision data, two parameters are required, 
dps , which again denotes the number of decimal places, and 
dpsre , which denotes the number of reserved decimal places 
needed to ensure the accuracy of the calculation. The maxi-
mum weight coefficient can be calculated by the following 
formula:

2.5 � Numerical Implementation of VK Filter

This section describes how a numerical method can be used 
to solve the analytic solution of the filter. Although various 
numerical methods have been developed to solve the above 
equation, the relevant numerical algorithms should be dis-
cussed for two main reasons. The first, and most important, 
reason is that an arbitrary-precision floating-point arithmetic 
library is used to implement the filter. The second reason is 
that full use should be made of the structural characteristics 
of sparse matrices to accelerate the calculation. Thus, the 
problem is not whether the problem can be solved, but how 
to solve it efficiently and how to embed it into the arbitrary-
precision floating-point arithmetic library.

The filter solution can be obtained by solving the lin-
ear equation Bx = y� using Cholesky factorization. In this 
method, the matrix is decomposed into the product of a 
lower-triangular and an upper-triangular matrix, which can 
be expressed as B = LLT . The Cholesky–Banachiewicz and 
Cholesky–Crout algorithms can be expressed as follows:

The lower-triangular matrix L has only nd + 1 nonzero 
diagonal elements (this is proved below).

(39)r2ata[0] ≤ 2dps−dpsre

(40)L1,1 =
√

B1,1

(41)Li,1 = Bi,1∕L1,1

(42)Lj,j =
1

Lj,j

√√√√
Bj,j −

j−1∑
k=1

L2
j,k

(43)Li,j =
1

Lj,j

√√√√
Bi,j −

j−1∑
k=1

Li,kLj,k (i > j)

Fig. 3   Maximum weight coefficients under double-precision floating 
data type

Fig. 4   Minimum bandwidth under dps = 53 floating data type



185Numerical Implementation of High-Order Vold–Kalman Filter Using Python Arbitrary-Precision…

1 3

For the first column of L,

For the second column of L

and so on. It can be inferred that

From a rigorous point of view, mathematical induction 
can be used to prove that the above equation holds. Through 
the above method, it can be proved that L is a lower-trian-
gular matrix with nd + 1 nonzero diagonal elements. This 
structural feature greatly reduces the computational com-
plexity of Cholesky factorization. Equations (40)–(43) can 
be rewritten as follows:

As L is diagonally sparse, the memory requirements can 
be reduced by storing only the nonzero elements of L. This 
matrix is called Ls . L is a N × N dimensional matrix, but Ls 
is N × nd dimensional.

(44)Bi,j = 0 if |i − j| > nd

(45)Li,1 =
Bi,1

L1,1
= 0 if i − 1 > nd

(46)Li,2 =
1

L1,1

(
Bi,2 − Li,1L2,k

)
= 0 if i − 2 > nd

(47)Li,m =
1

L1,1

(
Bi,2 −

m−1∑
k=1

Li,kLm,k

)
= 0 i − m > nd

(48)L1,1 =
√

B1,1

(49)Li,1 =

{
Bi,1

L1,1
(i ≤ nd + 1)

0 else

(50)Lj,j =
1

Lj,j

√√√√√Bj,j −

j−1∑
k=max(1,j−nd)

L2
j,k

(51)

Li,j =

⎧⎪⎨⎪⎩

1

Lj,j

����Bi,j −
j−1∑

k=max(1,max(1,j−nd))
Li,kLj,k (0 < i − j ≤ nd)

0 other
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After LU factorization, the solution of the VK filter can 
be obtained by forward reduction and backward substitution:

Let

Then,

Equations (53) and (54) can be solved using a row-by-
row method. Firstly, y′ is obtained; this is equal to CHy . The 
pseudocode for this process is given in Algorithm 5.

The process of solving (52) is forward reduction using the 
following equations:

The process of solving (53) is backward substitution 
using the following equations:

Ultimately, the filter solution is obtained. As mentioned 
above, the complex envelope xk represents the signal 

(52)Bx = LUx = LLTx = y�

(53)LTx = z

(54)Lz = y�

(55)z1 = y�
1
∕L1,1

(56)
zk =

�
y�
k
−

k−1∑
i=max(1,k−nd)

Lkizi

�

Lk,k
k = 2, 3,… ,N

(57)xN = zN∕LNN

(58)
xk =

zk −

min(N,nd+k)∑
i=k

Li,kxi

Lk,k
k = N − 1,… , 2, 1

amplitude and phase fluctuations. It does not represent the 
time-domain solution of the filter. In fact, the time-domain 
solution of the filter can be calculated as follows:

where real represents the real part of the complex number. 
Equations (55)–(59) can be represented by the pseudocode 
in Algorithm 6.

3 � Validation of VK Filter Algorithm

This section presents three test cases that verify the effec-
tiveness of the proposed algorithm. In the first test case, 
the filter effectiveness is tested under different intensities of 
background white noise by adding white noise to a sine wave 
signal. The second test case is similar to the first, but another 
sine wave signal with a different frequency is added. In the 

(59)xk = 2real
((
xk
)
exp (j�(k))

)
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second test case, the two sine wave signals with different 
frequencies are accurately extracted and the noise is isolated. 
In the third case, actual measurement data are used. This is 
a MATLAB example, and so the MATLAB algorithm is 
compared with the algorithm presented in this paper.

3.1 � Extraction of a Signal from Background White 
Noise

In this section, the VK filter is used to extract a sine wave-
form signal from background white noise. The data for test-
ing the algorithm are shown in Fig. 5. The added noise obeys 
a Gaussian probability distribution. Three sets of noise with 
different expectations are added to the sine wave signal with 
an amplitude of 1 and frequency of 2 Hz. The expectations 
of the noise signals are 0.5, 1, and 1.5, respectively. As can 
be seen from Fig. 5, the greater the expected white noise, 
the more violent the fluctuation is. Note that the sampling 
frequency of the signal is 800 Hz.

A 4th order VK filter with bandwidth of 2Hz is designed. 
Note that the arbitrary-precision arithmetic capability allows 
an arbitrary bandwidth and order to be allocated. The filter-
ing effect is shown in Fig. 6. More noise is introduced when 
the bandwidth is 2 Hz, and the greater the noise, the greater 
the distortion of the result.

As a contrast, a 4th order VK filter with bandwidth of 
0.8 Hz is designed. As shown in Fig. 7, although the greater 
noise results in greater distortion of the waveform from a 
microscopic point of view, from a macroscale point of view, 
the filtering results almost coincide with the sine wave sig-
nal. This shows that a narrower bandwidth can better isolate 
the influence of noise. Note that the design parameters of the 
filter are beyond the range of double-precision data. With 
the help of an arbitrary-precision arithmetic library, a nar-
rowband signal can be extracted from the full signal with 
high sampling frequency. This is the advantage of arbitrary-
precision floating-point arithmetic algorithms.

3.2 � Extraction of a Multi‑component Signal 
from Background White Noise

In this section, two sine waveform signals of different fre-
quencies are extracted from background white noise. The 
frequencies of these two signals are 2 Hz and 4 Hz, respec-
tively, and both have an amplitude of 1. Similarly, the added 
noise obeys a Gaussian probability distribution and has an 
expectation of 1.5. The signals with and without noise are 
shown in Fig. 8. The signal without noise is obtained by 
adding two sine wave signals. This signal, with added white 
noise, yields the signal with noise.

A 4th order VK filter with bandwidth of 1 Hz is designed. 
As shown in Fig. 9, the amplitude and frequency of the two 
extracted signals are basically 2 Hz and 4 Hz, respectively, the 
same as the original signal. The two sine wave signals can be 
extracted from the noise, and there is no interference between 
them. There is a slight fluctuation in the amplitude, and a 
smaller bandwidth could be set to suppress this fluctuation. 
However, without using the algorithm based on arbitrary-pre-
cision floating-point arithmetic, this cannot be achieved, which 

Fig. 5   Single sine waveform signal with white noise
Fig. 6   Extracted single sine waveform with bandwidth of 2 Hz

Fig. 7   Extracted single sine waveform with bandwidth of 0.8 Hz
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demonstrates the advantages of the arbitrary-precision algo-
rithm. Obviously, test cases with more than two signals could 
be considered, but this would make the figure appear very clut-
tered. Two signals are sufficient to verify the feasibility of the 
algorithm and are easier to understand and demonstrate.

3.3 � Extraction from Real Measurement Signal

The data processed in this section are derived from actual 
measurement signals, namely, vibration data from an accel-
erometer in the cabin of a helicopter during a run-up and 
coast-down of the main motor. The data are taken from the 
MATLAB Signal Processing Toolbox.

A helicopter has several rotating components, including 
the engine, gearbox, and the main and tail rotors. Each com-
ponent rotates at a known, fixed rate with respect to the main 
motor, and each may contribute some unwanted vibrations. 
The frequency of the dominant vibration components can be 
related to the rotational speed of the motor to investigate the 
source of high-amplitude vibrations. The helicopter in this 

example has four blades in both the main and the tail rotors. 
Important components of vibration from a helicopter rotor 
may be found at integer multiples of the rotational frequency 
of the rotor when the vibration is generated by the rotor 
blades. The signal in this test case is a time-dependent volt-
age, vib, sampled at a rate of 500 Hz. The data include the 
angular speed of the turbine engine, and a vector t of time 
instants. The ratios of rotor speed to engine speed for each 
rotor are stored in the variables main Rotor Engine Ratio 
and tail Rotor Engine Ratio and have values of 0.0520 and 
0.0660, respectively. The signal is shown in Fig. 10.

A filter with a difference order of 4 and bandwidth of 
1 Hz was designed. The orders to be extracted are 0.0520 
and 0.0660, which have the two largest amplitudes of all the 
orders. The filtering result is shown in Fig. 11. In contrast, 
Fig. 12 shows the filtering result of the 3rd order filter using 
the MATLAB algorithm. From these figures, it can be seen 
that the envelope fluctuation is obviously more violent than 
that given by the algorithm proposed in this paper. Because 
the graphs are also drawn in MATLAB, they are slightly 
different from those given by the Python code.

Fig. 8   Two added sine waveform signals with white noise

Fig. 9   Two sine waveform signals extracted from white noise

Fig. 10   Real helicopter vibration signal

Fig. 11   Extracted orders of 0.0520 and 0.0660 from the helicopter 
vibration signal
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4 � Conclusions

This paper has presented the relevant theoretical and numeri-
cal implementations of a VK filter in detail. Using the pseu-
docode given in this paper, the VK filter algorithm based on 
arbitrary-precision floating-point numbers can be easily real-
ized. The main body of this paper is Sect. 2, where the ana-
lytical solution of an arbitrary-order VK filter was given and 
the relationship between the filter bandwidth and the weight-
ing coefficient r was obtained. The frequency response of 
various difference orders was also derived. In this process, 
the use of arbitrary-precision floating-point numbers suc-
cessfully avoids the problem of high-order filter passband 
fluctuations. Finally, the proposed numerical method was 
used to determine the VK filter with reduced computational 
complexity by facilitating the use of arbitrary-precision 
algorithms.

Three test cases show that the proposed algorithm has bet-
ter filtering effect, better frequency selectivity, and stronger 
anti-interference ability compared with double-precision 
data type algorithm. The main contribution of this paper is 
to overcome the problem whereby the bandwidth of the VK 
filter cannot be too narrow by using an arbitrary-precision 
floating-point arithmetic library. Based on this library, a fil-
ter with arbitrary bandwidth and arbitrary difference order 
can be implemented whenever necessary. From the practical 
application point of view, the numerical implementation of 
the algorithm is also given in detail, so that according to the 
ideas and methods of this paper, using Python to implement 
related algorithms is a brisk job.
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Fig. 12   Order signals extracted in MATLAB


	Numerical Implementation of High-Order Vold–Kalman Filter Using Python Arbitrary-Precision Arithmetic Library
	Abstract
	1 Introduction
	2 VK Filter Formulation
	2.1 Analytical Solution of VK Filter
	2.2 Frequency Response of VK Filter in Steady State
	2.3 Relationship Between the Filter Bandwidth and the Weighting Coefficient
	2.4 Maximum of Weight Coefficient
	2.5 Numerical Implementation of VK Filter

	3 Validation of VK Filter Algorithm
	3.1 Extraction of a Signal from Background White Noise
	3.2 Extraction of a Multi-component Signal from Background White Noise
	3.3 Extraction from Real Measurement Signal

	4 Conclusions
	Acknowledgements 
	References




