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Abstract
In this paper, a multi-objective reliable optimization (MORO) procedure for the front body of an electric vehicle is proposed
and compared with determinate multi-objective optimization (DMOO). The energy absorption and peak crash force of the
simplified vehicle model under the full-lap frontal impact condition are used as the design objectives, with the weighted
sum of the basic frequency, the first-order torsional and bending frequencies of the full-size vehicle model, and the weight
of the front body taken as the constraints. The thicknesses of nine components on the front body are defined as design
variables, and their geometric tolerances determine the uncertainty factor. The most accurate metamodel using the polynomial
response surface, kriging, and a radial basis function is selected to model four design criteria during optimization, allowing
the efficiency improvement to be computed. Monte Carlo simulations are adopted to handle the probability constraints,
and multi-objective particle swarm optimization is employed as the solver. The MORO results indicate reliability levels of
R = 100%, demonstrating the significant enhancement in reliability of the front body over that given by DMOO, and reliable
design schemes and proposals are provided for further study.

Keywords Multi-objective reliable optimization · Electric vehicle body · Metamodel technique · Monte Carlo

1 Introduction

Similar to conventional-fuel automobiles, poor body designs
of electric vehicles will lead to many severe problems [1].
Consequently, structural design optimization at the body-
in-white (BIW) stage is a major concern in the electric
automotive industry. Of all the structural properties of the
vehicle body, frontal crashworthiness has attracted the most
research interest in terms of the safety consideration [2].
There are many practical metrics for evaluating a vehicle’s
crashworthiness, such as the energy absorption, maximum
acceleration, and maximum intrusion, although many of
these conflictwith one another. Therefore, to acquire the opti-
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mal crashworthiness, a multi-objective optimization (MOO)
problem must be explored.

Numerous finite element method (FEM) simulations are
required to evaluate the objectives and constraints in MOO
problems, and these can be extremely time-consuming when
using either gradient-based or evolutionary-based optimiza-
tion techniques. To enhance the optimization efficiency, the
widely usedmetamodel technique uses a set of samples deter-
mined by the design of experiment (DOE) during the FEM
optimization [3]. The polynomial response surface (PRS),
kriging (KRG), and radial basis function (RBF) are popu-
lar models in MOO for vehicle bodies. For instance, Liao et
al. employed the PRS-based non-dominated sorting genetic
algorithm II (NSGA-II) algorithm to performMOO for vehi-
cle body, using theweight, full-lap crashworthiness, and 40%
offset frontal impact as design criteria [4]. By combining a
sequentialRBF-basedmetamodeling techniquewith amicro-
multi-objective genetic algorithm, Chen et al. used MOO to
simultaneously reduce the peak impact force in the event of
a roof crash and decrease the weight of the car [5]. To max-
imize the absorbed energy of a bus frame under the rollover
condition while ensuring as light a weight as possible, Fan et
al. conducted MOO using NSGA-II [6]. Note that the types
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of metamodels used for structural mechanics depend greatly
on the specific research objectives. Consequently, it is neces-
sary to study the most accurate and appropriate metamodel
for predicting multi-discipline response in vehicle BIW opti-
mization.

The above-mentioned studies did not consider uncer-
tainty factors such as the manufacturing tolerance, materials,
loading conditions, or environment, resulting in consider-
able limitations in practical applications. In deterministic
optimization, designs are often pushed to the limit, and
small variations in design variables or parameters could
cause the design to violate some crucial constraints. To
take various uncertainties into consideration, reliable design
optimization (RDO) has received increasing attention in
automotive structure optimization. For example, a compar-
ative study of multi-objective, deterministic, reliable, and
robust design optimization for the crashworthiness improve-
ment of a car’s B-pillar assembly was presented by Shetty
et al. [7]. Fang et al. [8] explored multi-objective reliable
optimization (MORO) for a vehicle door using Monte Carlo
simulations (MCS) based on the probabilistic sufficiency
factor method, metamodel technique, and multi-objective
particle swarm optimization (MOPSO) algorithm. Song et al.
[9] implemented RDO for an automotive knuckle component
under different working conditions, where a constraint-
feasible moving least-square method was adopted to model
the functional inequality constraint. Shi et al. [10] developed
a stochastic sensitivity analysis method to compute the sensi-
tivities of the probabilistic response using a metamodel with
MCS,where themetamodel is determinedby aBayesianmet-
ric with data uncertainty. Rais-Rohani et al. [11] optimized
the shape and size of vehicle structures by examining the
effects of different constraints and their associated uncertain-
ties on the reliability and efficiency of the optimum designs
for 100% or offset frontal crashes. Nevertheless, RDO for the
front body structure of an electric vehicle considering mul-
tiple performance requirements and uncertainty factors has
received limited attention in the literature.

In this paper, a MORO procedure for an electric vehi-
cle’s front body structure is presented, and the effects of
uncertainties in the geometric parameters of components
are examined. After constructing and implementing FEM
for the baseline design of an electric vehicle body structure,
there is still a relatively large optimization design space in its
frontal part. The crashworthiness with full-lap frontal impact
of this front structure, and the effect on the basic modal
frequency and lightweight property of the whole body, is
investigated using deterministicmulti-objective optimization
(DMOO) and the correspondingMORO,with the thicknesses
of nine key components taken as the design variables.MCS is
employed to address the probabilistic constraints in MORO,
and differentmetamodels are screened to select themost suit-
able substitute for the costly FEM. TheMOPSO algorithm is

adopted to generate well-distributed Pareto solutions in both
DMOO and MORO.

2 Theory andMethodology

2.1 Deterministic Multi-objective Optimization

To optimize the trade-off performance in engineering, the
mathematical model of DMOO is generally established as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Min f (x) = ( f1(x), f2(x), . . . , fi (x))
s. t. g j (x) ≤ 0

xL ≤ x ≤ xU

i = 1, 2, . . . ,m
j = 1, 2, . . . , n

(1)

where fi (x) and g j (x) are the i th objective function and the
j th constraint, respectively; x represents the vector of design
variables, with superscripts L and U denoting its lower and
upper bounds.

2.2 Multi-objective Reliable Optimization

Different from DMOO, MORO considers uncertainties in
input parameters, i.e., optimum schemes subject to proba-
bilistic bounds on the constraints. The resultingmathematical
expression is

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Min f (x) = ( f1(x), f2(x), . . . , fi (x))
s. t. P(g j (x) ≤ 0) ≥ R j

xL ≤ x ≤ xU

i = 1, 2, . . . ,m
j = 1, 2, . . . , n

(2)

where P(.) is the probability evaluated for some safe region
defined by g j (x) ≤ 0 and R j is the desired reliability satisfy-
ing the functional constraint. The twomain phases ofMORO
are reliability analysis and optimization.

2.3 Monte Carlo Simulation

As stated in Eq. (2), probabilistic constraints should be
repeatedly evaluated in MORO. MCS has been widely
applied in approximating the probability of a series of random
process output events by randomly sampling for uncertain
variables [9,11–13]. The MCS procedure is composed of
the following steps: (1) generating the sample set of ran-
dom variables based on the probability density function; (2)
constructing the mathematical model of the limit state func-
tion to ensure the failure probability of known sample points
for random variables; (3) calculating the probabilistic char-
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acteristics of the structural system response after simulating
for the sampling points of the random variables.

For a random process problem, several key parameters
are of most concern, including the mean (μ), standard devi-
ation (σ), and coefficient of variation (COV). These can be
calculated as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

μ = 1
Nt

∑n
i=1 xi

σ =
[

1
Nt−1

∑n
i=1 (xi − μ)2

] 1
2

CoV = μ/σ

(3)

where xi is the i th random variable and Nt is the total number
of sampling points.

Based on the law of large numbers in statistics, the prob-
ability in Eq. (2) can be simply estimated by

P(g j (x) ≤ 0) = Ns

Nt
(4)

where Ns is the number of sampling points satisfying the
constraint g j (x) ≤ 0. Additionally, it is recommended that
Nt should be no less than 10/[1−P(g j (x) ≤ 0)] to guarantee
the accuracy of the probability calculation [12]. If the failure
probability is very small, Nt becomes very large, indicating
that many simulations are needed. However, this could be
infeasible for MORO, as the FEM runs can be extremely
expensive. Therefore, instead of simulations based on the
time-consuming true model, a metamodel could be used in
the MCS technique.

2.4 Metamodel Technique

In general, direct structural optimization based on a simula-
tionmodel might be inefficient or even infeasible, as iterative
nonlinear FEM runs for objectives and constraints evalua-
tion usually have an extremely high computational burden.
As a model of models, a metamodel can be constructed from
the relationship between the inputs, i.e., the set of design
variables generated by DOE, and the outputs, i.e., the cor-
responding system responses, and this metamodel can be
conveniently used to predict the response at other points
within the design space. The metamodel technique has been
widely adopted in DMOO and MORO [13]. In this paper,
three types of metamodels are studied, namely PRS, KRG,
and RBF.

2.4.1 PRS

The classic PRS model is the original and probably the most
widely used form of metamodel in engineering design [14].
Its mathematical expression from the first to the fourth order
can be formulated as

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ỹ = α + ∑t
i=1 βxi

ỹ = α + ∑t
i=1 βxi + ∑t

i=1 γ x2i +
∑t

i=1
∑t

i< j ωxi x j
ỹ = α + ∑t

i=1 βxi + ∑t
i=1 γ x2i +

∑t
i=1

∑t
i< j ωxi x j

+∑t
i=1 εx3i

ỹ = α + ∑t
i=1 βxi + ∑t

i=1 γ x2i +
∑t

i=1
∑t

i< j ωxi x j
+∑t

i=1 εx3i + ∑t
i=1 θx4i

(5)

where xi (i = 1, 2, . . ., t) and ỹ represent the t-dimensional
design variable vector and the approximate response, respec-
tively; the estimated regression coefficients α, β, γ ,ω, ε, and
θ can be computed on the basis of the least-squares method.
The interactions among the design variables involved in PRS
are signified by xi x j , and the nonlinear characteristics of PRS
are explained by their higher-order terms. PRS above the
fourth order is not recommended as the enhanced accuracy
is outweighed by the reduced efficiency.

2.4.2 KRG

The fundamental basis of KRG is the assumption that the
model can be simulated as a realization of aGaussian stochas-
tic process [15,16]. A KRG model contains a known fixed
global model f j (x) and a local departure Z(x) in the form

ỹ =
∑s

j=1
η j f j (x) + Z(x) (6)

where Z(x) is assumed to be a realization of a stochastic
process with amean of zero and a spatial correlation function
expressed by

cov
[
Z(xi ), Z(x j )

] = σ 2R(xi , x j ) (7)

where σ 2 is the process variance. The correlation matrix R
is defined by

R(xi , x j ) = exp

[

−
∑n

k=1
χk

∣
∣
∣xki − xkj

∣
∣
∣
2
]

(8)

where χk is the unknown correlation parameter used to fit
KRG.

2.4.3 RBF

RBF was developed to approximate multivariate functions
with highly nonlinear features [17]. There are two parts to
the RBF model, namely, the m radial basis functions and n
polynomial terms with weighted coefficients. The model is
written as

ỹ =
∑m

i=1
λiϕ(

∥
∥
∥x − μi

∥
∥
∥) +

∑n

j=1
C jφ j (x) (9)
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where
∥
∥x − μi

∥
∥ represents the Euclidean distance between

the design point x and the observed input μi ; ϕ is the basis
function; λ is the unknown weighting factor; and φ j (x)
denotes the polynomial term with coefficient C .

2.4.4 Accuracy Evaluation Metrics for Metamodels

The accuracy of the results given by metamodel-based opti-
mization is greatly affected by the model constructed. To
evaluate the accuracy, the global metric of R2 and the local
metric of the relative average absolute error (RAAE) are used.
These can be expressed as

R2=1 −
∑q

i=1 (yi − ỹi )2
∑q

i=1 (yi − ȳ)2
, RAAE =

∑q
i=1 |yi − ỹi |

∑q
i=1 |yi − ȳ| (10)

where yi and ỹi are the true values and the approximated
values of the i th known sampling point, respectively; ȳ is the
mean of yi ; and q is the number of samples. Generally, it is
preferable for the metamodel to have a larger value of R2 and
a smaller value of RAAE.

2.5 Multi-objective Particle SwarmOptimization
Algorithm

TheMOPSO algorithm is an extension of conventional PSO,
which has gained considerable attention for its fast con-
vergence and well-distributed Pareto frontier [17]. MOPSO
uses an external archive to save the non-dominated solutions
during the search procedure, and clips these non-dominated
solutions through a crowded degree algorithm. Elite individ-
uals are finally selected from sparse regions in the external
archive as the global optimal solution. The main steps in
MOPSO can be summarized as:

Step 1. Set the number of iterations as t = 0, initialize
the position (xi ) and velocity (vi ) of each particle,
compute the objective vector corresponding to each
particle, extract the non-dominated solutions, and
place them in an external archive (Ai );

Step 2. Determine the optimal positions of each particle (pi )
and the whole particle swarm (pg);

Step 3. Under the condition of ensuring the particles move
about the search space, update xi and vi according to

⎧
⎨

⎩

vi (t + 1) = vi (t) + r1c1
[
pi (t) − xi (t)

]

+ r2c2
[
pg(t) − xi (t)

]

xi (t + 1) = xi (t) + vi (t + 1)
(11)

Step 4. Update Ai and pg based on the newly derived non-
dominated solutions;

Step 5. Terminate the algorithm if the convergence condi-
tion is satisfied; if not, return to step 3.

Fig. 1 FEM model of the electric vehicle BIW

3 FEM of Electric Vehicle Body-In-White

3.1 FEM Simulation for Free Modal Analysis

The baseline design for an electric vehicle’s BIW is mod-
eled by 2D shell elements, where the material is mainly steel
with linear elastic isotropic characteristics. Testing shows
that 8-mm and 18-mm elements are adequate to capture the
converged responses and acquire acceptable computational
efficiency for parts with smaller curvature radius and more
geometric features, such as front longitudinal members, and
those with larger curvature radius, such as the roof. Compo-
nents are assembled by the co-node technique or as 1D rigid
elements. The BIW shown in Fig. 1 has 252289 2D shell ele-
ments and 3114 1D elements, giving a total weight of 196.5
kg.

As an important factor in the noise, vibration, and harsh-
ness (NVH) of a vehicle, the modal features of this BIW
are investigated in this study. Based on the FEM model,
the natural frequencies and corresponding modal shapes
are determined using the Lanczos method. Note that the
first-order (basic) modal frequency of the BIW receives con-
siderable attention, as higher values prevent any increase in
internal noise, fatigue damage of structural members, and
discomfort to passengers by staggering the resonance fre-
quency with external excitations and other vehicle-mounted
components. In addition, the first-order torsional and bend-
ing frequencies of BIW are often considered [2]. In this BIW
baseline, the three relevant frequencies are summarized in
Table 1 and their corresponding modal shapes are shown in
Fig. 2. Note that the front body is sensitive to these three
modalities.

3.2 FEM Simulation for Crashworthiness with
Full-Lap Frontal Impact

As one of the most dangerous extreme working conditions
of passenger vehicles, this paper examines the 100%-overlap
frontal crashworthiness. In this case, structural deformations
mainly occur at the front end of the vehicle to absorb kinetic
energy and reduce the force passing into the passenger com-
partment. A single simulation of the crash process using a
detailed FEM model of the entire vehicle requires enormous
computational effort and has a high risk of divergence. In
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Table 1 Three natural frequencies of the BIW

Natural frequency Basic frequency First-order torsional frequency First-order bending frequency

Value (Hz) 26.22 28.49 37.52

Fig. 2 Three modal shapes of the BIW. a Basic modal shape. b First-
order torsional modal shape. c First-order bending modal shape

view of this, only the FEM model of the front body struc-
ture is used, and other parts of the vehicle are substituted and
represented by a board with a uniformly distributed mass
rigidly attached to the front body [18,19]. Thus, Blytskho–
Tsay shell elements and piecewise linear plasticity material
models are arranged here. The FEM model of this vehicle
for 100%-overlap frontal crashworthiness analysis involves
90267 elements (see Fig. 3). An initial velocity of 50 km/h
is considered, and the crash process occurs within 25 ms.

Figure 4 shows the energy variation curves in the simu-
lation of the baseline design for this vehicle. These results
demonstrate the accuracy and reliability of the simplified
FEMmodel, because the hourglass energy to the total energy
is found to be less than 5%. The simulation indicates that
the total energy absorption and the maximum impact force
on the rigid wall are 16.18 kJ and 421.93 kN, respectively.
The deformation form of the entire front body is illustrated in
Fig. 5. Note that themaximum impact force is relatively high,
and there is the potential risk that the peak acceleration of the
passenger compartment during a crash would be excessive.
To handle this problem, the design of the front body must be
optimized.

4 Optimization Design for the Front BIW

Owing to its specific contribution to the comprehensive
mechanical performance of the whole vehicle body, the front

Fig. 3 FEM model of the vehicle for 100%-overlap frontal crashwor-
thiness analysis
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Fig. 4 Energy variation curves during crash

Fig. 5 Deformation form of the entire front body after crash

structure is nowoptimized. In the frontal crash study, it would
be preferable for a higher amount of energy absorption and
a lower peak impact force. In the dynamic investigation, the
basic frequency ( fB),first-order torsional frequency ( ft), and
first-order bending frequency ( fb) should be systematically
improved to enhance theNVHcharacteristics. Consequently,
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x1
x7

x2

x6

x5

x3

x4
x8x9

Fig. 6 Illustration of design variables

Table 2 Detailed information on nine design variables

Design variables Baseline design (mm) Range (mm) CoV (%)

x1 0.7 0.5–2.0 1

x2 0.9 0.5–2.0 1

x3 1.4 0.5–2.0 1

x4 1.6 0.5–2.0 1

x5 1.0 0.5–2.0 1

x6 1.4 0.5–2.0 1

x7 0.8 0.5–2.0 1

x8 0.9 0.5–2.0 1

x9 0.7 0.5–2.0 1

the weighted sum of these three frequencies ( fw) is selected
as a design criterion. This is calculated as

fw = ω1 fB + ω2 ft + ω3 fb
ω1 = ω2 = ω3 = 1/3

(12)

where ωi denotes the weight value. Furthermore, the front
body should be as light as possible to increase the mileage
range. The thicknesses of nine key components on the front
body are selected as design variables, and their variations
are considered to be normally distributed with COV = 1%.
Detailed information on these design variables is presented
in Fig. 6 and Table 2.

To achieve a design scheme that satisfies the above-
mentioned design criteria, the following DMOO problem is
established:

⎧
⎪⎪⎨

⎪⎪⎩

Min F(x) = (−E(x), Fmax(x))
s. t. M(x) ≤ 18.03Kg

fw(x) ≥ 30.74Hz
xL ≤ x ≤ xU

(13)

where E and Fmax are the energy absorption and maximum
crash force, respectively; M is the total mass of this front
body, and its initial value is 18.03 kg; fw is the weighted-

Start

DOE(OLHS)

FEM

Create Surrogate Model

The Most Accurate Metamodel

Add
Sample
Points

MOPSO

Yes
Yes

Yes

No
No

DMOO

MORO

MCS

Accuracy
Acceptable? Accuracy

Acceptable?

Pareto Front

Algorithm
Convergence?

NoChange
Parameters

End

Add
Sample
Points

1st 
Order
PRS

RBF
2nd 

Order
PRS

3rd 
Order
PRS

KRG
4th 

Order
PRS

Fig. 7 Flowchart of the proposed optimization procedure

sum frequency of the entire vehicle body, as defined in Eq.
(12).

By setting the reliability level of the two constraints in Eq.
(13) to be 99%and introducing the uncertainties of the design
variables, the mathematicalMOROmodel for this front body
can be formulated as

⎧
⎪⎪⎨

⎪⎪⎩

Min F(x) = (−E(x), Fmax(x))
s.t P(M(x) ≤ 18.03Kg) ≥ 99%

P( fw(x) ≥ 30.74Hz) ≥ 99%
xL ≤ x ≤ xU

(14)

To improve the optimization efficiency, the metamodeling
technique is applied using PRS, KRG, and RBF. Among
these metamodels, the most accurate one will be used to pre-
dict E(x), Fmax(x), M(x), and fw(x) in the DMOO and to
conduct MCS inMORO. To construct a high-accuracy meta-
model, optimal Latin hypercube sampling (OLHS) is used
to generate uniform training points in the design space. To
capture the modal frequency and crashworthiness property
with nonlinear characteristics, 50 training points are initially
generated. If the accuracy of the metamodels constructed by
these initial samples is unacceptable, the optimization pro-
cedure should return to the DOE step and more sampling
points be generated by a max–min distance criterion. These
can then be added to the sample pool to update the metamod-
els [20]. TheMOPSO algorithm is employed as the solver for
the DMOO and MORO problems. For clarification, the pro-
posed optimization procedure is summarized as a flowchart
in Fig. 7.
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Table 3 Accuracy assessment for different metamodels

Design criteria First-order PRS Second-order PRS Third-order PRS Fourth-order PRS KRG RBF

R2 RAAE R2 RAAE R2 RAAE R2 RAAE R2 RAAE R2 RAAE

E 0.9072 0.2431 0.9259 0.1762 0.9210 0.1955 0.9091 0.2074 0.9188 0.1849 0.8754 0.2297

Fmax 0.9978 0.0431 0.9990 0.0245 0.9991 0.0234 0.9989 0.0294 0.9986 0.0293 0.9978 0.0386

fw 0.8012 0.3024 0.9840 0.0875 0.9865 0.0741 0.9887 0.0661 0.9535 0.1258 0.9846 0.0759

Bold value represents that its corresponding metamodel has the highest prediction accuracy

5 Results and Analysis

5.1 Selection and Analysis of Metamodels

As the weight of the front structure of this BIW has a linear
relationship with the thicknesses of its components, the first-
order PRS is selected to model M . To evaluate the accuracy
of the different metamodels, 10 extra validation points are
generated at random over the whole design space by OLHS.
The computational results are compared in Table 3.

From Table 3, it is clear that the third-order PRS, second-
order PRS, and fourth-order PRS are the most accurate and
appropriate metamodels for predicting Fmax, E , and fw,
respectively, as they give the highest R2 values in conjunction
with the lowest RAAE values for each design criterion.

-18 -16 -14 -12 -10 -8 -6 -4

100

200

300

400

500  100 iterations
 80 iterations
 40 iterations
 Knee point
 Utopia point

Fm
ax

 (k
N

)

-E (kJ)

Fig. 8 POF of DMOO with different iterations and Knee point

5.2 Results and Analysis of DMOO

The non-dominated solutions of the DMOO defined in Eq.
(13) are achieved by MOPSO. Figure 8 shows the Pareto
frontier (POF) obtained in the 40th, 80th, and 100th itera-
tions of MOPSO. The results indicate that the 100th iteration
provides sufficient convergence, and its POF can thus be
taken as the final optimization result. Composed of 100 well-
distributed solutions, the final POF is convex, signifying that
there is a contradiction between the optimal E and the opti-
mal Fmax. All 100 solutions on the final POF can be selected
as design schemes for further decision making by engineers.
Note that if better energy absorption is preferred, the schemes
on the left of the final POF should be selected; if a reduction
in peak crash force is more important, schemes on the right
part can be used as alternatives. In this study, the knee-point
scheme is used, as this gives the best trade-off among the
solutions [8,14].

Table 4 compares the mechanical responses of the vehicle
body regarding the design criteria for the baseline design and
the knee- point plan in the DMOO. Note that the optimiza-
tion effect is enormous, as the relevant Fmax is decreased by
37.5%, although E is degraded by ∼23.3%. Additionally,
M and fw are reduced by 14.8% and improved by 0.6%,
respectively, over the baseline design. This analysis validates
the accuracy of the knee-point plan, because the differences
between the four design criteria and the corresponding FEM
results are all within 5%. However, the knee-point plan in
DMOO does not give a suitable value of fw: the reliability
computed by MCS is only 55%, which means fw has a 45%
chance of being less than its baseline value (30.74 Hz). In
view of this, MORO is required for this front body.

Table 4 Comparison between
the baseline and the knee-point
plan in DMOO

Items Baseline design Knee-point plan in DMOO

Knee point FEM Error Reliability

Objectives E 16.18 kJ 12.41 kJ (−23.3%) 11.92 kJ +4.1% –

Fmax 421.93 kN 263.58 kN (−37.5%) 255.17 kN +3.3% –

Constraints M 18.03 kg 15.37 kg (−14.8%) 15.65kg −1.8% 100%

fw 30.74 Hz 30.92 Hz (+0.6%) 30.82 Hz −0.3% 55%
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5.3 Results and Analysis of MORO

In consideration of the uncertainty from the manufactur-
ing tolerances of the components corresponding to the nine
design variables, this section considers the application of
MORO for the front body. The probability evaluation for
the constraints in Eq. (14) is performed by metamodel-
based MCS with a MOPSO optimizer. The final POF
given by MORO is contrasted with that from DMOO in
Fig. 9. The POF of MORO is located to the right of
the DMOO POF, demonstrating that conservative optimum
results are obtained byMORO. Furthermore, these two POFs
are becoming closer toward the lower right corner, which
indicates a relative sacrifice in E rather than Fmax to accom-
modate the randomness of the design variables in MORO.
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Fig. 9 Comparison of POFs from MORO and DMOO

Therefore, Pareto solutions placed on the left half of the POF
represent alternative design schemes for designers.

The optimally balanced knee-point plan is also extracted
as the optimum design scheme for MORO. This is compared
with that from DMOO in Table 5. To account for the uncer-
tainty factor, E in the conservative MORO knee-point plan
is further reduced to 10.58 kJ. Fmax is decreased to 241.86
kN, lowering the safety risk for this vehicle in a frontal crash.
After MORO, M has increased to 17.39 kg, which still has
a clear margin from the boundary value of 18.03 kg. The
larger values of design variables x1 and x2 contribute most to
the increased weight of the front body, as their correspond-
ing components are the two largest in the front assembly.
Compared with the results given by DMOO, fw is obviously
ameliorated to 31.61 Hz, away from the design criterion of
30.74 Hz. Therefore, both M and fw have reliability values
in excess of the 99% target, indicating the effectiveness of
the knee-point design scheme in MORO.

6 Conclusions

In this study, MORO has been applied to the front struc-
ture of an electric vehicle. An optimization model was
constructed to obtain the optimal trade-off between the
energy absorption and maximum impact force under full-
lap frontal impact, subject to the vehicle weight and the
influence of the weighted-sum frequency composed of the
basic frequency, first-order torsional frequency, and first-
order bending frequency of the whole BIW. The thicknesses
of nine key components were taken as the design variables,
with uncertainties given by geometric tolerances. The meta-
model technique was used to model these design criteria
during optimization, and MCS was employed to address the

Table 5 Comparison of results
from MORO and DMOO

Items Results of DMOO Results of MORO

Knee point Reliability Knee point Reliability

Obj. E 12.41 kJ – 10.58 kJ –

Fmax 263.58 kN – 241.86 kN –

Cons. M 15.65 kg 100% 17.39 kg 100%

fw 30.92 Hz 55% 31.61 Hz 100%

D. V. x1 0.55 mm – 0.91 mm –

x2 1.33 mm – 1.29 mm –

x3 1.05 mm – 1.01 mm –

x4 1.07 mm – 0.86 mm –

x5 1.34 mm – 1.91 mm –

x6 0.72 mm – 0.94 mm –

x7 1.01 mm – 0.84 mm –

x8 0.97 mm – 0.75 mm –

x9 0.94 mm – 0.83 mm –
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probabilistic constraints. The MORO problem was solved
by the MOPSO algorithm. From the results, the following
conclusions can be stated:

(1) The second-order PRS, third-order PRS, and fourth-order
PRS are the most appropriate metamodels for the energy
absorption,maximumcrash force, andweighted-sum fre-
quency of the entire body, respectively.

(2) The reliability of the weighted-sum frequency in the
knee-point design scheme from DMOO is 55%, which
is much less than the 99% design requirement.

(3) The knee-point scheme from MORO is much more reli-
able and achieves an acceptable sacrifice of the overall
performance of the vehicle body.
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