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Abstract
A statistical analysis of the yarn parameters of a plain woven carbon fiber reinforced polymer composite was conducted using
X-ray micro-computed tomography data. An algorithm based on the correlated Gaussian random sequence was proposed to
construct statistically equivalent yarns, which were introduced into a numerical multiscale model. A representative volume
element was created to evaluate the macroscopic elastic properties of the composite. The predicted elastic constants showed
a good agreement with experimental data obtained from tensile, compressive, and shear tests. This showed the importance
of considering internal geometric variability for obtaining accurate simulation results. Finally, the performance of an electric
vehicle back door made of the composite material was calculated by finite element analysis. The weight of the back door
system was reduced by 47.45%, and performance results showed an excellent prospect of using lightweight composites.
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Abbreviations
Micro-CT Micro-computed tomography
CGRS Correlated Gaussian random sequence
RVE Representative volume element
CFRP Carbon fiber reinforced polymer
VIP Vacuum infusion process
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AR Aspect ratio
PBC Periodic boundary conditions
SMC Sheet molding compound
UMAT User-defined material
CAD Computer aided design
CAE Computer aided engineering
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1 Introduction

To address issues of environmental pollution and resource
consumption, lightweight vehicles fulfill stringent fuel effi-
ciency requirements for both conventional and electric cars
while maintaining safety and performance. Use of novel
materials is an important aspect of lightweight design. CFRP
has been increasingly employed in the automobile indus-
try [1,2] because they are lightweight but have high specific
stiffness and strength [3,4]. To explore the performance of
automotive parts made of CFRP, numerical studies including
multiscale modeling of its mechanical properties have been
performed [5,6].

The internal geometric variability of a woven fiber rein-
forced polymer cannot be ignored because it has a nonnegli-
gible effect on the mechanical properties such as the elastic
constants [7]. There are inevitable fluctuations in the internal
geometric structure of the yarns used to manufacture textile
reinforced polymer composites. For example, themicrostruc-
tures in plain or satin woven CFRP are grid-like, in which
weft yarn goes over and under warp yarn. Combined with
the molding process, the yarn shape and path possess spatial
variability. Internal structure variability is directly related to
the macroscopic properties of composites [8,9]. Lee et al.
[10] investigated the elastic properties of plain woven fabric
reinforced aluminum matrix composites through combined
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analytic and experimental methods and concluded that the
variability of reinforcement geometric parameters such as
shape of the yarn section and gap length had some degree of
influence on elastic constants. Endruweit et al. [11] studied
the influence of fiber angle variations on the permeability of
textile fabrics via stochastic injection simulations in which
the variability of reinforcement was emphasized. De Car-
valho et al. [12] conducted four-point bending and compact
compression experiments on two-dimensional (2D) woven
composites and stated that the location and morphology of
the damage initiation depended on theweave architecture and
internal geometry. Goldsmith et al. [13] characterized statis-
tical distributions of architecture parameters of satin weave
composites from cross section micrographs, and relation-
ships between these parameters and the thermo-mechanical
properties were constructed via a response surface method.
They found that towwidth, tow spacing, and volume fractions
affected the variability in the mechanical properties. Olave et
al. [14] employed multiscale modeling and sensitivity anal-
ysis to determine the influence of geometric variability of
woven composites on their stiffness and concluded that lam-
inate thickness and orientation contributed to the stiffness
dispersion.

As the internal geometric architecture of woven com-
posites influences the elastic properties, it is essential to
characterize the geometric parameters as accurately as pos-
sible while analyzing the behaviors of composites under
realistic loading conditions. Optical methods coupled with
statistical analysis have been adopted to study the inter-
nal geometric variability in recent years. Desplentere et al.
[15] explored the use of X-ray micro-CT and optical micro-
graphs to measure stochastic geometric parameters of textile
composites, and found that there was no significant differ-
ences between the two techniques. Barbero et al. [16] used
photomicrographs of sectioned plain woven laminates to
measure their internal geometry, from which accurate finite
element RVE models were built to predict elastic properties.
Internal shape and positions of yarns including yarn cen-
troids, area, and AR of cross sections in three-dimensional
(3D)woven composites were analyzed statistically bymicro-
CT [17]. Vanaerschot et al. [18] employed similar methods to
describe stochastic internal geometric parameters of a twill
woven carbon-epoxy composite. Blacklock et al. [19] pro-
posed the Monte Carlo Markov Chain algorithm to generate
stochastic replicas of textile composites that were statisti-
cally equivalent to the specimens imaged via high-resolution
computed tomography. Rinaldi et al. [20] used a similar algo-
rithm to construct solid 3D tow representations of textile
composites. Topological rules were defined to resolve inter-
penetrations or disorders among tows, and the shape and
smoothness were adjusted using a geometric rule.

The aim of this research was to predict the elastic
properties of plain woven CFRP by statistically analyz-

ing the internal geometric variability and reconstructing a
statistically equivalent RVE. First, the internal geometric
parameters of plainwovenCFRPwere acquired bymicro-CT
experiments and statistically analyzed. Second, the architec-
ture of an RVE was reconstructed with the CGRS method,
from which a finite element model was established for the
prediction of elastic properties. Finally, the performance of a
back door of an electric vehicle made of plain woven CFRP
was calculated, illustrating the effect of using this lightweight
material.

2 Experimental Measurements and
Statistical Analysis

To obtain the geometric characteristics of the plain woven
CFRP, 3D micro-CT scanning was conducted. For these
measurements, no processing of the prepared sample was
required. Based on the 3D volume image, the geometric
parameters of the yarns were extracted in sections and then
statistical analysis was performed to determine the mean
trend and the correlated deviations, which served as the basis
of further reconstruction.

2.1 Material and Experiment Preparation

A plain woven CFRP composite with a nominal unit cell
dimension of 4mm×4mm was considered in this study.
The sample material system consisted of a matrix of epoxy
resin (provided by Huntsman� Corporation) and TC33 car-
bon fiber (manufactured by Tairyfil�). The composite was
fabricated in a plain woven manner with 3000 carbon fibers
contained inside one yarn of the plainwoven fabric. The plain
woven fabric was infiltrated by the epoxy resin matrix, and
the laminated plate was manufactured using a VIP. Once the
plate was cut to the required size, no additional treatment was
needed for micro-CT analysis.

To obtain enough information for statistical analysis,
images of at least one period length range in two princi-
pal directions of several plies were needed. Additionally, the
X-ray micro-CT scanning requires a smaller sample size to
achieve higher resolution. The length,width, and thickness of
the samples used in this research were 5.8, 5.0, and 4.8mm,
respectively. X-ray absorption contrast between the carbon
fiber yarns and epoxy resin is low; therefore, the voltage and
current of the X-ray beamline and the technical parameters
of the micro-CT equipment were adjusted according to the
specific absorption characteristics of material [21].

2.2 Geometry Variability Measurement

The internal structure of the composite was acquired by X-
ray micro-CT. The sample was scanned in SkyScan 1272
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Fig. 1 3D micro-CT image of the plain woven CFRP

(manufactured by Bruker� Corporation) with a voxel reso-
lution of 7.8µm at a voltage of 50 kV and current of 200µA.
The 3D volume representation of the sample from the micro-
CT scan is shown in Fig. 1. A processed 2D cross-sectional
image is illustrated in Fig. 2. While there are areas in which
it is hard to distinguish yarn from matrix, the images were
clear enough to determine the yarn parameters.

A series of cross-sectional images uniformly distributed in
both the warp and weft directions were acquired at the scale
of a complete RVE to analyze the geometric properties of the
yarns. The material was divided into twenty equally spaced
parts, i.e., twenty-one sliceswere analyzed in both directions,
and the images were segmented and labeled manually.

The cross sections of the yarns were approximately ellip-
tical [7]. To acquire the yarn characteristics, the yarn cross
sections were fitted into an ellipses and geometric data were
recorded using the Java-based image processing freeware
ImageJ. The shape fitting operation yielded the coordinates
of its centroid (x, y, z), the yarn area A, the AR, and the
orientation θ of the yarn cross section along the entire yarn
path, as shown in Fig. 2.

2.3 Statistical Characterization

Because of the internal structure symmetry of plain woven
composites, geometric variability was assumed to be identi-
cal in the warp and weft directions. Thus, the warp and weft
yarns were classified into one genus that can be statistically
analyzed in the same way. Taking the warp direction as the
y-axis, the obtained yarn structure dataset is presented by
(xin, z

i
n,AR

i
n, A

i
n, θ

i
n), in which n = 1, . . . , 21 is the slice

number and i represents the warp yarn number. The analysis
of statistical parameters was similar to the statistical method

Fig. 2 Geometric parameters of the fitted yarn cross sections

proposed by Bale [10] and Vanaerschot et al. [11]. Each yarn
structural parameter is expressed as the sum of the mean and
stochastic parameters:

εin =
〈
εin

〉
+ δin (1)

where ε denotes one of the defined parameters,
〈
εin

〉
is the

systematic mean value at location n of yarn i , and δin is the
zero-mean deviation.

Six warps were used to obtain the statistical parameters.
The global mean parameter values are listed in Table 1, and
Figure 3 shows the systematic trends of the warp yarn path
and geometric parameters of the warp yarns. The x and
θ trends seemed to be random along the warp directions,
while the variation of z was characterized by a cosine curve
formwith reciprocal trough and crest in one reference period
range. The systematic trends of AR and A demonstrated two
cycles in nearly the same distance with reciprocal crests and
valleys in one period length, which is because warp and weft
yarns are compressedwith each other, especially at crossover
locations. The patterns of systematic trends of z, AR, and A
could also imply that information extracted from six warp
yarns is sufficient for this material to some extent. The global
mean values of the yarn parameters defined above are listed
in Table 1.

The deviations from the systematic mean trend at each
location were extracted by subtracting the calculated sys-
tematic values. The cumulative probability density functions
of the normalized deviations for all fivewarp yarn parameters
are illustrated in Fig. 4a. Figure 4b demonstrates the normal
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Table 1 Global mean values
and standard deviations of yarn
parameters

x (mm) z (mm) AR A (mm2) θ (◦)

Mean 0.983 0.150 10.960 0.163 1.583

Standard deviation 0.092 0.057 1.398 0.017 0.882

Fig. 3 The systematic values of the warp yarn geometric parameters in one reference period

probability plots of each normalized deviation. The devia-
tions of the five parameters had an approximately normal
distribution over most of the variable range.

The standard deviation of each parameter was computed
by:

σε =
√∑

n,i

(
δin

)2
N − 1

(2)

where N = ∑
n Nn and Nn is the number of data points at

grid location n. The standard deviations of each parameter
are shown in Table 1.

The autocorrelation coefficient of a parameter δi is calcu-
lated by:

Ci
auto(k) =

∑m−k
n=1 δinδ

i
n+k√∑m−k

n=1 (δin)
2
√∑m−k

n=1 (δin+k)
2

(3)

where (δin, δ
i
n+k) is a pair of data points taken from two dif-

ferent locations along the same yarn, m is the number of
pairs, and k is an integer. The Pearson’s correlation parameter
was utilized to summarize the autocorrelations of geometric

parameters based on the entire warp yarn genus dataset. The
autocorrelation graphs of geometric parameters (take x and
AR as examples) are illustrated in Fig. 5.

3 Geometric Modeling of RVE

Once the statistical characteristics of the defined geometric
parameters were acquired, an RVE with identical statistical
information as measured in the material sample was gener-
ated. The main goal was to reconstruct a sequence of random
deviations at certain grid locations along the yarn path that
accommodated the correlation relationship among points at
different distances.

3.1 Development of Reconstruction Algorithm

An algorithm based on CGRS was developed to reconstruct
the deviations of yarn feature parameters in woven compos-
ites. An assumption of normal distribution of the deviation
for each geometric parameter was made based on the cumu-
lative distribution functions and normal probability plots
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Fig. 4 a Cumulative distribution functions and b normal probability
plots of the normalized deviations of the five warp yarn parameters

shown in Fig. 4. The joint probability density function of
the N -dimensional normal vector X = [X1, X2, . . . , XN ]T

is:

fX (x1, . . . , xN ) = 1

(2π)N/2 |K|1/2

exp

{
−1

2
(x − µ)T K−1 (x − µ)

}
(4)

where x = [x1, . . . , xN ]T and µ = [μ1, . . . , μN ]T is the
mean vector of X. The covariance matrix K is related to the
correlation information of X, which is symmetric positive
definite and expressed as:

Fig. 5 Autocorrelation graphs of the warp yarn geometric parameters

K =

⎡
⎢⎢⎢⎣

k11 k12 · · · k1N
k21 k22 · · · k2N
...

... · · · ...

kN1 kN2 · · · kNN

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

RX (0) RX (1) · · · RX (N − 1)
RX (1) RX (0) · · · RX (N − 2)
...

...
...

...

RX (N − 1) RX (N − 2) · · · RX (0)

⎤
⎥⎥⎥⎦ (5)

in which RX (m) is the covariance function of X. In this
research, an exponential function was adopted to fit the
autocorrelation graph of Fig. 5 to determine the standard
autocorrelation function.

RX (m) = σ 2 exp(−αm), α > 0 (6)
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The correlated normal random vector X was transformed
from a standard normal random vector U using the relation-
ship:

X = AU + µ (7)

The symmetric positive definite correlation matrix K was
decomposed as the product of a lower triangular matrix and
its transposed matrix according to matrix theory:

K = AAT (8)

A =

⎡
⎢⎢⎢⎣

a11 0 · · · 0
a21 a22 · · · 0
...

... · · · ...

aN1 aN2 · · · aNN

⎤
⎥⎥⎥⎦ (9)

Then, the issue was transformed to identify the components
of the matrixA. The entries ofA could be calculated sequen-
tially by column. For the first column, the components could
be computed as:

a11 = √
k11, ai1 = ki1/a11 (10)

Once the j − 1 columns were determined, then the diagonal
element of column j could be calculated:

a j j =
⎡
⎣k j j −

j−1∑
k=1

a2jk

⎤
⎦
1/2

(11)

The entries under the diagonal line were determined by:

ai j = a−1
j j

⎡
⎣ki j −

j−1∑
k=1

aika jk

⎤
⎦ , i = j + 1, . . . , N ( j < N ) (12)

Using the calculation procedure detailed above, corre-
lated deviations of each parameter with the same statisti-
cal features were reconstructed. The complete descriptive
geometric parameters were then determined by adding
the generated deviations onto the systematic values. The
geometry information was further taken as parameters
to build the RVE of a plain woven composite at the
mesoscale.

3.2 Geometric Modeling

The reconstructed geometric parameters (x, z,AR,A, θ)

were used to build a series of elliptic cross sections along the
warp direction in commercial CAD software such as CATIA
(Dassault) and UG NX (Siemens). Continuous solid yarn
geometrywas then established based on these ellipses by loft-
ing. Interpenetration between yarns was inevitable for each

yarn that was generated by the algorithmwithout considering
positions relative to the other yarns.An intersecting operation
was adopted to remove the interpenetration between yarns.
Once the yarns were created, the matrix was represented as a
cuboid space with the yarns within it. An example of an RVE
is shown in Fig. 6a. As to be pointed out, small-scalewrinkles
generally come from thegeometrymodelingmethod, alterna-
tive operations such as fitting yarn path using spline or setting
more slices could be utilized to obtain more smooth surfaces.

4 Prediction of Elastic Properties

Based on geometric modeling of the RVE and the homog-
enization method, the elastic properties of the plain woven
CFRP were calculated with the finite element method.

4.1 Finite Element Modeling

The RVE model was imported into finite element prepro-
cessor Hypermesh (integrated in Altair� HyperWorks�

software suite) andmeshed using tetrahedral elements,which
can be used to easily mesh complex geometric characteris-
tics, as illustrated in Fig. 6b. The unit cell homogenization
method was adopted to compute a homogeneous medium
equivalent to the macroscopic heterogeneous composite in
order to calculate the elastic properties of the plain woven
CFRP. The effective stress and strain tensors, denoted as σ ∗
and ε∗, respectively, were calculated by volume averaging
over the RVE and are described as:

σ ∗ = 1

V

∫

V
σ(x)dV , ε∗ = 1

V

∫

V
ε(x)dV (13)

where V is the RVE volume.
The periodic characteristics of a composite are fulfilled

when using a homogeneous RVE, thus, unified PBC were
adopted [22]:

�u(0, x2, x3) − �u(L1, x2, x3) = �U1

�u(x1, 0, x3) − �u(x1, L2, x3) = �U2

�u(x1, x2, 0) − �u(x1, x2, L3) = �U3 (14)

�U1, �U2, and �U3 are displacement vectors of the opposite
faces, and L1, L2, and L3 denote the lengths of the RVE
along three orthogonal directions. PBC defined in terms of
displacements satisfy both the displacement periodicity and
traction periodicity under the displacement-based finite ele-
ment simulation framework.

The unified PBC was enforced by applying a linear equa-
tion constraint of corresponding nodes on a parallel opposite
pair of faces in the finite element software Abaqus. As the
nodes on edges or vertices belonged to more than one sur-
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Fig. 6 a RVE geometric model and b RVE finite element model

Table 2 Mechanical properties of yarn and matrix

Axial tensile
modulus (GPa)

Axial com-
pressive mod-
ulus (GPa)

Transverse
modulus
(GPa)

Major Pois-
son’s ratio

Transverse
Poisson’s
ratio

In-plane shear
modulus
(GPa)

Yarn 145.25 67.88 9.27 0.269 0.386 3.8

Matrix 3.08 0.35

face, the constraint equations were merged into independent
ones.

The macroscopic strain was calculated as:

ε∗
i i = �Ui

Li
, ε∗

i j = �Ui

L j
, (i �= j) (15)

where the subscript i denotes the direction of displacement
loading. The macroscopic stress was calculated as:

σ ∗
i j = (Pi ) j

S j
(no summation over j) (16)

where S j denotes the area of the j th boundary surface on
which the displacement was applied and (Pi ) j is the trac-
tion force on the loading surface. Thus, the overall elastic
response of the composite in terms ofYoung’smodulus, Pois-
son’s ratio, and shear modulus was calculated as:

Eii = σ ∗
i i

ε∗
i i

, νi j = −ε∗
j j

ε∗
i i

, Gi j = σ ∗
i j

ε∗
i j

(17)

The yarn possessed typical tensile-compressive asymme-
try and was transversely isotropic, which is mainly due to
the mechanical properties of the carbon fibers inside the
yarn. The stress–strain relationship in the elastic range was
described as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε11

ε22

ε33

γ12

γ13

γ23

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
E1

− ν12
E1

− ν13
E1

0 0 0

− ν12
E1

1
E2

− ν23
E2

0 0 0

− ν13
E1

− ν23
E2

1
E3
0 0 0

0 0 0 1
G12

0 0

0 0 0 0 1
G13

0

0 0 0 0 0 1
G23

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ11

σ22

σ33

τ12

τ13

τ23

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(18)

Considering the tensile-compressive asymmetry, the elastic
modulus in the axial direction was chosen as:
{
E1 = E+

1 if σ1 ≥ 0
E1 = E−

1 if σ1 < 0
(19)

in which E+
1 is the tensile axial elastic modulus and E−

1
is the compressive axial elastic modulus. Considering the
transversely isotropic characteristics of the yarn, the elastic
constants satisfied the equality constraints as:

E2 = E3

ν12 = ν13

G12 = G13

G23 = E2

2(1 + ν23)
(20)

The yarn properties were implemented in Abaqus with a
UMAT. The elastic constants are shown in Table 2. The elas-
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Fig. 7 Deformation contours of RVE under different loading conditions a tension, b compression, and c shear

Table 3 Predicted mechanical properties and experimental values

Properties Axial tensile
modulus
(GPa)

Axial
compressive
modulus
(GPa)

In-plane shear
modulus
(GPa)

Predicted values 59.21 24.54 3.50

Experimental values 60.89 24.09 3.63

Relative error (%) 2.76 − 1.87 3.58

tic properties of the isotropic epoxy matrix are also listed
in Table 2. Beyond the elastic range, the failure properties
could be numerically predicted if the corresponding damage
and failure criteria of constituents were defined, which will
be presented in further research work.

4.2 Predicted Results

The elastic responses of the RVE model subjected to ten-
sile, compressive, and shearing loads were simulated in
ABAQUS/Standard. Deformation contours under different
loading conditions are illustrated in Fig. 7. The tensile, com-
pressive, and shearmoduli were calculated, and the predicted
and experimental results are compared in Table 3.

The relative errors of the predicted elastic constants were
very small, which verifies the accuracy of the finite element
model of plain woven CFRP that included the internal geo-
metric variability.

5 Applications

A finite element analysis was performed to evaluate the
performance of the lightweight plain woven CFRP as the

Fig. 8 Finite element model of the back door of an electric car

Table 4 The mechanical properties of the SMC and glass

Properties Elastic modulus (GPa) Poisson’s ratio

SMC 6.4 0.35

Glass 80 0.25

primary material of a back door of an electric car, which was
originally manufactured with an aluminum alloy.
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Fig. 9 Displacement contours under different operating conditions: amodal, b stiffness of the outside panel, c lateral stiffness in the closed position,
d lateral stiffness in the open position, e torsional stiffness in the closed position, and f torsional stiffness in the open position

Table 5 Performance
requirements and responses of
the back door under different
operating conditions

Operating condition Performance index Requirement Predicted response

Mode constraint First-order modal frequency >30Hz 68.8Hz

Stiffness of outside panel Deformation 1 ≤7.5mm 1.233mm

Lateral stiffness Deformation 2 ≤2mm 1.15mm

Deformation 3 ≤1mm 0.23mm

Torsional stiffness Deformation 4 ≤1mm 0.77mm

Deformation 5 ≤1mm 0.64mm

The back door shown in Fig. 8 consists of inner and outer
panels made of plain woven CFRP, a decorated panel made
of a short glass fiber sheet molding compound (SMC), and
a glass windshield. The isotropic properties of the SMC and
glass are shown in Table 4.

The mechanical properties of the CFRP are illustrated in
Table 3. To incorporate the anisotropic material properties of
the CFRP, the material model was implemented in Abaqus
via UMAT.

The connection between parts was modeled by coupling
the assembly at the back door. The finite element model of
the back door was divided into several parts according to the
shape and spatial position. Considering the anisotropy of the
CFRP, local coordinate systems were allocated to each part
in the inner panel. In this research, both 0◦ and 45◦ were con-
sidered in the stacking assignment to balance the mechanical
performance. The laminate is assumed to be symmetric with

the stacking sequence as [02/452/0n/452/02]. The number
of n is adjusted according to the thickness of composite panel.

Four working conditions were investigated to determine
the modal properties, stiffness of the outside panel, lateral
stiffness, and torsional stiffness of the back door. Figure 9
demonstrates the displacement contours under each condi-
tion. Detailed performance requirements and corresponding
responses are given in Table 5. “Deformation 1” for the stiff-
ness of the outside panel is the deformation after applying
a 220-N force. For the lateral stiffness, “Deformation 2” is
the deformation after applying 180N in the closing direction
on the side away from the strut while the tailgate is in the
open position, and “Deformation 3” is the deformation after
applying 120 N in the direction of the parallel hinge axis
while the tailgate is in the closed position. For torsional stiff-
ness, “Deformation 4” and “Deformation 5” represent the
deformations after applying opposite forces of 240 N on the
two corners while the tailgate is in the closed position and
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after applying opposite forces of 220 N on the two corners
while the tailgate is in the open position, respectively.

As shown in Table 5, all performances met the design
requirements, and the thickness of the inner panel was
reduced from 3 to 2.5mm. After the structure was redesigned
to facilitate the use of CFRP, the mass of the inner panel was
2.086kg, which was 59.63% lighter than the original struc-
ture. The weight of the total back door system was reduced
by 47.45%. Moreover, most performance responses were
far better than the requirements, which further indicates the
potential of using lightweight structures made of CFRP in
vehicles.

6 Conclusions

In this work, the variability of the internal geometry of plain
woven CFRP was modeled with the proposed reconstruction
algorithm and the elastic properties were calculated by finite
element analysis.

First, the real architecture of plain woven CFRP was mea-
sured with a micro-CT method, from which the geometric
parameters were extracted. A statistical analysis of the mean
and standard deviation of the parameters and the correlation
characteristics was conducted to quantify the geometry.

Second, an algorithm using CGRS was investigated to
generate geometric parameters that were statistically equiv-
alent to the measured values. The geometric model was
established from the reconstructed parameters, which was
close to the real structure of the studied composite. As can
be observed from the modeling and simulation results, the
proposed reconstruction method could effectively build the
statistical equivalent structures of RVE and elastic properties
of plain woven CFRP could be accurately predicted using
homogenous approach based on established RVE geometry
and finite element method. A finite element model of the
RVE based on homogenization theory was built to calcu-
late the elastic constants of the CFRP. Comparison between
experimental andpredicted values showed the accuracyof the
developed method, which also indirectly verified the effec-
tiveness of the proposed reconstruction algorithm.

Finally, CFRP was used in the back door of an electric
vehicle to achieve a lightweight design. The stiffness and
modes of the back door made of the composite were calcu-
lated. Good working performance of the CFRP back door
was demonstrated. CFRP has shown excellent advantages
in perspective of lightweight in automotive structures. How-
ever, design optimization can be further studied to achieve an
even lighter weight, which will be considered in future work.
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