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Abstract
Supercapacitors revealing excellent power density have arisen as the most promising candidates for supporting the major 
developments in energy storage devices. Supercapacitor attracts many emerging mobile devices for addressing energy stor-
age and harvesting issues. The supercapacitor is similar to a conventional capacitor. Moreover, many researchers studied 
the improvement of energy and power density so that they can be applied extensively. The electrochemical performance of 
supercapacitor depends on various factors like electrode materials, electrolyte, and the range of voltage used. Most research-
ers mainly focused on the development of new electrode materials which yield better performance for the application of 
supercapacitors. This review work summarizes the introduction of supercapacitors and the recent advanced development of a 
variety of electrode materials in supercapacitors and production methods. In particular, transition metal chalcogenide–based 
electrode materials are focused here. Also, this review précises the improvement of the electrochemical performance of 
supercapacitor by incorporating or doping highly active materials like MWCNT, graphene, CNT, reduced graphene oxide, 
metal-based compounds, and polymers. The enhancement of specific capacity by altering the morphology and developing 
electrode with new morphological structures is deeply discussed in this review. Recently, trimetallic chalcogenides and its 
composites are emerged as new promising electrode materials which deliver large specific capacitance with excellent cycling 
stability and rate performance have also been reported here.
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1  Introduction

The increase in population and economic growth across the 
world leads to increase in the usage of fossil fuels for vari-
ous purposes. This leads to two main environmental issues: 
exhaustion of existing fossil fuels and environmental pol-
lution, i.e., global warming due to the emission of green-
house gas. These issues compel us to create and market 
environmentally responsible, economically viable, and sus-
tainable energy sources [1]. Sustainable renewable energy 
from nature can be utilized as the energy source using vari-
ous technologies from the sun, wind, ocean, hydropower, 
etc. [2]. Energy storage systems play the prominent role 
in intermittent nature of the renewable energy sources and 
increase the power transmission into the grid [3, 4]. Bat-
teries, supercapacitors, and fuel cells are the major energy 
storage systems that store and deliver the energy at the time 
of requirement by the principle of electrochemical energy 
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conversion. Batteries are well established and have wide 
range of application from simple electronic equipment such 
as clock and toys to automobile vehicle such as EMV. But 
there are some drawbacks in battery technologies such as 
less power densities, low cycle life, higher recharging time 
period, and rise in temperature during operation and haz-
ardous to the environment [5]. These downside impulses to 
develop new alternative and efficient energy storage systems 
lead to the supercapacitors. Supercapacitors (SCs) or ultra-
capacitor is an electrochemical device with high power den-
sity than batteries and larger capacitance than the conven-
tional capacitors. SCs have greater advantages such as higher 
power densities, high efficiency, high specific capacitance, 
and wide operating temperature. Moreover, they are envi-
ronmental friendliness and charge quickly and deliver high 
power at a short period and build a gap between batteries 
and conventional capacitors. Due to these advantages, they 
are used for specific applications that require quick charge 
discharge and long life cycle than the long period of energy 
storage.

Supercapacitors can be classified as either electrochemi-
cal double-layer capacitor (EDLC) or pseudocapacitors 
based on their energy storage potential. While considering 
the charge storage mechanism, there are two main charge 
storage principles in capacitors: double-layer capacitance, 
electrostatic storage of energy by separation of charge in 
a Helmholtz double layer, and pseudocapacitance, electro-
chemical storage of energy by faradic redox reaction. Vari-
ation in mechanism and choice of electrodes lead to three 
different classifications: electric double-layer capacitors 
(EDLCs), pseudocapacitors (PCs), and hybrid capacitors 
(HCs).

EDLCs store charges electrostatically in the formed 
double layer at the interface of two electrodes. It uses car-
bon-based materials such as activated carbon (AC), carbon 
nanosheets, single-walled and multi-walled carbon nano-
tubes (CNT), carbon aerogel, graphene, graphene oxides, 
and mesoporous carbon to store energy [5]. PCs are a type 

of supercapacitors that store charges by a Faradaic mecha-
nism based on fast and highly reversible surface or near-
surface redox reactions. When a potential is applied, fast 
and reversible Faradaic reactions (redox reactions) take 
place on the electrode material similar to batteries results 
in Faradic current. PCs uses metal oxides (RuO2, MnO2, 
NiO, MoO2, V2O5, etc.), metal chalcogenides (MnSe, CoSe, 
MoS, etc.), metal nitrides (VN, TiN, RuN, etc.), and con-
ducting polymers (polypyrrole, polyaniline, polythiophene, 
etc.) as electrode materials for SCs. In EDLCs, non-Faradic 
reaction takes places where the electrode material is undis-
turbed leads to long life cycle of the SCs but outcomes with 
low energy density. On the other hand, pseudocapacitors 
undergo Faradic mechanism for the charging and discharg-
ing process on the surface of electrodes offer high energy 
density than the EDLC at the price of low cycle life and rate 
capability. Since both types have different disadvantages, 
the combination of both types can improve the efficiency 
of the supercapacitors. Hybrid supercapacitors are another 
type with a combination of both electric double capacitors 
and pseudocapacitors working principle for the charging 
and discharging process in supercapacitors. The different 
parameters of EDLCs, PCs, and HSCs are given in Table 1.   
The carbon-based electrode's non-Faradaic charge-discharge 
reaction and the other electrodes surface confined Faradaic 
reaction combine to provide large energy densities and good 
cyclic stability.  In both mechanisms, large surface area, 
appropriate pore-size distribution, and high conductivity 
are essential properties of the electrode materials to attain 
large capacitance [6].

Supercapacitors are devices that are accomplished for 
managing and providing high power densities than the bat-
teries at the time of requirement. It also has high cycle life 
(greater than 100 times) than the conventional batteries 
[8, 9]. Even though it delivers hundred to thousand times 
higher power at the same volume, its energy density is much 
lower (5–50 times) than the batteries. This limits the appli-
cation of SCs to the necessity of high power bursts and is 

Table 1   Parameter comparisons of electric double-layer capacitors, pseudocapacitors, and hybrid supercapacitors

Information is gathered from the research article by Pandolfo et al. [7]

Parameters EDLC PC HSC

Charge storage Electrostatically, i.e., by the forma-
tion of a double layer (non-Faradic 
process)

Electrochemically, i.e., Faradic process 
(redox reaction)

Both electrostatically and electrochemi-
cally, i.e., by non-Faradic process on 
a carbon electrode and by Faradic 
process on another electrode

Electrodes Carbon-based electrode Metal oxides (MOs), nitrides (MNs), 
chalcogenides (MXs), and conducting 
polymers (CP)

Both carbon-based electrodes and MOs, 
MNs, MXs, CP

Energy density Low High High
Power density High Low High
Cycle life High Low Moderate
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not essential for high energy storage capacity (high energy 
density). The application of SCs in the industrial field is 
mostly for military purposes, and in automotive industries, 
they are used in electric vehicles coupled with batteries for 
maximum efficiency [10]. SCs serve as a bridge between 
traditional capacitors and batteries since the batteries have 
higher energy density but lower power density and cycle 
lives when compared to traditional capacitors. The charac-
teristics of the capacitors, supercapacitors, and batteries are 
given in Table 2. This energy and power densities character-
istic between energy storage devices were clearly explained 
using Ragone plot that plots the value of specific energy (Wh 
kg−1) versus specific power (W kg−1). This plot can only 
relate the energy and power densities of the energy storage 
system and does not deal with other parameters such as eco-
friendliness, cost, safety, and life cycle [6]. These need to be 
analyzed separately for the complete understanding of the 
energy storage device limitation and its advantages.

Supercapacitors consists of two electrode separated by 
ion permeable membrane called separator, to avoid conduct 
between two electrodes that leads to short circuit. Separator 
is soaked in electrolyte and provides the ionic charge trans-
fer between the two electrodes. The separator membranes 
should also have high electrical resistance, high ionic con-
ductivity, and low thickness for the better performance. The 
major issues in supercapacitor are the energy density which 
is much lower than the batteries. In order to provide for the 
better application, the energy density needs to be increased 
by various measures. The energy and power densities of the 
SCs are calculated by [11]

where V is the cell voltage (V), C is the specific capacitance 
(F g−1), and R is the internal resistance of the supercapacitor. 

E =
1

2
CV2 (Wh kg−1)

P =
V2

4R
(Wkg−1)

To increase the power densities of SCs, the internal resist-
ance of the cell which is the sum of electrode resistance 
and electrolyte resistance has to be reduced, although the 
internal resistance of the SCs is much lower than batter-
ies due to the fast and rapid recombination of positive and 
negative charges even in Faradic process. To increase the 
energy density of the SCs, both specific capacitance and 
cell voltage have to be increased since they are linearly pro-
portional. Cell voltage of the SCs depends on the electrode 
material and electrolyte. But the operating voltage of the 
SCs is determined by electrolyte stability window. For aque-
ous electrolyte, the operating voltage will be around 1.2 V 
since water molecules decompose into oxygen and hydro-
gen at voltage above 1.23 V. But organic electrolyte has the 
operating voltage around 3.5 V, and ionic electrolyte has 
the wide stability window ranging from 3 to 6 V. Hence, 
choosing suitable electrolyte for the SCs can improve its 
operating potential window and thus increases the energy 
density of the device. Then, energy density is also directly 
proportional to its capacitance, so increasing the capacitance 
increases the energy density. In order to increase the over-
all cell capacitance, specific capacitance of the individual 
electrode has to be improved. Thus, the development of elec-
trode materials for the SCs becomes the hot area of research 
work in energy storage system. The specific capacitance of 
the material Cs is [11]

where ε is the permittivity of the free space and A and d are 
the surface area of the electrode and distance between two 
electrodes. Specific capacitance is directly proportional to 
the surface area of the electrode to hold the charge physi-
cally by electric double layer; thus, the nanomaterials which 
have increased surface area to volume ratio can be used as 
electrode materials for SCs. Furthermore, PCs also require 
high active sites for Faradic reaction (redox reaction) on the 
electrode surface, and thus, nanomaterials increase high 

Cs = ε
A

d
(Fg−1)

Table 2   Shortened 
characteristics of capacitors, 
supercapacitors, and batteries

Comparison between batteries and supercapacitors [1]

Characteristics Capacitor Supercapacitor Battery

Charge storage Electrostatically 
(non-Faradic)

Electrostatically or electro-
chemically (Faradic) or both

Chemical reaction

Specific energy (Wh kg−1)  < 0.1 1–10 10–100
Specific power (W kg−1)  >  > 10,000 500–1000  < 1000
Discharging time 10−6 to 10−3 Sec to min Min to hrs
Charging time 10−6 to 10−3 Sec to min 1–5 h
Efficiency (%) Almost 100 85–95 70–85
Cycle life Infinite  > 500,000 Up to 1000
Cell voltage 6–800 V 2.3–2.7 V/Cell 1.2–12 V/Cell
Operating temperature  − 20 to 100 °C  − 60 to + 100 °C  − 20 to 65 °C
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active sites in the surface of the electrode. The supercapaci-
tors are made of different nanomaterials as the electrodes 
such as carbon-based materials (activated carbon, carbon 
nanotubes, graphene, mesoporous carbon, etc.), metal oxides 
(ruthenium oxide, manganese oxide, nickel oxide, etc.), con-
ducting polymers (polyaniline, polypyrrole, etc.), and their 
composite materials.

2 � Electrode materials

The capacitance of the SCs depends on the specific surface 
area of the material, but they are not fully accessible when 
it comes in contact with the electrolyte used and the capaci-
tance of the electrode materials also not linearly increased 
with increases in specific surface area. Along with surface 
area, pore size and pore-size distribution also play a promi-
nent role in the capacitance of the SCs electrode. Largeot 
et al., in their experiments, show that when pore size of the 
electrode material is almost close to the size of the ions in 
the electrolyte yields the maximum double-layer capacitance 
[12]. Higher or smaller pore size decreases the capacitance 
of the materials. Thus, the capacitance is strongly depend-
ing on the electrochemically accessible surface area of the 
electrode.

2.1 � Carbon materials

The carbon-based materials are mainly known for their 
specific surface area. Different carbon materials are used 
as electrodes for SCs. From the research work suggested by 
Conway et al., the carbon-based materials are used for the 
double-layer-type capacitor with three main unique proper-
ties such as (1) high specific surface area, (2) good inter- 
and intraparticle conductivity in pore matrices, and (3) good 
accessibility by electrolyte in the pores of the carbon mate-
rials [13]. These carbon materials mainly include activated 
carbons, carbon aerogels, carbon nanotubes, mesoporous 
carbon, and graphene.

Activated carbons are the first choice of the electrode 
materials for the EDLC-type capacitor. These are porous 
carbon materials with porous structure consists of micropo-
res (less than 2 nm), mesopores (2–50 nm), and macropores 
(greater than 50 nm) to attain high specific surface area but 
has low electrical conductivity (1200–2500 S m−1) [14]. An 
activated carbon electrode having a specific surface area of 
approximately 1000 m2 g−1 has the capacitance of 100 F g−1 
(100 µF cm−2) [15]. Carbon aerogels are known to be one 
of the world’s lightest material with high specific surface 
area (SSA) and density. It has low internal resistance, thus 
provides high power density [16]. Chien et al. developed 
carbon aerogels with a capacitance of 104 F cm−3 that yields 
an energy density of 90 Wh kg−1 and a power density of 

20 Wh kg−1 [17]. Carbon nanotubes (CNTs) are produced 
by the physical process of decomposition of hydrocarbons 
that forms two types of CNTs based on precursors single-
walled CNT and multi-walled CNTs. The SWCNTs have 
the high theoretical specific surface area (1315 m2 g−1), 
but MWCNTs have lower SSA [18]. Chen et al. developed 
50-nm diameter SWCNT on graphitic foil, with good elec-
trochemical stability and yields specific capacitance of 115.7 
F g−1. Emmenegger et al. produced well-aligned MWCNTs 
that grow on aluminum films with diameters ranging from 5 
to 100 nm, producing a high volumetric capacitance of 120 
F cm−3 [19]. Graphene is the one carbon atom thick sheet 
made up of sp2 lattice in polyaromatic honeycomb crystal 
lattice. They are suitable for good performance energy stor-
age devices due to their excellent physicochemical proper-
ties. The highlighted properties are large surface area, good 
chemical and thermal stability, wide potential window, 
and abundant surface functional group [20]. Stoller et al. 
reported that specific capacitance of the prepared graphene 
is 205 F g−1, and its energy density is 28.5 Wh kg−1 [21]. 
The carbon-based material has many advantages such as 
high surface area, good chemical, and thermal stability, but 
the major limitation is electrochemically accessible surface 
area by the electrolyte in the electrode and low energy den-
sity due to the formation of electric double layer.

2.2 � Metal oxides

The metal oxide–based electrode materials provide higher 
energy density than the carbon-based materials due to its 
charge storage mechanism. These materials store charge 
by electrochemical Faradic reaction between the electrode 
and electrolyte in the appropriate potential windows. Some 
unique properties are required for the metal oxides to be 
used as the electrode materials for the supercapacitors are 
as follows: (1) the metal can exist in two or more oxidation 
states, (2) the oxides should be electronically conductive, 
and (3) free movement of proton intercalation between oxide 
lattices [13]. Transition metal oxides are explored widely 
due to its high conductivity, chemical stability, and variable 
valence.

Apart from the various transition metal oxides, ruthe-
nium oxide (RuO2) is one of the most explored TMOs due 
to its high reversible faradic reaction (redox reaction), three 
distinct oxidation states by Ru, wide potential window 
(1.2 V), high specific capacitance, superior proton conduc-
tivity, better thermal stability, and long cycle life [22]. In 
acidic medium, fast reversible electron transfer and electron 
adsorption take place resulting in high specific capacitance. 
Zheng et al. reported that the amorphous RuO2 in the sul-
furic acid electrolyte (acidic medium) exhibits a maximum 
capacitance of 720 F g−1 [23]. The internal resistance of 
the RuO2 is much lower than the other electrodes that yield 



Advanced Composites and Hybrid Materials (2024) 7:130	 Page 5 of 66  130

high power and energy densities, but the availability of the 
materials is fewer which causes higher cost and shows poor 
performance in higher current densities. Long et al. reported 
the hydrous ruthenium oxide (RuO2 0.5 H2O) that has a spe-
cific capacitance of approximately 900 F g−1 and high elec-
trical conductivity [24]. Due to the environmental hazards 
and high cost of RuO2 leads to the better replacement by 
manganese oxide (MnO2). In comparison with RuO2, MnO2 
shows relatively low cost, low toxicity, environment safety, 
and high theoretical capacitance almost equal to 1300 F g−1 
(for RuO2, 1358 F g−1) [25]. Hu et al. reported several MnO2 
thin film–based systems that reach the specific capacitances 
of about 600 F g−1 in some aqueous electrolytes such as KCl, 
KOH, K2SO4, and Na2SO4 at the operating potential win-
dow of between 0.9 and 1.2 V [26]. Cobalt oxide (Co3O4) is 
another transition metal oxide and is also investigated due to 
its high theoretical capacitance of about 3560 F g−1, better 
reversibility, and better electrochemical performance. Wang 
et al. investigated the 3D hollow cobalt oxide which yields 
the capacitance of around 820 F g−1 at 5 mV s−1, and nano-
porous Co3O4 prepared by solvothermal method yields an 
energy density of about 42.3 Wh kg−1 [27, 28]. Nickel oxide 
is also considered one of the prominent electrodes for the 
supercapacitors mainly for the alkaline electrolyte due to its 
high theoretical capacitance, low cost, and environmental 
friendliness. Yang et al. synthesized NiOO in cubic structure 
with various calcination temperatures; the maximum capac-
itance of the material yields around 700 F g−1 at 250 °C 
[29]. Vanadium oxide (V2O5) has also been investigated due 
to its wide potential window and its variation in oxidation 
state that yields fast redox reaction in bulk and surface of 
the vanadium material. Lee and Goodenough prepared the 
amorphous V2O5 by quenching the bulk vanadium pentoxide 
powders at 950 °C, yielding the maximum capacitance of 
350 F g−1 in aqueous KCl electrolyte [30].

2.3 � Conducting polymers

Conducting polymer–based electrodes are used for the 
supercapacitors due to its various properties such as low 
cost, flexibility, and low internal resistance and also have 
high potential densities, high porosity, and adjustable redox 
activity by the surface modification through various chemi-
cal processes. In conducting polymers, the charge storage 
takes place by faradic redox process, i.e., during the charging 
and discharging process, the movement of the ions occurs 
in the backbone of the polymer chain without any structural 
alternations. The conducting polymer SCs are classified into 
three types based on the p-doped polymer and n-doped poly-
mer such as (1) type Ι (symmetric) p-p doped same polymer, 
(2) type II (asymmetric) p-p′ doped different polymer (e.g., 
polypyrrole/polythiophene), and (3) type III (symmetric) n-p 
doped polymers. Among these types, type III is considered 

the advanced conducting polymer supercapacitors based on 
their design and their energy storage mechanism [31, 32]. 
The conducting polymers in supercapacitors are polyani-
line, polypyrrole, polythiophene, and PEDOT. Polyaniline 
(PANI) is the lightweight polymer and has high conduc-
tivity, low cost, and mechanical stability and possess high 
theoretical capacitance used as the electrode materials for 
the SCs. Lie et al. investigated PANI in pure form as the 
electrode materials and yields a capacitance of 815 F g−1 
[33]. Polypyrrole (PPY) is also a conducting polymer mainly 
known for its simple preparation method, p-doped valence, 
high conductivity, and stability. It also has greater density 
and higher flexibility than the other conducting polymer 
electrodes. Kim et al. studied the polymer-based electrodes 
with carbon materials by developing polypyrrole with car-
bon fiber yields the specific capacitance of about 600 F g−1 
at the scan rates of 30 mV s−1 [34]. Polythiophene and its 
derivatives are both p- and n-doped polymers that can be 
prepared by chemical oxidative polymerization. Zhou et al. 
reported that the polythiophene prepared from Triton X-100 
shows a maximum capacitance of 117 F g−1 [35]. The main 
limitation of using polymers based supercapacitors as the 
electrode is the swelling and shrinkage of the polymer elec-
trode while continuing for long life cycle.

2.4 � Transition metal chalcogenides

The main criteria for the electrode material selections are 
multiple oxidation states, superior conductivity, and elec-
trochemically active. Even though conducting polymers, 
metal oxides, and carbon-based materials exhibit these 
key characteristics, their applications are limited. For 
example, conducting polymers are inexpensive and envi-
ronmentally friendly but have limited operation across 
the potential window, and swelling and shrinkage of the 
electrode leads to the need for alternative measures in 
supercapacitor. Metal oxides have a high energy density, 
but electrochemical instability and surface deformation 
lead to further applications [10]. Transition metals have 
various advantages such as multiple oxidation state and 
good pseudocapacitive behavior, and they received great 
attention due to their anisotropic properties. These tran-
sition metals with chalcogenides (S, Se, Te) have gained 
attention in past decades due to their high specific power, 
stability, and life cycle and offer better tolerance in envi-
ronmental safety measures than the other energy storage 
devices in electronic devices and in EMV [36]. TMCs 
have application of the various fields such as in energy 
harvesting (solar cells, fuel cells), energy storages (bat-
teries, supercapacitors), electronics (LED, sensors), and 
memory-based devices due to their excellent properties 
such as flexibility, additional reactive sites for catalysis 
and redox reaction, improved conductivity by reduction 
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of internal resistance, low mean path, and quantum effect 
[37, 38]. Generally, Chalcogenide-based materials have 
improved electrochemical performance with high elec-
trical conductivity and stability; selenide-based materi-
als are a new class of electrode material with rich redox 
chemistry, superior electrical conductivity and stability. 
Chalcogenide-based research is highly concentrated in 
SC-based devices because of these improved applica-
tions. Compared with sulfide and selenides, telluride with 
transition metals are rarely reported, since in periodic 
table, telluride is placed in the same group of chalcoge-
nides between metal and non-metals, then it possess some 
unique properties such as good conductivity and better 
stability like the other chalcogenides that are reported 
[39].

Transition metal chalcogenides are appealing for a 
variety of applications, including energy conversion and 
storage, due to their changing band gaps, distinctive stoi-
chiometry, tunable structure, and materials. Due to their 
benefits of high theoretical capacitance, transition metal 
chalcogenides are anticipated to meet the high energy stor-
age requirements of supercapacitors. The most remarkable 
feature of metal chalcogenides is their changeable active 
sites, which are made possible by their rich component 
and electronic structure and make them suitable materials 
for the creation of extremely effective electrodes for super-
capacitors. The low symmetry anisotropic (1D and 2D) 
transition metal chalcogenides (TMCs) have attracted a lot 
of attention due to their novel electrical and catalytic prop-
erties, which have applications in electrochemical energy 
storage, chemical sensing, and next-generation opto-
electronics. Metal tellurides, metal selenides, and metal 
sulfides have demonstrated exceptional cycle stability and 
high power density and have been used in supercapacitor 
applications. In an electrochemical energy storage system, 
the electrochemical performance of electrodes is influ-
enced by their morphology, chemical content, synthesis 
method, and crystalline structure. The most often reported 
crystal structures in electrochemical energy storage appli-
cations are layer and spinel structures. At the same time, 
the disadvantage of TMCs as supercapacitors regarding 
low energy density has been identified as a significant 
challenge in the furtherance of supercapacitor technolo-
gies. It also has limited synthesis strategies and low sta-
bility, which lowers the performance of supercapacitors. 
The development of high-performance electrode materials 
is one of the most involved strategies for overcoming the 
problem of low energy density. Based on the researchers 
report on the transition metal chalcogenides, herein, we 
have detailed the use of transition metal chalcogenides as 
the electrode material for the supercapacitors.

3 � Synthesis methods

3.1 � Co‑precipitation method

Co-precipitation is a technique for making multi-compo-
nent oxides by precipitating intermediate chemicals like 
oxalates or hydroxides. If the reaction is well controlled, 
dopants can also be added to the mixed oxides. This tech-
nology has been shown to be useful for the synthesis of 
advanced energy materials such as cathodes in recharge-
able M-ion batteries and solid fossil fuels. The washing 
and drying of the hydroxide or oxalate intermediate chemi-
cal cause little difficulty in generating nanoparticles by 
co-precipitation. It is possible to create high-quality nano-
materials via co-precipitation techniques.

3.2 � Sol–gel method

The wet chemical approach of sol–gel synthesis of metal 
oxides is widely utilized to make materials for coatings, 
optical, energy, catalysis, separation (chromatography), 
electronics, and sensors. A typical sol–gel approach starts 
with the addition of a metal salt or metal alkoxide to water 
(elevated temperature or catalyst may also be used), which 
then undergoes a hydrolyzed reaction to produce a metal 
hydroxide colloid or nanoparticles. After the precursor 
has been hydrolyzed to the required quantity, a suspen-
sion is created by adding a stabilizing agent, such as nitric 
acid. A sol or stable suspension of hydroxide nanoparti-
cles is obtained at this moment. One of the most signifi-
cant advantages of sol–gel procedure is that the sol can 
be employed in a variety of processes to create a film of 
material, including dip coating, spin coating, drop posi-
tion, aerosol processing, coating, and many more. After 
the solution has been deposited and the water has been 
removed during drying, a stiff gel will form. The pace of 
gelation determines the particle size and porosity of the 
finished material; therefore, it is a crucial processing step. 
The gel is an amorphous substance that can be burned 
to convert it into the final oxide layer once it has dried 
(Fig. 1). Sol–gel process can be used to make a wide range 
of oxide nanoparticles, including Al2O3, Fe2O3, NiO, 
SnO2, TiO2, WO3, ZnO, ZrO2, and BaTiO3. Many of these 
pure oxides can be employed as the active element in gas 
sensors, and various investigations have been conducted in 
this sector using the sol–gel process. Sol–gel processes can 
be used to introduce dopants to materials with fine stoichi-
ometry control. Sol–gel produced antimony-doped SnO2 
and niobium-doped TiO2 which are two specific instances 
in gas sensing research. These are only a few examples 
of the current interest in sol–gel method as a means of 
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producing high-performance oxide nanoparticles. Sol–gel 
technique for producing oxide nanoparticles has various 
advantages, including a vast number of precursors acces-
sible, which allows reactions to be customized to create an 
almost infinite variety of specially doped materials to meet 

the specific application. Particle size control is achieved 
by carefully controlling the reaction condition. The initial 
step in the sol–gel method is to establish a stable suspen-
sion, which offers a lot of benefits for depositing materials 
on microsensors.

Fig. 1   Schematic representation of synthesis of nanoparticles. a, 
b Electrodeposition method image is reproduced with permission 
from ref. [40] under Creative Commons Attribution-Non Commer-
cial 3.0 Unported License by Royal Society of Chemistry. c Hydro-
thermal method image is reproduced with permission from ref. [41] 
under Copyright © 2020 Elsevier B.V. d Emulsion method image is 

reproduced with permission from ref. [42] under Creative Commons 
Attribution License CC BY, Copyright © 2020 by MDPI. e Sol–gel 
method image is reproduced with permission from ref. [43] under 
Creative Commons Attribution License CC BY, Copyright © 2021 
Bokov et al.
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3.3 � Hydrothermal synthesis

Many of the mechanisms were first clarified for mineral sys-
tems by Morey, who coined the term hydrothermal. When 
it comes to ceramic nanomaterial processing, hydrothermal 
synthesis is described as an aqueous chemical reaction in a 
sealed container at a temperature that generates an elevated 
pressure on its own. The synthesis of completely crystalline 
nanoparticles can be achieved at low temperatures, between 
100 and 374 °C, which are the boiling and critical points 
for water, respectively. Hydrothermal processing has several 
advantages, including high purity (> 99.5%) and chemical 
homogeneity, small particle size (up to 5 nm), narrow par-
ticle size distribution, single-step processing, low energy 
consumption, quick reaction time, low-cost equipment, and 
the ability to generate metastable compounds, and, most 
importantly, no calcination is required for many materials 
because they are fully crystallized by the reaction. One of 
the reasons oxide nanostructures created using hydrothermal 
synthesis has increased in popularity over the last decade is 
the fact that nanomaterials including one-, two-, and three-
dimensional structures can be synthesized to a fully crystal-
line state (Fig. 1).

3.4 � Solvothermal method

Solvothermal synthesis is analogue to hydrothermal synthe-
sis, but instead of water, it uses organic solvents. It provides 
various advantages over other approaches. First, solvother-
mal conditions allow for fast solution convection. The mild 
environment allows for the careful control of nanoparticle 
size, shape distribution, and crystallinity, as well as the 
formation of crystals with few lattice defects. Second, the 
low boiling point of the organic solvent involved can result 
in a larger reaction pressure when carried out at high tem-
peratures, which aids in the crystallization process. Third, 
the mild temperature allows specific structural properties 
of precursors to be transmitted into products, allowing for 
product morphology control. Solvents can also give func-
tional groups, which can be used to synthesis new materials 
by reacting with the precursors or products. Finally, solvo-
thermal synthesis can limit the release of hazardous vapor 
during some reaction systems, such as those involving toxic 
starting ingredients. The sealed system not only helps with 
“green chemistry,” but it also effectively lowers the risk of 
oxidation and contamination from the atmosphere or oxygen, 
which is critical for high-purity products. As a result, the sol-
vothermal approach was investigated as a convenient route 
for synthesizing CulnS2, AglnS2, and CulnSe2 nanoparticles 
from single-source precursors in order to control the size 
and shape of nanoparticles. One-step solvothermal synthesis 
can be used to generate nanoparticles directly through singe 
molecules of relative precursors acting as building blocks.

3.5 � Emulsion synthesis

Microemulsion processing is a crucial synthetic technology 
because it may produce oxide nanoparticles, whereas large-
scale emulsion processing produces particles in the order 
of micrometers. Microemulsions are optically transparent 
dispersions of two immiscible liquids, such as water and oil, 
that are thermodynamically stable. Surfactant mixtures are 
used to lower the interfacial tension to near zero (less than 
0.001 mN m−1 in some situations), allowing the two phases 
to disperse spontaneously by thermal motion. Domain sizes 
in equilibrium water (assuming a water-in-oil microemul-
sion) range from 10 to 100 nm, depending on the surfactant 
type and concentration. The nucleation, nanoparticle for-
mation, intermediate growth (for colloids), and eventual 
coagulation and flocculation of colloidal and nanoparti-
cles are a complicated process that includes relationships 
between nucleation, nanoparticle formation, intermediate 
growth (for colloids), and eventual coagulation and floccu-
lation. All these variables are influenced by the interactions 
of molecular species in the microemulsion. The presence 
of surfactant film acting as stabilizer for the oxide parti-
cles allows for successful microemulsion synthesis of oxide 
materials because particle nucleation occurs simultaneously 
in a large number of micelles (spherical water droplets sta-
bilized by surfactants in the oil medium) with well-isolated 
nucleation sites. The sizes of the colloids or nanoparticles 
generated are directly determined by the sizes of these emul-
sified droplets. Surfactant-stabilized water micelles act as 
nano-sized reactors for executing synthetic processes. Only 
when the nucleation and growth stages are tightly segregated 
do monodispersed particles emerge (one of the advantages 
of microemulsion synthesis). Controlling the molar ratio of 
water to surfactant allows the size of emulsified water drop-
lets to be adjusted, making it possible to regulate the size of 
oxide nanoparticles generated using this process. The micro-
emulsion synthesis process provides excellent dispersion, 
small particle size distribution, and shape control, making 
it a very appealing method for oxide nanoparticle creation 
(Fig. 1). According to Shi and Verweij, one component of 
microemulsion preparation that must be considered is parti-
cle purification following synthesis. Their findings revealed 
that non-agglomerated nanoparticles with diameters smaller 
than 5 nm could be created and that homogenous coatings 
could be made after thorough cleaning method. Microemul-
sion processing has been used to make SnO2 nanoparticles in 
the size range of 3–5 nm, but no sensing data with materials 
made this way is available.

3.6 � Electrodeposition method

Electrodeposition is a process of transfer of electrons to the 
ions in a solution; a thin layer of one metal is deposited 
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on top of a thin layer of another metal to adjust its surface 
properties. This bottom-up fabrication method is adaptable 
and can be used for a broad range of applications. Due to its 
capacity to fabricate one-dimensional nanostructures such 
as nanoribbons, nanorods, nanowires, and nanotubes, elec-
trodeposition has gained prominence in recent years.

4 � Single metal chalcogenides and its 
composites

4.1 � Cadmium chalcogenides

Cadmium sulfide (CdS) is broadly studied ultracapacitive 
TMSs because it possesses variable sulfide states which help 
fast and successive redox reactions. It is an n-type semicon-
ductor with a narrow band gap of approximately 2.4 eV. It 
has advantages like high discharge rates, excellent morphol-
ogy with high surface area, high energy density, and virtuous 
environmental stability with long cycle life. Also, cadmium 
has a very little toxicity in nature. Various groups reported the 
use of CdS as electrodes in the application of energy storage 
devices. For the first time, Xu and his co-workers reported 
CdS on nickel foam as electrodes with a gravimetric capaci-
tance of 909 F g−1. Oloore et al. developed CdS QDs and 
organohalide perovskite-based bilayer electrodes through 
facile and inexpensive solution process coating for the use of 
symmetric electrochemical capacitors [44]. Finally, he showed 
that the supercapacitors developed with cadmium sulfide 
with methyl ammonium bismuth iodide (MAPI3) electrodes 
displayed the highest areal capacitance of 141 µF cm−2 and 
power density of 12.7 mW cm−2 and energy density of 23.8 
mWh cm−2 with stability retention of 87% after 4000 cycles.

Chen et  al. prepared CdS NPs anchored 3D graphite 
cage for supercapacitor study [45]. As a result, the 3D CdS/
graphite cage displayed a better specific capacitance of 511 
F g−1 at 5 A g−1. Also, he prepared a 3D CdS/graphite/rGO 
asymmetric supercapacitor with an energy density of 30.4 
Wh kg−1 at a power density of 800 W kg−1 with cycling 
stability of 90.1% after 5000 cycles at 10 A g−1. Patil et al. 
synthesized Ag NWs@CdS core–shell nanostructured elec-
trodes and showed the areal capacitance of ~ 2662 mF. cm−2 
at 10 mV s−1 and 810 mF. cm−2 at 45 mA [46]. Later, Patil 
et al. synthesized core–shell nanostructures of Co3O4@CdS 
on a nickel foam using a one-pot hydrothermal method and 
SILAR method [47]. The core–shell Co3O4@CdS electrode-
based symmetric supercapacitor showed a better specific 
capacitance of 360 F g−1 and 99 F g−1 at 10 mV s−1 with sta-
bility retention of 92% after 2000 cycles. He et al. suggested 
that G-CdS nanocomposite through a one-pot solvothermal 
process and displayed high electrochemical behavior with 
excellent stability [48]. Wang et al. synthesized hierarchical 
Ni3S2@CdS core–shell nanostructures on nickel foam using 

the hydrothermal method for the first time [49]. Ni3S2@CdS 
core–shell nanostructure electrode-based asymmetric super-
capacitors exhibit an excellent energy density of 127.5 Wh 
kg−1 at 2 mA. cm−2 with cycling stability of 130% after 4000 
charge–discharge cycles at 6 mA. cm−2. Based on this, Safdar 
et al. enhanced the capacitive performance of electrochemical 
capacitors by developing Ni3S2/CdS through hydrothermal 
method followed by successive ionic layer adsorption and 
reaction deposition (SILAR) techniques [50]. They showed a 
specific capacity of 545.6 C g−1 at 1 A g−1 with excellent sta-
bility of 103% after 5000 charge–discharge cycles at 5 A g−1. 
Also, recently, mixed metal oxide–based materials like Mn/
Fr oxides, Ni/Mn oxides, and Mn/Ni/Co oxide have explored 
high enhancement in the performance of electrochemical 
devices. Based on this concern, De Adhikari et al. synthe-
sized a mixed system of CdS-CoFe2O4@rGO nanohybrid 
through a simple hydrothermal method for high-performance 
supercapacitors, which exhibits a high specific capacitance of 
1487 F g−1 at 5 A g−1 current density with good capacitance 
retention of 78% even after 5000 cycles.

Related to sulfides, selenides could be potentially bet-
ter candidates, as selenium displays more metallicity with 
higher electronic conductivity (1 × 10−3 S m−1). During the 
pseudocapacitive reaction, selenides retain better cycling 
stability without the formation of polyselenide intermedi-
ates. Though selenides have good electrochemical proper-
ties, preparing selenides with better rate performance and 
higher specific capacity is still a challenge. To overcome 
these obstacles, Zhai et al. proposed a system of mixed 
metal selenide (Co9Se8/CdSe) on nickel foam via sele-
nization method and developed a cell (Fig. 2). He stated 
that the developed cell shows excellent power density and 
energy (57.6 Wh kg−1 at 10.9 kW kg−1 or 68.0 Wh kg−1 at 
1.20 kW kg−1) with better cycling stability of 80.9% after 
1000 cycles at 2 A g−1.

Cadmium selenide belongs to the II–VI group compound 
semiconductor, and it is extensively used in the application 
of optoelectronics, solar cells, light-emitting diodes, laser 
diodes, etc. For the first time, Bae et al. reported on semicon-
ducting CdSe QDs as electrodes on electrochemical capaci-
tors. In this study, they used a complex hot injection method 
to prepare CdSe QDs [52]. Following this, Pawar et al. pre-
pared CdSe electrodes through the chemical bath deposition 
method with various reaction times for the application of 
electrochemical supercapacitors [53]. He reported that CdSe 
deposited at a reaction time of 8 h exhibited superior super-
capacitive performance with an excellent areal capacitance 
and energy density of 1.285 mF. cm−2 and 4.015 Wh kg−1.

Cadmium telluride (CdTe) belongs to the II–VI semi-
conducting periodic table with a direct band gap of 1.47 eV 
under room temperature. It is an appropriate material for the 
application of photovoltaics because of its high absorption 
coefficient property. However, it is a single crystal with a 
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zinc blende structure, but it also exists in the wurtzite and 
hexagonal structure. Even though the preparations of CdTe 
are well studied, most of the study compacts with the optical 
and structural characterization. Concerned by the excellent 
potential and properties of CdTe NRs, Manikandan et al. 
made an effort to know its electrochemical behavior and its 
role in energy storage devices. In this study, he proposed 
that the prepared CdTe NRs offers an outstanding specific 
capacitance performance of 438 F g−1 at 2 mA. cm−2 over 
the other CdTe-based supercapacitors [54].

4.2 � Mercury chalcogenides

Mercury sulfide (HgS) is a binary compound belonging to II 
and VI group elements with an optical band gap between 1.9 

and 2.6 eV. Due to its band gap property, mercury sulfides 
show its auspicious applications in catalysts, IR detectors, 
photoconductors, photo-electrochemical cells, solid-state 
solar cells, etc. Various methods such as hydrothermal 
microwave-assisted and wet chemical route are used to syn-
thesis HgS nanostructures with various structural morpholo-
gies like nanoparticles, dendrite-form, star-shape, rod-like 
structures. HgS has explored several applications like elec-
trostatic imaging, ultrasonic transducing, image sensors, and 
photoelectric conversion devices. Though HgS has excellent 
characteristics, more consideration has not been paid yet 
towards energy storage uses. For the first time, Pande et al. 
synthesized HgS with cauliflower-like surface architecture 
by using the SILAR method under room temperature for 
the application of supercapacitors [55]. HgS electrode-based 

Fig. 2   a, b High resolution transmission electron micrographs of 
RuS2 nanoparticles c–e 3-cell electrochemical performance of RuS2 
in 0.5  M H2SO4 electrolyte. f–h Electrochemical performance of 

RuS2 symmetric cell supercapacitors, image is reproduced with per-
mission from ref [51] under Copyright © 2016 Elsevier Ltd
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capacitor exhibits a maximum specific capacitance and 
energy density of 446 F g−1 at 2 mV s−1 and 15.45 Wh kg−1. 
Also, Pande et al. synthesized mercury sulfide/MWCNT 
nanocomposite through a “dip and dry” process followed by 
successive ionic layer adsorption and reaction method [56]. 
This nanocomposite exhibits a higher specific capacitance 
of 946.43 F g−1 at the scan rate of 2 mV s−1 with excel-
lent cycling stability of 93% even after 4000 charge–dis-
charge cycles. Also, HgS/MWCNT nanocomposite-based 
electrodes possess high specific energy and power densities 
of 42.97 Wh kg−1 and 1.60 kW kg−1. This shows that HgS-
based materials have a decent application in the domain of 
energy storage devices for the future scope.

4.3 � Ruthenium chalcogenides

A ruthenium semiconducting compound is one of the most 
promising TMCs with excellent technological uses such as 
fuel cells and water splitting. It has a narrow band gap of 
1.85 eV with superior stability towards photoelectrolysis of 
water under visible light. Because of its multiple valence 
states and rich redox chemistry, ruthenium-based material 
is recognized as the remarkable electrochemical properties. 
Ruthenium-based materials like metallic ruthenium, Ru 
complexes, amorphous and crystalline RuO2, and hydrous 
RuO2 are investigated for several electrochemical applica-
tions such as electrocatalysis, sensors, batteries, and super-
capacitors. Although studies on energy storage of TMCs are 
rapidly increasing and ongoing, the effectiveness of RuS2 as 
an electrode for energy storage devices is not examined yet. 
On the other hand, ruthenium disulfide (RuS2) is proven to 
be an excellent catalyst material compared to MoS2. Thus, 
for the first time, Krishnamoorthy et al. demonstrated the 
preparation of cubic RuS2 NPs through the sonochemical 
method and used as an electrode for the application of elec-
trochemical supercapacitors [51]. The prepared cubic RuS2 
NP-based electrode delivered an excellent specific capaci-
tance of 85 F g−1 at 0.5 mA. cm−12 with retention stability 
of 96.15% capacitance over 5000 cycles (Fig. 2).

Bolagam et  al. synthesized RuS2/TRGO composite 
through the hydrothermal method which delivers a specific 
capacitance of 193 F g−1 at 5 mV s−1 with excellent cyclic 
stability and rate performance. But so far, there is still no 
report on the use of ruthenium disulfide (RuSe2) as the elec-
trode material for the use of supercapacitors. Thus, Yun et al. 
prepared crystalline RuSe2 nanoparticles through the hydro-
thermal method followed by thermal treatment at 650 °C 
under an argon atmosphere (shown in Fig. 2) [57]. For the 
first time, the prepared crystalline RuSe2 NPs were utilized 
as a pseudocapacitive supercapacitor electrode for which it 
showed a specific capacitance of 100.8 F g−1 at 0.2 A g−1 
with superior cycle stability and excellent rate performance.

4.4 � Silver chalcogenides

Mo et  al. synthesized graphene sheets/Ag2S composite 
through a facile solvothermal method [58]. The electrochem-
ical performance of graphene sheets/Ag2S was carried out 
on a modified glassy carbon electrode in a three-electrode 
cell. Gs-Ag2S showed an enhanced specific capacitance of 
1063 F g−1 and could be employed as better supercapacitor 
materials for future electronic devices. Carbon allotropes 
such as activated carbons, single- and multi-walled carbon 
nanotubes, graphene, and fullerenes have been investigated 
thoroughly due to their moderate specific capacitance and 
long cycle stability. Hybrid materials showed enhanced 
physical and chemical properties with excellent mechanical 
flexibility and conductivity. But they have some limitations 
such as expensive and time-consuming synthesis process, 
high contact resistance at the interface of electrode/cur-
rent collector, and low power density. Therefore, an effort 
has been developed in adding new materials which can be 
carbon-free and synthesized easily. Based on this, Nair et al. 
synthesized Cds/Ag2S through the cation exchange process 
for the application of supercapacitors [59]. They used toxic 
cadmium ions in the initial synthesis but obtained Ag2S 
nanowires and showed the highest specific capacitance of 
268.4 F g−1 at 1.5 mA. cm−2 in a 1.5 M NaOH electrolyte. 
Pawar et al. used a facile, low-cost, successive ionic layer 
adsorption and reaction (SILAR) method for the preparation 
of Cu2S-Ag2S composite electrode on nickel foam [60]. The 
prepared electrodes showed a high specific capacity of 772 
C/g at a scan rate of 10 mV s−1 than the individual electrodes 
with a capacity retention of 89% after 2000 cycles (Fig. 3).

4.5 � Tantalum chalcogenides

Till now, various TMDs have been studied extensively. Espe-
cially, tantalum diselenide (TaSe2), as a metallic nature with 
a layered low dimension electric conductor, has been studied 
for its charge density wave property, field emission, phonon, 
thermal property, and superconductivity. Depending on the 
coordination of tantalum atoms, there are various polymor-
phic forms for tantalum diselenide crystal. They are 1 T (T, 
trigonal), 2H (H, hexagonal), and 3R (R, rhombohedral) 
polytypes. In the past few decades, polymorphism in tanta-
lum diselenide leads to various physical properties like the 
metallic property of 2H and semiconducting behavior for 1 T 
and 3R polytypes. Up to date, there were no reports about 
the direct preparation of TaSe2 nanobelts. For the first time, 
Wang et al. synthesized a 3D conductive quasi-array based 
on 2H-TaSe2 nanobelts directly on a tantalum foil through 
one-step surface-assisted chemical vapor transport tech-
nique [61]. Also, they used conductive quasi-array-based 
2H-TaSe2 as a substrate for the in situ electrodeposition of 
polypyrrole to form cylinder-like composite nanostructures 
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and developed a symmetric supercapacitor from the com-
posite. It showed a high areal capacitance of 835 mF.cm−2 
at 2 mV s−1 with excellent initial capacitance maintained at 
98.7% even after 10,000 cycles.

Other than sulfides and selenides, telluride-based materi-
als have not prepared widely due to its deficiency of phase 
diagrams and high melting points. This type of crystals 
exists due to the interaction of ionic, metallic, and covalent 

bonds. Especially, quite low electronegative nature of tel-
lurium in transition metal tellurides commonly leads to 
complex opposition between metals and non-metals for the 
electrons and, as significant, to valence electron localiza-
tion. It is quite interesting to note that tantalum telluride 
(TaTe2) has been studied to have a distorted 1 T structural 
property with a space group of C2/m. Generally, Te-based 
materials have remained unexplored practically. But in the 

Fig. 3   a Schematic diagram 
of the different stages in the 
SILAR process for Cu2S-AgS 
composite electrode. b 
Schematic illustration of the 
fabrication of symmetric super-
capacitor device. c–f Electro-
chemical studies of symmetric 
Cu2S-Ag2S supercapacitor elec-
trode, image is reproduced with 
permission from ref [60] under 
Copyright © 2017 Elsevier Ltd
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past decades, the thermoelectric and electronic properties 
of this TaTe2 were studied. For the first time, Chakravarty 
et al. make an effort to prepare TaTe2 nanosheets through a 
simple microwave-assisted method and employed for the use 
of supercapacitors [62]. They stated that the supercapacitor 
developed with TaTe2 nanosheets as anode and platinum as 
cathode exhibits a coulombic efficiency of 95%, while the 
cycle-to-cycle decrease in capacity was less than 5% and 
also, the maximum discharging or charging capacity was 
less than 2.4 mV s−1 which is desirable for the characteristic 
behavior of supercapacitor.

4.6 � Titanium chalcogenides

Titanium chalcogenides are one of the most important 
TMDCs, which have sizable band gaps, so these materials 
are used for the application of electronic and optoelectronic 
components. Titanium-based chalcogenides belong to IV 
or V group elements of the periodic table with a narrow 
band gap. Especially, titanium disulfide (TiS2) is the layered 
structures like molybdenum and tungsten with the form of 
S-Ti-S unit structure, whereas the sulfur atoms in two hex-
agonal planes are separated by a plane of Ti atoms. The 
bond between Ti and S is the covalent bond of interactions, 
whereas the adjacent S-Ti-S layers are bonded through weak 
Van der Waals force of interactions. Various methods such 
as hydrothermal method, chemical vapor deposition (CVD) 
technique, solid assisted reaction, and physical ablation were 
employed for the preparation of TiS2. But the electrochemi-
cal performance of TiS2 was not reported widely. Parvaz 
et al. prepared TiS2 nanodiscs through solid-state reaction 
(SSR) method and studied their electrochemical behavior 
for supercapacitor applications [63]. The observed results 
indicate the possibility of TiS2 as a better electrode material 
for the application of supercapacitor.

4.7 � Zinc chalcogenides

Like other metal oxides, nanostructured metal sulfides have 
received more attention towards researchers and exposed 
approachable pseudocapacitive performance. The two or 
more valence states present in the sulfide and better theo-
retical capacity of sulfur deliver good characteristic behavior 
of the capacitor. Among various metal sulfides, zinc sulfide 
(ZnS) is a significant II–VI semiconductor material with a 
wide band gap of 3.5–3.8 eV and two possible crystal struc-
tures, namely, sphalerite and wurtzite. Much application 
has been proposed with ZnS nanomaterials like electronics, 
optoelectronics, photovoltaics, and energy storage devices. 
Jayalakshmi et al. studied the performance of the capacitor 
of ZnS nanoparticles in various electrolytes. Recent studies 
demonstrated that the usage of carbon-based materials like 
CNTs and graphene into ZnS NP has decreased the band 

gap and could be applied for several applications including 
energy storage devices. Based on this, Ramachandran et al. 
prepared ZnS-decorated graphene nanocomposites through 
the facile solvothermal method and used as an electrode to 
examine their electrochemical behavior in 6 M KOH electro-
lyte towards supercapacitor applications [64]. This nanocom-
posite electrode achieved a specific capacitance of 197.1 F 
g−1 at 5 mV s−1 with initial capacitance maintained at 94.1% 
after 1000 cycles. Similarly, Hou et al. prepared CNT-deco-
rated hierarchical ultrathin ZnS nanosheets through the facile 
method as an electrode for supercapacitor applications [65]. 
The results revealed that the ZnS@CNT electrode-based 
flexible all-solid-state supercapacitor obtained the specific 
capacitance of 159.6 F g−1 with long cycling stability. Iqbal 
et al. deposited ZnS nanoweb onto the Ni foam having pre-
deposited graphene oxide thin layer through the hydrother-
mal method [66]. This electrode holds an excellent specific 
capacitance of 3052 F g−1 at a scan rate of 2 mV s−1. Accord-
ing to the galvanostatic charge–discharge profile, the specific 
capacitance is calculated to be 2400.3 F g−1 at 3 mA. cm−2. 
The power and energy densities obtained for GO-supported 
ZnS nanoweb is 4407.73 W kg−1 and 120 Wh kg−1, respec-
tively. Javed et al. grow ZnS nanospheres on a flexible carbon 
textile (CT) using the hydrothermal method [67]. The ZnS-
CT-based electrode possesses a specific capacitance of 747 
F g−1 at 5 mV s−1 and directly applied as a binder-free elec-
trode for the fabrication of symmetric flexible full solid-state 
supercapacitor. The ZnS-CT-based supercapacitor delivers a 
better capacitive behavior with a maximum areal capacitance 
of 56.25 F cm−2, Csp of 540 F g−1 at 5 mV s−1 with initial 
capacitance maintained at 94.6% even after 5000 cycles.

However, ZnS-based electrode material still experi-
ences a low operating voltage, energy density, and specific 
capacitance for practical commercial uses. To rectify these 
drawbacks, an effective methodology is to fabricate com-
posites of zinc sulfides with an excellent metal-based pseu-
docapacitive material. Based on this concern, Sabari Arul 
et al. have attempted to fabricate ZnS/MnS nanocomposite-
based symmetric supercapacitor device with high specific 
energy and power densities and long cycle stability [68]. 
The results revealed that ZnS/MnS nanocomposite-based 
electrode achieved a specific capacitance of 884 F g−1 at 
2 mV s−1 (Fig. 4). Finally, the utmost energy and power 
densities of ZnS/MnS NC-based symmetric supercapacitor 
are 91 Wh kg−1 and 7.78 kW kg−1 with long cycling stabil-
ity after 5000 cycles. Li et al. synthesized a novel cactus-
like ZnS/Ni3S2 nanohybrid for the first time through a facile 
two-step hydrothermal method as an electrode material for 
high-performance asymmetric supercapacitor [69]. It deliv-
ered a high specific capacitance of 2093 F g−1 at 1 A g−1 
with excellent initial capacitance maintained even at higher 
current density (72% at 10 A g−1). The asymmetric super-
capacitor assembled with ZnS/Ni3S2 electrode exhibits high 
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energy and power density of 51.2 Wh kg−1 and 849.4 W 
kg−1, respectively.

Recent reports demonstrate that the composite of two 
kinds of transition metal sulfides with carbon-based materi-
als has enhanced the electrochemical properties with excel-
lent photocatalytic efficiency and a wider range of solar 
energy absorption than the single component sulfide. On this 
concern, for the first time, Li et al. prepared ZnS NWs/Cu7S4 
NPs/rGO nanocomposite through a one-pot hydrothermal 
method and utilized as an electrode material for supercapaci-
tor [70]. The ZnS/Cu7S4/rGO nanocomposite-based elec-
trode achieved an ultimate specific capacitance of 1114 F g−1 
at 1 A g−1 with initial capacitance holding at 88% after 5000 
cycles. The ZnS/Cu7S4/rGO NC-based asymmetric superca-
pacitor was fabricated, which achieved the energy and power 
densities of 22 Wh kg−1 and 595 W kg−1 with 77% of initial 
capacitance sustained after 5000 cycles.

Wei et al. synthesized graphitic C3N4/ZnS-based elec-
trode using a one-step calcination process with various mass 
ratios under the N2 atmosphere [71]. The specific capaci-
tance of g-C3N4/ZnS exhibits a maximum specific capaci-
tance of 497.7 F g−1 at 1 A g−1 with capacitance retaining at 
80.4% at 5 A g−1 after 1000 cycles. The symmetric super-
capacitor developed with a g-C3N4/ZnS-based electrode 
achieved an energy and power density of 10.4 Wh kg−1 and 
187.3 W kg−1 with long cycling stability. Cao et al. pre-
pared a double-layer hollow structure of Cu7S4/NiS through 
a self-generated sacrificial template method and used as an 
electrode material for high-performance supercapacitor [72]. 
The Cu7S4/NiS composites with three different particle sizes 
are prepared, and they exhibit a high specific capacitance of 
1204 F g−1, 1028 F g−1, and 857 F g−1 at a current density 
of 1 A g−1, and 85.8%, 84.32%, and 80.13% of its initial 
capacitance were sustained after 1000 cycles. Binder-free 
cupric ion-containing zinc sulfide nanoplate-like structures 
were developed by Hussain et al. utilizing a practical sol-
vothermal method. The developed electrode material dis-
plays exceptional coulombic efficiency (99%) and a specific 
capacitance of 545 F g−1 at a current density of 1 A g−1 after 
5000 cycles [73].

4.8 � Vanadium chalcogenides

Vanadium disulfide (VS2) is a family of transition metal 
sulfides, comprised of two-dimensional layered structures 

with the vanadium metal sandwiched by two sulfur atoms. 
This slack structure is bonded by weak Van der Waals force 
of interactions, forming an interlayer spacing of 5.76 Å, 
which enables the electrons and ions to transport from one 
valence shell to another. At the same time, because of its 
low cost and wide range of sources, vanadium disulfide is 
studied extensively towards energy storage devices. To date, 
very few reports have emerged regarding the preparation 
of vanadium disulfide through the chemical route for the 
application of supercapacitors. Feng et al. used VS2 ultrathin 
nanosheets as an electrode material for supercapacitors and 
obtained a maximum specific capacitance of 4760 µF.cm−2. 
According to literature, for the first time, Pandit et al. devel-
oped nanostructured VS2 through the SILAR method and 
functioned as an electrode material for a flexible symmetric 
all-solid-state supercapacitor [74]. It yields a specific power 
of 1.5 kW kg−1 (specific capacitance of 25.9 Wh kg−1) at a 
voltage window of 1.6 V. Guo et al. reported the synthesis 
of ultrathin VS2 TMD nanoplates with in-plane and out-
of-plane defects through simple colloidal chemical method 
[75]. These rich-defect nanoplates are used as anode material 
for supercapacitor application, which provides an ultrahigh 
specific capacitance of 2200 F g−1 at 1 A g−1. The fabricated 
asymmetric supercapacitor obtained a better energy density 
of 66.54 Wh kg-1 at a power density of 0.75 kW kg−1 with 
long cycling constancy over 5000 cycles.

The addition of carbonaceous materials to vanadium 
disulfide helps to enhance its energy storage properties. In 
TMD/carbonaceous composites, carbonaceous-based mate-
rials are known to be a conductive channel that enhances 
the contact between the electrolyte and electrode interface. 
Masikhwa et al. developed an asymmetric supercapacitor 
with VS2 nanosheets and activated carbon and achieved a 
maximum specific capacitance of 155 F g−1 at 1 A g−1 cur-
rent density as an asymmetric supercapacitor and exhibits 
42 Wh kg−1 of energy density, 700 W kg−1 of power den-
sity with ~ 99% of initial capacitance maintained over 5000 
cycles at 2 A g−1 [76]. Later, Pandit et al. prepared hexagonal 
structured VS2 NPs onto the MWCNTs matrix through a fac-
ile chemical route [77]. It exhibits a maximum capacitance 
of 830 F g−1 with long cycle steadiness at 95.9% over 10,000 
cycles. Fabricated VS2/MWCNT-based flexible solid-state 
symmetric supercapacitor obtained a high specific capaci-
tance of 182 F g−1 at 2 mV s−1 with 42 Wh kg−1 of specific 
energy and 93.2% of long cycling stability over 5000 cycles. 
Meyer et  al. successfully synthesized carbon-supported 
vanadium disulfide nanocomposites through hydrothermal 
synthesis which exhibits specific capacitance of 33 F g−1 at 
1 mA. cm−2 [78]. Also, Fang et al. reported the preparation 
of cauliflower-like nanocomposite made up of ultrathin VS2 
nanosheets and ZnO nanospheres through in situ growth of 
ZnO nanospheres on the ultrathin VS2 nanosheets by simple 
solution method and examined as electrode materials for 

Fig. 4   a Schematic illustration of the growth mechanism of ZnS/MnS 
NCs. b Assembled ZnS/MnS NCs//ZnS/MnS NC SSC device. c–f 
Electrochemical performance of SSC device (c) at different operating 
voltages, d CV curves at diverse scan rates, e GCD curves at various 
current densities, f cycling stability for 5000 cycles. Inset shows the 
GCD curves at initial/final cycles, and symmetric devices lit a green 
LED image are reproduced with permission from ref. [68] under Cop-
yright © 2017, Springer-Verlag GmbH, Germany

◂



	 Advanced Composites and Hybrid Materials (2024) 7:130130  Page 16 of 66

supercapacitors [79]. The cauliflower-like nanocomposite 
exhibits a high specific capacitance of 2695.7 F g−1 at 1 
A g−1 with initial capacitance holding at 92.7% over 5000 
cycles.

As another form of vanadium sulfide, vanadium tetra-
sulfide (VS4) stands out in TMSmaterials. It exhibits a 1D 
chain structure with an interchain distance of 5.83 Å. The 
sulfur atom present in vanadium tetrasulfide is in the form of 
S2

2− and bonded to the adjacent V atoms. This sparse chain 
structure offers enough space for the insertion and extraction 
of electrolyte ions and accelerates the progress of the reac-
tion. The capacity of VS4 is higher than that of VS2 since the 
sulfur content in VS4 is high and it plays a very predominant 
role as an active reactant in the electrochemical reaction. 
The use of graphene or other carbon-based material with 
vanadium will surely improve both the specific capacitance 
and cycle performance compared to the pure form. Ou et al. 
synthesized V5S8/graphite nanosheets which exhibits a spe-
cific capacitance of 1112 mA h/g at 0.1 A g−1 in Li battery 
and remains 846 mAh g−1 after 700 cycles. Kalam et al. 
prepared hierarchal porous vanadium sulfide/rGO (V3S4/
rGO) composite using the hydrothermal method and used 
as electrode material for supercapacitor [80]. The V3S4/rGO 
composite electrode offers a maximum specific capacitance 
of 520 F g−1 at 1 A g−1 current density with excellent cyclic 
stability of 99.6% over 2000 cycles (Fig. 5). Zhang et al. 
synthesized flower-like VS4/rGO composite and used in 
aluminum-ion batteries which provides a promising capac-
ity and coulombic efficiency of 90% after 1000 cycles. Sun 
et al. developed a promising anode with vanadium sulfide on 
reduced graphene oxide (VS4/rGO) for sodium-ion battery 
and exhibits a capacity of 362 mAh/g [81]. Wang et al. suc-
cessfully prepared patronite VS4 anchored on carbon nano-
cubes with a petal-shaped structure consisting of nanolayers 
using a one-step hydrothermal method [82]. The VS4/CNT 
composite-based electrode offers a specific capacitance of 
330 F g−1 at 1 A g−1 which is exceeding that of pure VS2. 
The VS4/CNT electrode-based symmetric supercapacitor 
(SSC) exhibits a spectacular areal capacitance of 676 mF. 
cm−2 with an energy and power density of 51.2 Wh kg−1 
and 30.95 W kg−1 at 2.2 V. Ratha et al. prepared both VS4/
rGO- and VS4/CNT-based electrodes and examined their 
electrochemical behavior in 0.5 M of K2SO4 solution. The 
VS4/CNT nanosheets exhibit a capacitance of 231 F g−1, 
while VS4/rGO brought a specific capacitance of 492 F g−1 
at 1 mV s−1 under the two-electrode system. Based on this 
concern, Wang et al. planned to combine CNTs and rGO 
with VS4, which show better electrochemical performance 
than the pure phase [83]. They prepared 3D VS4/CNTs/rGO 
through the hydrothermal method and used as an electrode 
material for the application of supercapacitors. It explored 
a remarkable capacitance of 497 F g−1 (Fig. 5). The sym-
metric supercapacitor developed with VS4/CNTs/rGO 

electrode exhibits an areal capacitance of 1003.5 mF. cm−2 
with energy and power density of 72.07 Wh kg-1 and 14.69 
W kg−1 at 0.5 mA. cm−2.

Vanadium diselenide (VSe2) is consists of two Se atoms 
sandwiching with one V atom in between them forming lay-
ered structures stacked through weak Van der Waals force of 
interaction. VSe2 has hexagonal crystal structures and exists 
in both 2H and 1 T phase with metallic nature. Due to the 
strong electron correlation between the adjacent V atoms 
and high charge density wave induced structural instabil-
ity, VSe2 obtains an excellent potential to be exploited in 
the application of energy storage and conversion devices. 
According to the report, to date, both VS2 and VSe2 are 
shown metallic nature, while other TMCs are insulators or 
semiconductors with few of them possess superconduct-
ing behavior as well. Recently, it has been observed that in 
contrast to TMCs with semiconducting nature, those hav-
ing metallic nature show ultrahigh conductivity and used 
as an appropriate material for supercapacitor applications. 
Also, vanadium diselenide (VSe2) has been reported to 
have versatile electronics behavior which is beneficial for 
the realization of futuristic nano-devices. Additionally, its 
unique activities towards intercalation reactions, VSe2, have 
been stated to display promising energy storage properties 
as active components in the cathode material of Li-ion 
batteries. Hybridization of these highly conductive TMCs 
with carbon-based material would surely enhance their 
overall supercapacitor performances. Since the graphene 
hybrid of VS2 is proved to be a better alternative for energy 
storage devices, enhanced performance is expected from 
VSe2/rGO hybrid. On this concern, Marri et al. reported 
the preparation of VSe2/rGO with various concentrations 
of GO through a one-step hydrothermal method for the first 
time [85]. The supercapacitor performance of VSe2/rGO0.3 
showed a high specific capacitance of ~ 680 F g−1 at a cur-
rent density of 1 A g−1. Moreover, it acquires a high energy 
and power density of ~ 212 Wh kg−1 and ~ 3.3 kW kg−1 with 
capacitance retention of ~ 81% over 10,000 charge–dis-
charge cycles. Chemical synthesis was employed by Xu 
et al. in 2021 to create VSe2 nanoparticles anchored on 
an N-doped hollow carbon sphere. An improved specific 
capacitance of 1030 F g−1 at 1 A g−1 is observed in the pro-
duced electrode material. With a power density of 701.91 
W kg−1, the asymmetric supercapacitor made with an acti-
vated carbon anode and VSe2@NC cathode has a high 
energy density of 85.41 Wh kg−1. It also has a high-stable 
cycling performance with 90% retention after 2000 cycles 
[86]. Additionally, Ramu et al. created binder-free patronite 
(VS4) flower-like nanostructures that are facilely fabricated 
on carbon cloth (CC) using a simple hydrothermal process 
[87]. With exceptional energy and power densities of 74.4 
Wh cm−2 (28.6 Wh kg−1) and 10,154 W cm−2 (9340 W 
kg−1), respectively, the IL-based symmetric supercapacitor 
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is built and exhibits a high areal capacitance of 536 mF. 
cm−2 (206 F g−1) and remarkable cycling endurance (93%) 
as well. Molybdenum sulfide (MoS2) @ vanadium sulfide 
(VS2) and tungsten sulfide (WS2) @ VS2 hybrid nanoarchi-
tectures were created by Hussain et al. using a simple one-
step hydrothermal process. The electrodes produced have 
high specific capacitances of 513 and 615 F g−1, respec-
tively, at 2.5 A g−1. The asymmetric device, which was 
created using WS2@VS2 electrodes, has a high specific 
capacitance of 222 F g−1 at an applied current of 2.5 A g−1 
and a specific energy of 52 Wh kg−1 at power density of 
1 kW kg−1 [88].

4.9 � Tungsten chalcogenides

Many researchers have stated that among various transition 
metal dichalcogenides (TMDCs), tungsten disulfide (WS2) 
is a low-cost, graphene-like alternative material that offers 
many applications in the field of energy-related devices such 
as solar cells, photocatalysts, supercapacitors, and Li-ion 
batteries. Tungsten disulfide (WS2) has a hexagonal crystal 
structure (space group of P63/mnc) made up of three stacked 
atomic layers (S-W-S) bonded together by weak Van der 
Waals force. The interlayer spacing of the adjacent atoms 
is ~ 0.61 nm, which is higher than that of graphite (0.33 nm). 

Fig. 5   Structural formation of a VS2 and b NixV3-xSe4 and V3Se4, 
images are reproduced with permission from ref. [84] under Copy-
right © 2019, American Chemical Society. c–f Different schematics 
for the synthesis of various vanadium chalcogenides: c synthesis of 
VS4/CNTs/rGO composites by simple one-step hydrothermal method, 
images are reproduced with permission from ref. [83] under Copy-
right © 2020 Elsevier Inc.; d synthesis of V3S4/rGO composites by 
hydrothermal method, images are reproduced with permission from 

ref. [80] under Copyright © 2018 Taiwan Institute of Chemical Engi-
neers, published by Elsevier B.V.; e synthesis of VS2 hexagons on 
MWCNTs by using simple and cost-effective successive ionic layer 
adsorption and reaction (SILAR) method, images are reproduced 
with permission from ref. [77] under Copyright © 2017 Ameri-
can Chemical Society; f synthesis of all-in-solution VS2 ultrathin 
nanosheets, images are reproduced with permission form ref. under 
Copyright © 2011 American Chemical Society
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These stacked layers will provide space for the insertion and 
extraction of Li+ ions. Although WS2 is a potentially promis-
ing material for energy storage devices, its poor electronic 
conductivity, the catalytic property of the bulk form, low 
specific capacitance, poor volume expansion, and agglom-
eration properties have restricted its practical applications. 
To overcome these demerits, several approaches have been 
explored. Use of carbon-based materials, conducting poly-
mers, metal oxides could suppress the abovesaid defects. 
Chen et al. reported a novel 3D WS2 nanotubes/graphene 
hybrid with unique sandwich-type geometry through one-pot 
hydrothermal for Li-ion batteries. Ratha et al. synthesized 
WS2 nanosheet with reduced graphene oxide through the 
hydrothermal method [89]. The WS2/rGO hybrids exhibit 
a specific capacitance of 350 F g−1 at 2 mV s−1, which is 
about 5 times higher than the pure WS2 and and 2.5 times 
higher than the pure rGO nanosheets. Tu et al. synthesized 
well-constructed WS2/rGO nanosheets by a simple molten 
salt process as the electrode material for SCs [90]. It yields 
a massive specific capacitance of 2508.07 F g−1 at a scan 
rate of 1 mV s−1 with capacitance retention of 98.6% over 
5000 cycles. Similarly, several methods have been taken to 
address the limitations of WS2 and to improve its electri-
cal contact between the catalyst. Generally, 2D mesoporous 
nanosheets have received much attention because of their 
superior properties compared to their conventional bulk 
materials. Shang et al. prepared interwoven WS2 nanoplates 
supported on carbon fiber cloth (WS2/CFC) through a facile 
solvothermal method [91]. The electrochemical behavior of 
WS2/CFC delivers a specific capacitance of 399 F g−1 at 
1 A g−1. Moreover, WS2/CFC exhibits long cycling stabil-
ity 99% of initial capacitance retaining for over 500 cycles. 
Similarly, Qiu et al. reported the preparation of tungsten 
disulfide/active carbon fiber nanocomposite through elec-
trospinning, one-pot carbonization, and activation, and fol-
lowed by a hydrothermal process [92]. The nanocomposite 
displays a high specific capacitance of 600 F g−1 at 1 A g−1. 
The fabricated quasi-solid-state asymmetric supercapacitor 
obtains an approachable specific capacitance of 237.7 F g−1 
at 1 A g−1.

The performance of the nanostructured electrode is 
deeply dependent upon the surface area, electric and ionic 
conductivity, compact dimensions, reactivity, etc. Normally, 
mesoporous structured based materials offer a high specific 
surface area for easy ionic transportation. In the previous 
report, mesoporous structure materials display several attrac-
tive features and have recognized to be potentially favorable 
anode materials for Li-ion batteries. Based on this literature 
report, herein, Ansari et al. have prepared porous WS2 con-
sists of few-layered nanosheets through the hydrothermal 
method and used as electrode material for supercapacitor 
[93]. It displays a specific capacitance of 241.5 F g−1 at 0.75 
A g−1 with long cycling stability over 2000 cycles.

Like sulfide, tungsten selenide (WSe2) is also considered 
a promising electrode material for the use of energy storage 
devices due to its wide and direct band gap. But, due to its 
low electronic conductivity and easy aggregation because 
of a high specific area, it limits its future application. To 
solve these hindrances, a profitable way is to associate metal 
selenide with nanostructured carbon-based materials like 
mesoporous carbon, CNT, graphene, and rGO. Inspired 
by previous reports, for the first time, Gopi et al. success-
fully prepared nanosheet-like tungsten diselenide with rGO 
hybrid through facile one-step hydrothermal route for the 
application of supercapacitor [94]. The WSe2/rGO nano-
composite electrode-based supercapacitor displays a high 
specific capacitance of 389 F g−1 at a current density of 1 
A g−1 with long capacitance retention of 98.7% over 3000 
cycles, and it also delivered an energy and power density of 
34.5 Wh kg−1 and 400 W kg−1, respectively.

Compared to two-dimensional metal sulfides and sele-
nides, telluride (Te)-based TMDs are metallic, which results 
in a fast transport rate of ions at the electrodes/electrolyte 
interface to raise the specific capacitance. Thus, the elec-
trochemical studies of 2D Te-based TMDs are vital. Recent 
reports have stated that 1Td WTe2 is a type-II Weyl semi-
metal, making it show abnormal physical performance like 
a positive quantum spin hall gap for monolayers and extreme 
magnetoresistance. Also, the transport rate properties of 
atomically thick 1Td WTe2 exposed a superconducting 
nature below 2.5 K. The outstanding physical characteris-
tics of 1Td WTe2, especially high electrical conductivity, 
encourage us that atomically thick 1 Td WTe2 deserves 
specific consideration as an auspicious electrode material 
for energy storage devices, particularly, supercapacitors. 
However, to date, the reports on the application of Te-based 
TMDs in supercapacitors are quite infrequent. Here, for the 
first time, Yu et al. reported the single-crystal 1Td WTe2 
exfoliated nanosheets by liquid phase exfoliation method, 
which are assembled into air-stable films and further all-
solid-state flexible supercapacitors [95]. The 1Td WTe2 
nanosheet-based supercapacitor delivers a mass capacitance 
of 221 F g−1 and stack capacitance of 74 F. cm−3. Moreo-
ver, they also display excellent volumetric energy and power 
density of 0.01 Wh cm−3 and 83.6 W cm−3 with capacitance 
retention of ~ 91% over 5500 cycles.

4.9.1 � Iron chalcogenides

Iron sulfides (commonly known as fool’s gold) are one of 
the most promising candidates for energy storage devices 
due to their cost-effectiveness, environmental benignity, 
and low abundance nature. The solubility of sulfur in iron 
results in a multitude of stoichiometry, which leads to the 
formation of iron sulfides in multi-valent states like troil-
ite (FeS), pyrite (FeS2), and greigite (Fe3S4). Furthermore, 
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for the past decades, many researchers have attempted to 
prepare FeS thin film using various synthesis approaches. 
Karade et al. first reported the preparation of FeS thin-film 
electrodes was investigated by the SILAR method at room 
temperature. They also reported the use of FeS thin films as 
efficient electrodes in liquid configuration and developed the 
symmetric flexible solid-state supercapacitor device using 
PVA-LiClO4 as a gel electrolyte at a potential window of 
2 V [96]. The fabricated supercapacitor gained a specific 
capacitance of 4.62 F g−1 at 0.75 mA with an energy den-
sity of 2.56 Wh kg−1. It yields capacitance retention of 91% 
over 1000 cycles along with bending of device up to 175°. 
Moreover, few uses of FeS in supercapacitors may attribute 
to the large change in volume during the charging and dis-
charging process. The expansions of volume can extent up to 
200% to cause the pulverization of FeS which results in poor 
cycle stability. To solve this, an effective technique is coat-
ing a carbon layer on the FeS surface or reducing the size 
of FeS. Also, combining with active materials may alleviate 
the volume change, thereby increasing the cyclability, which 
enhances their conductivity. Based on the concern, Zhao 
et al., a porous FeS/rGO composite was prepared by in situ 
grown on Fe foil surface and directly used as an electrode 
material for supercapacitor [97]. It displays an excellent spe-
cific capacitance of 300 F g−1 (900 mF. cm−2) with 97.5% of 
capacitance retention over 2000 cycles.

As one kind of iron sulfide, FeS2 has been investigated 
as an electrode material for supercapacitors. Chen et al. 
prepared pyrite (FeS2) nanobelts through the facile hydro-
thermal method for enhancing the performance of aqueous 
pseudocapacitor. But the practical application of iron-based 
electrodes was hindered by some problems like large volu-
metric expansion, low rate capability, low capacity retention, 

and poor inherent conductivity. To rectify these defects, 
composite of iron sulfides with carbon-based materials, con-
ducting polymers or metal oxides, is approachable. Thus, 
Sridhar et al. reported the one-pot two-step method for the 
preparation of carbon nanofiber (CNF) cross-linked FeS2 
networks through the microwave method [98]. The prepared 
3D mesoporous FeS2/CNF electrodes yield a maximum 
capacitance of 612 and 342 F g−1 at 5 and 100 mV s−1 with 
initial capacitance retained at 97% even after 2000 cycles 
(Fig. 6). Javed et al. synthesized FeS2 nanospheres supported 
on carbon paper which exhibits a better electrochemical per-
formance towards energy storage device and yields a high 
energy and power density of 44 Wh kg−1 and 175 W kg−1, 
respectively. Zhong et al. developed a supercapacitor with a 
hierarchical FeS2@Fe2O3 heterostructure which displays an 
excellent capacitance performance to the bare Fe2O3 [99]. 
Pei et al. developed the FeS2/GNS electrode for superca-
pacitor which yields a theoretical capacitance of 313.6 F 
g−1. Sun et al. synthesized FeS2 nanoellipsoids through a 
rapid microwave-assisted method to use as an anode mate-
rial for supercapacitor [100]. It displays a specific capaci-
tance of 515 C/g at 1 A g−1 with energy and power density 
of 64 Wh kg−1 and 271.2 W kg−1 with initial capacitance 
maintained at 91% of initial capacitance after 5000 cycles. 
Zhang et al. prepared a novel Fe7S8@Fe5Ni4S8 flower center/
petal hierarchical nanostructure via a one-step solvothermal 
method, which achieved a specific capacitance of 670.4 
C/g at 1 A g−1. The constructed supercapacitor based on 
Fe7S8@FeNi4S8 composite electrode exhibits high energy 
and power density of 49.9 Wh kg−1 and 770.0 W kg−1 with 
88.9% of capacitance retention after 10,000 cycles. Sele-
nium-enriched hybrid NiSe2@Fe3Se4 (NFS) nanocomposites 
were prepared by Manikandan et al. and which are easily 

Fig. 6   Schematic representation of the formation of iron chalcoge-
nides. a FeS/RGO nanocomposite by in  situ growth method, image 
is reproduced with permission from ref. [97] under Copyright © 

2017 Elsevier Ltd. b NiXFe3-XSe4 and c structural configuration of 
NiXFe3-XSe4 nanoarray, images are reproduced with permission from 
ref. [84] under Copyright © 2019, American Chemical Society
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deposited on Ni-foam utilizing the chemical bath deposition 
(CBD) method. The maximal areal capacity of the depos-
ited NiSe2@Fe3Se4 for 36 h (NFS@36 h) is 6.05 C/cm2 at 
6 mA. cm−2. The NFS@36 is used as the positive electrode 
in a hybrid supercapacitor (HSC), and biomass-derived O, 
N enriched activated carbon is used as the negative electrode 
and exhibits superior specific energy of 52 Wh kg−1 at 398 
W kg−1 specific power. Additionally, after 10,000 charge/
discharge cycles at 5 A g−1, the device shows a remarkable 
cycling endurance, with a specific capacitance retention rate 
of 92% [101].

4.9.2 � Manganese chalcogenides

Manganese sulfide (MnS) is typically a p-type semiconduc-
tor with a wide band gap of 3.1 eV, since Mn has multi-
ple oxidation states, due to outstanding properties such as 
economical and eco-friendly nature, and high electronic 
conductivity of ~ 3.2 × 103 S cm−1 than their correspond-
ing hydroxides or oxides [102]. It exists in three different 
phases, namely, rock-salt structure with α-phase, zinc blende 
structure with β-phase, and wurtzite structure with γ-phase, 
respectively (Fig. 7). MnS could be used for charge storage 
purposes through redox reactions along with non-Faradaic 
processes. Furthermore, the layered crystal structure of MnS 
could facilitate the easy intercalation and de-intercalation 
of electrolyte ions thereby boosting the electrochemical sta-
bility of a supercapacitor. Although among various poly-
morphs of MnS, alpha-phase of MnS is the most stable one, 
and few reports are available for the use of electrode mate-
rial in energy storage devices. Tang et al. prepared MnS 
nanocrystals of hollow spindle-like nanospheres and tetra-
pod nanorods via the hydrothermal method and yields a spe-
cific capacitance of 704 F g−1 and 400.6 F g−1, respectively 
[103]. Li et al. synthesized 2D MnS nanosheets through the 
hydrothermal method and investigated their electrochemi-
cal performance for supercapacitors [104]. The alpha-MnS 
nanosheet electrode demonstrated a high specific capaci-
tance of 667.40 F g−1 at 1 mV s−1 and 344.51 F g−1 at 0.5 
A g−1 with initial capacitance retained at 93% over 5000 
cycles. Pujari et al. prepared cubic microfibers MnS thin 
films through the chemical bath deposition (CBD) method 
which revealed a high specific capacitance of 747 F g−1 at 
1 mA. cm−2 with initial capacitance sustained at 85% over 
2000 cycles (Fig. 7) [105]. Quan et al. reported the prepa-
ration of α-MnS NPs with nitrogen-doped rGO through a 
simple one-step solvothermal method and fabricated MnS/
N-rGO//N-rGO electrode-based asymmetric supercapacitor 
with a specific capacitance of 77.9 F g−1. Mohamed et al. 
prepared α-MnS nanoflakes/rGO nanosheets through the 
facile one-step hydrothermal method and used for the appli-
cation of supercapacitors [106]. The hybrid supercapaci-
tor device was fabricated using α-MnS/rGO and activated 

carbon as a positive and negative electrode. It exhibits a high 
energy and power density of 38.13 Wh kg−1 and 850 W kg−1, 
respectively. Tang et al. used the hydrothermal approach to 
create porous manganese sulfide (MnS/GO-NH3) nanocrys-
tals based on the Kirkendall effect [107]. It exhibited a high 
specific capacitance of 390.8 F g−1, and the developed MnS/
GO-NH3 electrode-based ASC devices demonstrate specific 
capacitance of 73.63 F g−1 with energy and power density 
of 14.9 Wh kg−1 and 4.6 kW kg−1, respectively. Naveenku-
mar et al. successfully electrodeposited MnS on graphene-
wrapped Ni foam substrate as an electrode for supercapacitor 
application [108]. It delivered a specific capacitance of 2220 
F g−1 at 0.5 A g−1 with initial capacitance retained at 94.6% 
over 1000 cycles. Ragupathi et al. employed sol–gel method 
to prepare graphitic carbon nitride–doped MnS nanocom-
posites for supercapacitor application. It yields a maximum 
specific capacitance of 463.32 F g−1 at 10 mV s−1 with initial 
capacitance maintained at 98.6% over 2000 cycles [109].

Chen et al. synthesized MnS nanocrystals through the 
hydrothermal method and developed MnS/activated car-
bon electrode-based asymmetric supercapacitor which 
displayed a maximum specific capacitance of 73.63 F g−1 
at 1 mV s−1. Javed et al. prepared MnS nanoparticles onto 
the carbon textile through the hydrothermal method and 
developed a solid-state symmetric supercapacitor with 
high energy and power density of 52.03 Wh kg−1 and 
1.2 kW kg−1, respectively. Kumbhar et al. successfully 
prepared novel MnS nanoclusters on nickel foam by the 
SILAR method and used them as an electrode to examine 
their capacitance performance [113]. It presents a high 
specific capacitance of 828 F g−1 at 5 mV s−1 with capaci-
tance retention of 85.2% over 5000 cycles. Also, the ASC 
was fabricated using MnS@NF and reduced graphene 
oxide as a positive and negative electrode, which dis-
plays high energy and power density of 34.1 Wh kg−1 and 
12.8 kW kg−1 with initial capacitance holding at 86.5% 
after 2000 cycles.

Additionally, the laminar nanostructure of manganese 
sulfide (wurtzite structure) accelerates the penetration of 
electrolyte and the easy ionic intercalation, which promotes 
its intrinsic electrochemical reactivity for the capacitive 
property. Chen et al. fabricated asymmetric supercapaci-
tor using rod-like γ-MnS nanocrystal and porous eggplant 
derives activated carbon as a positive and negative electrode. 
They showed a specific capacitance of 110.4 F g−1 at 0.5 A 
g−1 and possess an energy and power density of 37.6 Wh 
kg−1 and 181.2 W kg−1 with the initial capacitance were 
upholding at 89.87% over 5000 cycles. But, due to poor 
cycle life and low electrical conductivity, only a little atten-
tion has been paid for γ-MnS to use as an electrode material 
for supercapacitor. As an electrode material, the coating of 
graphene is one of the efficient ways to raise conductivity. 
If nanostructured graphene is used as the matrix material 
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for MnS-based composite, it not only well accommodates 
the MnS particles, but additionally offers a significant elec-
trode and electrolyte contact for the charge transfer process. 
Based on the abovesaid considerations, Li et al. synthesized 
gamma-phase manganese sulfide (γ-MnS)/rGO composite 
through a one-pot solvothermal method. The electrochemi-
cal performance of fabricated γ-MnS/rGO electrode-based 
supercapacitor possesses an enhanced specific capacitance 
of 802.5 F g−1 at 5 A g−1, and there is no decrease of its 
initial capacitance values even after 2000 cycles. Arul 
et al. prepared γ-MnS NPs through a simple chemical pro-
cess [114]. For the first time, they attempted to deposit 

the synthesized MnS NPS on homemade graphite/scotch 
tape, as a binder-free flexible conducting electrode with a 
maximum specific capacitance of 112 F g−1 at 5 mV s−1 
and cycling permanency of 93% of its initial capacitance 
even after 2000 cycles. Zhang et al. successfully prepared 
γ-MnS/rGO composite through a facile one-pot hydrother-
mal method and used as electrode materials for ASC [115]. 
It exhibits a specific capacitance of 547.6 F g−1 at 1 A g−1 
with initial capacitance sustaining at 65% over 5000 cycles 
(Fig. 8).

As comparable to manganese sulfide (MnS), manganese 
selenide (MnSe) is a typical p-type semiconductor with a 

Fig. 7   Structural formation of different manganese chalcogenides: 
a MnS2, b MnSe, c MnSe2. d–f Schematic representation of various 
synthesis processes of manganese sulfides. d Controlled sulfuriza-
tion of MnCO3 thin film into different morphological MnS2, image is 
reproduced with permission from ref. [110] under Copyright © 2019 
Elsevier Ltd. e Hydrothermal synthesis of γ-MnS2 with ASCs device, 
image is reproduced with permission from ref. [111] under Copyright 

© 2016 Springer Nature. f Facial in situ hydrothermal approach com-
bined with etching and pre-oxidization process for the synthesis of 
Ni3S2@MnS composite, image is reproduced with permission from 
ref [112]. under Copyright © 2017 Elsevier Ltd. g Structures of man-
ganese sulfide: α-MnS (rock salt type), β-MnS (zinc blende type), and 
γ-MnS (wurtzite type), image is reproduced with permission from 
ref. [111] under Copyright © 2016 Springer Nature
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band gap of 2.0 eV. It possesses a low electron resistance 
with high ionic conductivity. MnSe has high electrical con-
ductivity than MnO (~ 4.2 eV) and MnS (~ 3.2 eV). There 
are three different phases of MnSe, namely, the cubic NaCl 
phase or rock-salt phase (α-MnSe), the cubic zinc blende 
phase (β-phase), and hexagonal wurtzite phase (γ-phase) 
(Fig. 7). Among other phases, the rock-salt phase is ther-
modynamically stable, whereas the zinc blende phase is 
highly stable and observed as a minor impurity phase and 
the wurtzite phase is said to be metastable. Due to harsh 
growth form particularly in liquid, it is very difficult to syn-
thesis MnSe nanostructures. Very few reports are available 
so far for the synthesis of MnSe nanostructures including 
α-MnSe nanoparticles and nanocubes, β-MnSe nanowires, 

and γ-MnSe nanorods. Kim et  al. synthesized α-phase 
MnSe nanoparticles with a maximum specific capacitance 
of 96.76 F g−1 at 0.1 mA. cm−2, although preparation of 
thermodynamically stable rock-salt (α-phase) phase MnSe 
nanostructures is still a challenge. For the first time, Javed 
et al. successfully synthesized single-phase hierarchical 
MnSe microflowers assembled by nanosheets via a facile-
solvothermal method used as efficient electrode material 
for symmetric supercapacitor [117]. Remarkably, it showed 
outstanding electrochemical specific capacitance of 200 F 
g−1 at 1 A g−1 with an energy density of 55.42 Wh kg−1 and 
97.15% of initial capacitance maintained over 5000 cycles.

Tang et  al. reported a simple one-step solvothermal 
method to synthesis the nanocellular rock-salt phase of 

Fig. 8   a–c Digital snapshots of prepared two MnS thin films with 
PVA-KOH gel electrolyte as a device. d Schematic of MnS thin-film 
symmetric supercapacitor. f A photograph presenting red LED illu-
mination by connecting two symmetric devices in series, image is 
reproduced with permission from ref [105] under Copyright © 2016 
Elsevier Ltd. e, g A red LED powered by two assembled MnS//EDAC 

ASC devices in series. h Electrochemical studies of MnS and EDAC 
electrodes, image is reproduced with permission from ref. [111] 
under Copyright © 2016 Springer Nature. i Electrochemical perfor-
mance of α-MnS/N-rGO hybrid//N-rGO asymmetric devices, image 
is reproduced with permission from ref. [116] under Copyright © 
2016 Elsevier Ltd
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MnSe and investigated its electrochemical behavior towards 
energy storage devices [118]. The MnSe faradic electrode 
displays a high capacity of 84.7 mAh/g at 10 mV s−1 with 
long cycling stability and good rate capability. The MnSe 
electrode-based supercapacitor was developed which exhib-
its large energy and power density of 39.6 µWh cm−2 and 
0.96 mW cm−2, respectively. Sahoo et al. used hydrother-
mally prepared α-MnSe as an electrode material for sym-
metric supercapacitor [119]. It delivered a maximum spe-
cific capacitance of 96.76 F g−1 at 0.1 mA. cm−2 with a 
corresponding energy density of 8.60 Wh kg−1 over 2000 
cycles. The developed α-MnSe electrode-based symmetric 

supercapacitor exhibits a specific capacitance of 23.44 F g−1 
at 0.1 mA. cm−2 with a potential window of 0.8 V. Ranga-
natha et al. prepared γ-MnS/rGO composite through a one-
pot solvothermal method and studied their electrochemical 
performance as supercapacitor electrode materials (Fig. 9) 
[120]. The maximum specific capacitance of γ-MnS/rGO is 
1009 C/g at 1 A g−1 with an initial capacitance retained at 
82% after 2000 cycles, whereas pristine γ-MnS offers only 
480 C/g of specific capacitance 1 A g−1 with a capacity 
maintained at 64%.

On the other hand, MnSe2 also possess a similar crystal 
structure and other intrinsic physical and chemical properties 

Fig. 9   a Fabrication of electrode on flexible carbon textile using 
α-MnSe nanospheres by one-step solvothermal method. b Schemati-
cally representation of flexible MnSe@CT symmetric SC. b  Sche-
matically representation of flexible MnSe@CT symmetric SC  e 
Electrochemical measurements of MnSe@CT electrode in aqueous 
electrolyte. f Electrochemical performance of symmetrical MnSe@
CT based symmetrical SC in LiCl hydrogel electrolyte, image is 

reproduced with permission from ref [117] under Copyright © 2019 
Elsevier B.V. c The schematic representation of the synthesis of the 
cubic G-MnSe2 hybrid material. f Electrochemical performance of 
cubic MnSe2 and G-MnSe2 symmetric cells, image is reproduced 
with permission from ref [121]. under Copyright © 2017 Wiley‐VCH 
Verlag GmbH & Co
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as like other metal TMDs. MnSe2 has many advantages 
including low toxicity, low cost, and earth-abundant mate-
rial; basically, pristine metal dichalcogenides have some 
intrinsic disadvantages like low chemical stability, low spe-
cific capacitance, rate capability, and poor cycle life which 
hinders their electrochemical energy storage performance 
on a device scale. The abovementioned drawbacks are over-
come by combining them with high-conductive materials 
like carbon and graphene to form a hybrid structure. On 
this concept, Balamuralitharan et al. synthesized 2D cubic 
MnSe2 and reduced graphene oxide–decorated MnSe2 
(MnSe2/rGO) through a facile hydrothermal method [121]. 
The electrochemical energy storage performance of MnSe2 
and MnSe2/rGO hybrid-based electrodes was examined and 
used for supercapacitor application for the first time. The 
specific capacitance of MnSe2 electrode is ~ 57.8 mF. cm−2, 
whereas MnSe2/rGO hybrid electrode has a high specific 
capacitance of 93.3 mF. cm−2. The fabricated MnSe2 sym-
metric supercapacitor exhibits excellent capacitance reten-
tion of 80% over 4500 cycles, whereas MnSe2/rGO-based 
SC displays 106% of its initial capacitance sustained over 
4500 cycles under similar conditions (Fig. 9). Wet chemi-
cal synthesis of manganese sulfoselenide nanoparticles 

anchored graphene oxide nanocomposite was carried out 
by Yasoda et al. As a supercapacitor electrode, GO-MnSSe 
produced a specific capacitance of 603 F g−1 at 0.1 A g−1 in 
1 M KCl. The constructed two-electrode device displayed 
a decent retention of 67% after 9000 cycles, with a specific 
capacitance of 98.5 mF. cm−2 at 80 µA cm-2 [122].

4.9.3 � Copper chalcogenides

Copper sulfide (CuS) is typically a p-type semiconductor 
with a band gap of 1.2−2 eV and becomes a potentially 
promising candidate for SCs owing to low cost, abundant 
availability, large theoretical capacity, and environmen-
tal benignity. It has diverse stoichiometric forms based 
on their crystal structure extending from orthogonal to 
hexagonal, which includes covellite (CuS), spionko-
pite (Cu1.39S), geerite (Cu1.6S), anilite (Cu1.75), digenite 
(Cu1.8S), djurleite (Cu1.95S), chalcocite (Cu2S), and vil-
lamaninite (CuS2) (Fig. 10). Till now, there are only a 
few reports on CuS on supercapacitor applications. Huang 
et  al. reported CuS nanosheets using a solvothermal 
method and used them as electrode for supercapacitor. It 
exhibits an outstanding electrochemical capacitance of 

Fig. 10   a–c Schematic illustration of the different CuS: a CuS, b Cu2S, c Cu7S4. d, e Phase transformation: d Cu(Tu)3Cl into CuS, e [Bmim]+ 
ions on the surface of the CuS layer, images are reproduced with permission from ref [126] under Copyright © 2015 American Chemical Society
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833.3 F g−1. Excellent electrochemical behavior with a 
better specific capacitance of 101.34 F g−1 was reported 
by Krishnamoorthy et al. by developing SC based on CuS 
nanoparticles by the hydrothermal method. Huang et al. 
reported a one-step solvothermal method with different 
morphologies of CuS nanosheets and used it as a super-
capacitor electrode material [123]. The prepared CuS 
nanosheets displayed a specific capacitance of 833.3 F g−1 
at 1 A g−1 as compared to CuS-CTAB (378.9 F g−1) and 
CuS-SDBS (232.4 F g−1). Heydari et al. synthesized CuS 
nano-hollow spheres with nanoporous structure through 
a facile method (Fig. 11) [124]. It displayed a marvelous 
specific capacitance of 948 F g−1 at 1 A g−1 with a rate 
capability of 46% of the initial capacitance retention at 50 
A g−1. Yu-Kuei et al. reported CuS nanowire preparation 
through liquid–solid reaction, which exhibits a specific 

capacitance of 305 F g−1 and 87% of original capacitance 
obtained over 5000 cycles (Figs. 11 and 12) [125].

To date, many CuS architectures have been developed for 
SCs like microspheres, nanowires, nanoflowers, nanosheets, 
nanotubes, and nanoplatelets. Unfortunately, their energy 
density, rate performance, and cycle stability are less well 
than expected. So, to overwhelm these issues, structural 
and compositional engineering may pay an effective way 
to improve the electrochemical performance of CuS. Durga 
et al. studied coriander leaf-like CuS nanostructures on 
nickel foam for SC applications [132]. It showed a high 
specific capacitance of 5029.28 F g−1 at 4 A g−1 with an 
energy density of 169.73 Wh  kg-1 and 107% of capaci-
tance retention over 2000 cycles. Bulakhe et al. synthesized 
three-dimensional copper sulfide with various morpholo-
gies through the SILAR method and used as an electrode 

Fig. 11   a–h Different synthesis methods for the preparation of cop-
per sulfides: a CuS nanowire array on Cu foil by simple wet chemical 
process, image is reproduced with permission from ref [125]. under 
Copyright © 2014 Elsevier Ltd. c Preparation of CuS at carbon cloth 
by electrodeposition technique, image is reproduced with permission 
from ref [127]. under Copyright © 2018 Elsevier Ltd. b, d Prepara-
tion of CuS thin films on flexible stainless steel by SILAR and hydro-
thermal method, image is reproduced with permission from ref. [128] 
under Copyright © 2019 Elsevier Ltd. e CuS@CD–GO 3D porous 
hydrogels prepared using one-pot hydrothermal method, image is 

reproduced with permission from ref [129]. under Copyright © 2017 
Elsevier Ltd. f Preparation of CuS nanosheets using microwave irra-
diation method, image is reproduced with permission from ref. [130] 
under Copyright © 2019 Elsevier Ltd. g CuS nano-hollow sphere pre-
pared by hydrothermal method using PVP, image is reproduced with 
permission from ref [124]. under Copyright © 2016 Elsevier B.V. h 
Solvothermal method for 3D CuS structure using ionic liquid precur-
sors, images are reproduced with permission from ref [126] under 
Copyright © 2015 American Chemical Society
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material for high-performance SCs [133]. The maximum 
specific capacitance of flowers like and integrated nanotubes 
were observed to be 761 and 470 F g−1 at 5 mV s−1.

Various nanostructure CuS-based electrode materials 
were investigated and fabrication for the application of 
supercapacitor. Still, owing to the lack of rate capability and 

the dead surface of CuS, it is far beyond the commercial 
application. Recently, a hybrid supercapacitor has received 
much greater attention towards energy storage devices. The 
combination of several materials with CuS would improve 
their capacitor efficiency. Based on this concern, Zeraati 
et al. prepared CuS nanowires through a chemical route on 

Fig. 12   a Schematic illustration of CuS nano-hollow spheres, image 
is reproduced with permission from ref [124]. under Copyright © 
2016 Elsevier B.V. b Two-electrode device components and photo-
graph of CuS//AC device lit red LED, image is reproduced with per-
mission from ref. [130] under Copyright © 2019 Elsevier Ltd. c, f 
Schematic illustration of g-CuS/CC symmetric devices and its bend-
ing photograph, image is reproduced with permission from ref [127]. 
under Copyright © 2018 Elsevier Ltd. d Schematic illustration of the 

EDTA-Cu1.8S composite flexible SSC device (optical photographs 
of the SSC device under normal and bent), image is reproduced with 
permission from ref [131] under Copyright © 2018 Elsevier Ltd. e, g 
Schematic illustrations of CuS asymmetric flexible solid-state super-
capacitor devices on flexible stainless steel. g AFSScs devices lit red 
and green LED method, image is reproduced with permission from 
ref. [128] under Copyright © 2019 Elsevier Ltd
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Cu substrates, and their electrochemical performance was 
compared with the case that these nanowires are coated with 
SiC (Fig. 11) [134]. The SiC-coated CuS exhibits a specific 
capacitance of 3370 F g−1 with 98.4% capacity sustained 
over 1000 cycles. Cui et al. reported rGO-wrapped 3D CuS 
nano-erythrocytes through the solvothermal method, which 
exhibits an energy and power density of 16.7 Wh kg−1 and 
681 W kg−1 and 90.8% of the initial capacitance maintained 
over 10,000 cycles at 2 A g−1 [135]. The fiber-shaped SC 
based on PANI/CuS/PET was developed by Ba et al. and 
reported a specific capacitance of 29 mF. cm−2 with 93.1% 
of capacitance retention over 1000 cycles [136]. Hou et al. 
prepared hierarchical structured CuS grown on MWCNT 
with a specific capacitance of 566.4 F g−1 and retention of 
94.5% of its initial capacitance after 5000 cycles [137].

Copper sulfide (Cu2S or chalcocite)–based superca-
pacitor displayed less specific capacitance owing to its 
inadequate charge transfer barriers at the electrode and 
electrolyte interface and low specific capacitance. Hence, 
researchers exploited the composites of Cu2S electrodes for 
the study of the supercapacitor. Alshammari et al. reported 
the preparation of a new hybrid core silver nanowires (Ag 
NWs) with shell copper sulfide (Cu2S) nanostructure by 
the SILAR method, which unveils a specific capacitance of 
603 F g−1 (stainless steel substrate) and 707 F g−1 (Ni foam 
substrate) with an energy and power density of 10.01 Wh 
kg−1 and 25.33 Wh kg−1 at 0.2 mA (Fig. 11) [138]. Hong 
et al. prepared 1D single-crystalline Cu2S nanostructures 
by solution-based direct synthesis process and used as elec-
trode materials for SC [139]. It displayed a specific capaci-
tance of 750 mF. cm−2 at 2 mA. cm−2 with 90.5% of the 
initial capacitance sustained over 20,000 cycles. Liu et al. 
prepared hierarchical Cu2S nanorods with various crystal 
phases by a simple hydrothermal method, which exhibits 
a specific capacitance of 346 mF. cm−2 (hexagonal phase) 
at 5 mA.  cm−2 with 90% of original capacitance reten-
tion over 2000 cycles [140]. Zhao et al. prepared the Cu2S 
microsphere by reducing copper sulfate with ascorbic acid in 
sodium thiosulfate solution and used as electrode materials 
for SC [141]. It showed a specific capacitance of 444.2 F g−1 
at 1 A g−1 with 87% of initial primary capacitance retained 
over 6000 cycles.

As one of the non-stoichiometric CuS, copper sulfide 
with Cu:S ratio of 1.75 is usually known as anilite (Cu1.75S 
or Cu7S4). It is the most stable Cu-rich crystal structure in 
the system of CuxS, where the S atoms in Cu7S4 form a 
rigid cubic lattice, thereby offers a crystalline pathway for 
the embedding of electrolyte ions (Fig. 10). While the Cu 
ions around the S sublattice are superionic with “liquid-like 
mobility,” such definite transportation of the ionic behavior 
of Cu is vital to enhance the pseudocapacitive performance. 
For the first time, Javed et al. fabricated a flexible solid-
state supercapacitor based on faradic redox active material 

of Cu7Se4 nanowires through a modified hydroxide-mediated 
approach [142]. It showed a high specific capacitance of 
400 F g−1 at 10 mV s−1 and energy and power density of 35 
Wh kg−1 and 200 W kg−1 with 95% capacitance retention 
over 5000 cycles. Also, Liu et al. adopted the calcination-
vulcanization method to prepare Cu9S8@C for the first time 
[143]. Then, they deposited it onto a carbon fiber cloth. 
Furthermore, they prepared polypyrrole/Cu9S8@C-CC 
nanocomposite-based electrodes through the electrochemi-
cal deposition method and used for SC application. The spe-
cific capacitance of PPy/Cu9S8@C-CC electrodes was found 
to be 270.72 F g−1 at 10 mV s−1 with 80.36% of capacitance 
retention after 3000 cycles. Zhou et al. synthesized porous 
Cu7.2S4 sub-microspheres through ion-exchange reaction, 
which displayed a specific capacitance of 491.5 F g−1 at 1 A 
g−1 and 82% of capacitance retention even after 1000 cycles 
[144]. Xu et al. prepared Cu1.92S nanorod accompanying 
CuS nanoribbons grown on copper foam and as electrode 
materials for asymmetric supercapacitor application [145]. It 
showed a high energy and power density of 35 Wh kg−1 and 
266 W kg−1 with 88% of capacitance retention after 5000 
charge–discharge cycles. Wang et al. prepared several kinds 
of copper sulfides, namely CuS, Cu7S4, and Cu9S5, through 
the liquid phase synthesis process [146]. They reported 
that the snowflake-like morphology of Cu7S4 offers a spe-
cial path for the diffusion of ions. It exhibits a high specific 
capacitance of 1303.01 F g−1 at 5 A g−1 with 98.84% of 
capacitance retention after 1000 cycles.

Copper selenides (Cu2Se) is a p-type semiconducting 
material. Copper selenides are binary composites and can be 
produced in many stoichiometric arrangements as reported 
in various forms like CuSe, CuSe2, Cu2Se, Cu3Se2, Cu5Se4, 
and Cu7Se4 as well as non-stoichiometric compositions like 
Cu2-xSe. For Cu2-xSe, Se atoms are placed in face-centered 
cubic positions, while Cu ions are placed in superionic 
states. Copper selenide is prepared in several phases such 
as monoclinic, cubic, tetragonal, and hexagonal. Several 
researchers have reported the various syntheses of zero-
dimensional, one-dimensional, and two-dimensional Cu2Se 
nanomaterials through several methods such as hydrother-
mal, solvothermal, hot injection technique, liquid phase dep-
osition, and sonochemical method. It has advantages includ-
ing multiple oxidation states and high electrical conductivity 
than metal oxides, which could offer better electrochemi-
cal properties. Thus, copper selenide is widely used in the 
application of gas sensors, catalysts, thermoelectric devices, 
rechargeable lithium, and sodium batteries, but only a few 
reports are available for copper selenides towards energy 
storage applications. Pazhamalai et al., using a straightfor-
ward hydrothermal technique, created hierarchical CuSe2 
nanoneedles synthesized on Cu foil and tested their elec-
trochemical properties to serve as a binder-free electrode 
for supercapacitor applications [147]. The galvanostatic 
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charge–discharge technique displayed that CuSe2 nanon-
eedles/Cu electrode displayed a high specific capacitance 
of 1037.5 F g−1 at 0.25 mA. cm−2. Also, since morphol-
ogy is a key factor in designing nanomaterials with con-
trolled functional properties, Shinde et al. demonstrated the 
supercapacitor application of Cu2Se electrodes with various 
morphologies through electrodeposition method [148]. The 
well-designed morphologies of Cu2Se nanostructures have 
been used for fabricating supercapacitor devices. Among 
various morphologies, the nanodendrite-like morphology 
of Cu2Se exhibits a maximum specific capacitance of 688 
F g−1 at 5 mV s−1. To enhance the intrinsic conductivity of 
metal chalcogenides and to reduce the dissolution of sele-
nide species during cycling, the only suitable approach is 
to prepare nanometer-sized materials with conductive addi-
tives. On this concern, Jin et al. prepared 1D CNTs@C with 
Cu2-xSe nanospheres through a facile solvothermal method 
and investigated as an electrode material for supercapaci-
tor (Fig. 13) [149]. It exhibits better specific capacitance 
of 302.7 F g−1 at a constant current density of 1 A g−1 with 
opening capacitance retained at 86.9% over 2000 cycles. The 
summary on copper chalcogenide–based electrode materi-
als with various synthesis methods and their supercapacitor 
performances are given in Table 3.

4.9.4 � Cobalt chalcogenides

Cobalt sulfide is one of the semiconducting TMCs with mul-
tiple oxidation states for high electronic conduction and easy 
charge transfer. It acts as an excellent electrode material for 
energy storage devices owing to inexpensive, good electro-
chemical performance, and environmentally friendly nature. 
It exists in various phases like CoS, CoS2, Co3S4, Co9S8, 
and CoS1.097, respectively. Each phase of cobalt sulfide has 
its own merits. Various studies on CoS2 denote that CoS2 
micro/nanostructures with several structural morphologies 
like octahedrons, hollow sphere, hierarchical mesoporous 
microsphere, ellipsoids, worm-like, nanocomposites, and 
nanocubes, which improve the electrochemical behavior of 
CoS2 for energy storage devices. Many synthesis methods 
like hydrothermal, microwave assisted, solid-phase reaction, 
solvothermal, and ion-exchange reaction were studied so far. 
Kumar et al. prepared CoS electrodes through a facile chem-
ical bath deposition method with various solvent on nickel 
foam [167]. When utilized as electrode material for high-
performance supercapacitor, CoS prepared with ethanol 
solvent exhibits a high specific capacitance of 41.36 F g−1 
at 1.5 A g−1 with excellent cycling permanency and rate per-
formance. Zhang et al. synthesized cobalt disulfide (CoS2) 
nanodendrites through a one-step solvothermal method, 
which delivered a maximum specific capacitance of 311.06 
F g−1 at 1 A g−1 with 80.22% of initial capacitance preserva-
tion after 3000 charge–discharge cycles [168]. Amaresh and 

co-workers fabricated cubic CoS2 nanoparticles based super-
capacitor through single-step microwave-mediated method 
[169]. The specific capacitance of phase pure cubic CoS2 
nanoparticles was found to be 52 F g−1 at 0.7 A g−1 with 
80% initial capacitance retaining even after 10,000 cycles. 
Liu et al. successfully prepared hierarchical cobalt sulfide/
cobalt basic salt nanocomposite using a vapor-phase hydro-
thermal method for the application of supercapacitor [170]. 
It yields a high specific capacitance of 1984 F g−1 at 1 A g−1, 
excellent rate capability of 78.6% capacitance retention, and 
cycle stability of 90.2% of its initial capacitance maintained 
even after 5000 cycles.

Chen et al. prepared Co3S4 nanosheet arrays through 
in situ shape and phase transformation synthesis and used 
as efficient electrode material for high-performance super-
capacitors [171]. It showed a specific capacitance of 1081 
F g−1 at 1.61 A g−1, areal capacitance of 2.69 F. cm−2 and 
2.37 F. cm−2 at 4.12 mA. cm−2 with the primary capaci-
tance holding at 96.2% after 3000 cycles. Aloqayli et al. 
prepared cobalt sulfide (Co9S8) for flexible, durable, and 
high-performance supercapacitors via a facile technique 
[172]. It showed a high specific capacitance of 7358 mF. 
cm−2 with excellent cycle stability after 5000 cycles. Ghosh 
et al. prepared hierarchical Co3S4 on reduced graphene oxide 
hydrogel@Ni foam through the hydrothermal method and 
utilized it as electrode material for the fabrication of the 
supercapacitor. The aqueous asymmetric supercapacitor 
fabricated with the Ni@rGO-Co3S4 electrode displayed a 
specific capacitance of 1369 F g−1 at 1.5 A g−1 and holds 
96.6% of the initial capacitance after 3000 cycles at even 
higher current density of 12 A g−1 [173].

Liu and co-workers for the first time used a one-step 
solvothermal process to create new networked ultralong 
CoS1.097 nanotubes, which they used as an active material 
for supercapacitor applications [174]. It showed a maximum 
specific capacitance of 764 F g−1 at 2 A g−1 and 85% of 
original capacitance retaining after 500 cycles. Cao et al. 
synthesized 2D CoS1.097/N-doped carbon nanocomposite 
through a facile method for the first time [175]. The super-
capacitor developed with CoS1.097/N-doped carbon yields a 
high specific capacitance of 360.1 F g−1 at 1.5 A g−1 with 
high-rate capability and recollects 56.8% of its initial capaci-
tance at a current density of 1.5 A g−1. Chang et al. utilized 
a facile synthesis for the preparation of Co9S8/Ni3S2 double-
size nanoparticles decorated on rGO [176]. The supercapaci-
tor was assembled with Co9S8/Ni3S2/rGO-based electrode 
material, which exhibits a maximum specific capacitance of 
1929.1 F g−1 at 1 A g−1 with 92.8% of retained capacitance 
after 1000 cycles at a higher current density of 10 A g−1. Zhu 
et al. prepared hexagonal prism-like hierarchical Co9S8@
Ni(OH)2 core–shell nanotubes on carbon fibers through elec-
trodeposition process [177]. The high-performance superca-
pacitor fabricated with Co9S8@Ni(OH)2 electrode possesses 
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Fig. 13   Electrochemical performance of various copper chalcogenides and its composites, images are reproduced with permission from ref. 
[124] and [150] under Copyright © 2016 Elsevier B.V
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a high specific capacitance of 149.44 mAh/g at 1 A g−1 with 
initial capacitance engaged at 97.3% after 5000 cycles. Han 
et al. designed a supercapacitor based on a porous Co9S8 
nanosheet array on nickel foam through a facile synthesis 
[178]. It exhibits a good electrochemical performance with 
a specific capacitance of 1098.8 F g−1 at 0.5 A g−1 and holds 
87.4% of its initial capacitance of the first cycle even after 
1000 cycles and has a good rate performance of 54.6% at 
10 A g−1.

Cobalt selenide (CoSe) has semiconducting nature with a 
lower optical band gap. Among Co-based compounds, CoSe 
has potentially outstanding electrical conductivity owing to 
its metallic property of Se. Also, compared with the sulfide 
and oxides, selenium possesses lower electronegativity with 
a larger ionic radius. The electron in the outermost orbital 
of cobalt has a weak attraction with Se; hence, the weakly 
bound electrons offer electroactive reaction sites for redox 
reaction and thereby enhance the overall kinetics of the elec-
trochemical reaction. Additionally, CoSe2 has been proved 
to possess excellent electrochemical activity and studied to 
be a negative electrode for supercapacitor. Consequently, it 
is expected that CoSe2 could be used as positive material for 
supercapacitor application. However, the study on CoSe2 for 
SC positive electrode is worth exploring and rarely reported. 
Chen et al. synthesized bifunctional bamboo-like CoSe2 

arrays through thermal annealing technique for high-per-
formance supercapacitor [179]. It obtained a specific capaci-
tance of 544.6 F g−1 at 1 mA. cm−2. The fabricated ACS 
based on the CoSe2 electrode possesses an energy and power 
density of 20.2 Wh kg−1 and 144.1 W kg−1 at 10 mA. cm−2. 
Bose et  al. prepared Co3Se4 nanosheets embedded on 
N-CNT as an electrode active material for supercapacitor 
through pyrolysis and solvothermal method, which exhibits 
a specific capacitance of 114 F g−1 at 2 mV s−1 with 96% of 
its initial capacitance obtained even after 5000 cycles [180]. 
Peng and co-workers, using a straightforward low-tempera-
ture solvothermal technique, created an asymmetric super-
capacitor constructed on nanosheets of cobalt selenide that 
resemble petal-like morphology [181]. It yields an energy 
and power density of 21.1 Wh kg−1 and 400 W kg−1, and 
after 5000 cycles, the initial capacitance retained at 93.8%.

Kirubasankar et al. hydrothermally prepared in situ grown 
CoSe onto graphene nanosheets as electrode material for 
ASC [182]. The CoSe-G nanohybrid electrode presented a 
high specific capacitance of 1037 F g−1 at 5 mV s−1. The 
asymmetric supercapacitor fabricated with the CoSe-G 
electrode possesses an energy and power density of 45.5 
Wh kg−1 and 1.1 kW kg−1 and recollects 81% of its ini-
tial capacitance after 5000 cycles. Zhang et al. successfully 
prepared ASC based on porous cobalt selenide thin films 

Table 3   Summary of copper chalcogenide–based electrode materials with various synthesis methods and their supercapacitor performances

Electrode material Method of synthesis Specific capacitance Capacitance retention Ref

3D carbon dot supported on CuS/GO Hydrothermal method 920 F g−1 @ 1 A g−1 90% over 5000 cycles [129]
CuS/nitrogen-doped GN One-step hydrothermal method 379 F g−1 @ 1 A g−1 72.46% over 500 cycles [151]
Fe-doped CuS Hydrothermal method 516.39 F g−1 @ 5 mV s−1 - [152]
CuS/MWCNT Hydrothermal method 2831 F g−1 @ 1 A g−1 90% over 600 cycles [150]
CuS/acetylene black Solvothermal method 2981 F g−1 @ 1 A g−1 92% over 600 cycles [153]
CuS−140 One-step hydrothermal method 1000.2 F g−1 @ 1 A g−1 94.7% over 1000 cycles [154]
CuS/rGO Solvothermal route 2317.8 F g−1 @ 1 A g−1 96.2% over 1200 cycles [155]
CuS nanoparticle Sonochemical method 62.77 F g−1 @ 5 mV s−1 - [156]
CuS hollow microflowers 536.7 F g−1 @ 8 A g−1 83.6% over 20,000 cycles [157]
CuS nanosheets Microwave-assisted method 2535 F g−1 @ 1 A g−1 88% over 10,000 cycles [130]
CuS@PbS Chemical bath deposition 1004.42 F g−1 @ 2.85 A g−1 97.1% after 3000 cycles [158]
g-CuS/Cc Electrodeposition method 4676 mF. cm−2 @ 2 mA. cm−2 89.8% after 10,000 cycles [127]
CuS/rGO Solvothermal method 946 F g−1 @ 10 mV s−1 89% over 5000 cycles [141]
CuS microspheres Ionic liquid precursor method 237 F g−1 @ 0.5A g−1 74% after 3000 cycles [126]
CuS/rGO Solvothermal method 368.3 F g−1 @ 1 A g−1 88.4% after 1000 cycles [159]
3D CuS on the active carbon layer Solvothermal method 247 F g−1 @ 0.5 A g−1 92% after 5000 cycles [160]
CuS spherical cluster Melt spinning method 713 F g−1 @ 1 A g−1 61% after 2000 cycles [161]
EDTA-Cu1.8S Solvothermal method 1050.0 F g−1 @ 1 A g−1 81.5% after 2000 cycles [131]
Ni-doped CuS Hydrothermal method 400 F g−1 @ 5 mV s−1 - [162]
PPy/CuS/BC In situ synthesis 580 F g−1 @ 0.8 mA. cm−2 73% after 300 cycles [163]
CuS@PPy Solvothermal method 427 F g−1 @ 1 A g−1 88% after 1000 cycles [164]
Flower-like CuS Solvothermal method 597 F g−1 @ 1 A g−1 80% after 1000 cycles [165]
CuS/Cu(OH)2 Solvothermal method 845.5 F g−1 @ 1 mA. cm−2 78.6% after 1000 cycles [166]
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(CoSe) through electrodeposition method, which yields a 
specific capacitance of 510 F g−1 at 1 A g−1 and retains 91% 
of its original capacitance over 5000 cycles [183]. Zhao et al. 
synthesized tremelliform Co0.85Se nanosheets through a sim-
ple solvothermal technique and utilized them as an electrode 
active material for supercapacitor [184]. It yields an energy 
and power density of 17.8 Wh kg−1 and 3.57 kW kg−1, and 
after 2000 charge–discharge cycles, the primary capaci-
tance of the material remains 93%. Zhang et al. employed 
self-templated technique to fabricate a high-performance 
supercapacitor based on N-doped CoSe2/C double-shelled 
dodecahedral [185]. It exhibits a specific capacitance of 658 
F g−1 at 2 A g−1 and retains 62.6% of its initial capacitance 
after 2000 charge–discharge cycles.

Due to good thermal, electrical, and magnetic properties, 
cobalt telluride (CoTe) has received much attention in the 
field of electrocatalysis, solar cells, photocatalysis, batter-
ies, biosensors, and water splitting. The nanostructures CoTe 
have revealed several applications, especially in energy gen-
eration and storage. For the preparation of two-dimensional 
CoTe-based material, high temperature and reducing atmos-
phere are required, which makes it difficult and expensive 
for the large-scale production and fabrication of supercapaci-
tors. Hence, for the first time, Manikandan et al. synthesized 
cobalt telluride through a hydrothermal route and used it as 
electrode material for the fabrication of SC [186]. It showed 
a high specific capacitance of 170 C/g at 0.5 A g−1. The fab-
ricated CoTe-based supercapacitor displayed an energy and 
power density of 40.7 Wh kg−1 and 800 W kg−1 at 1 A g−1 
with capacitance holding at 85% over 10,000 cycles. Xiao 
et al. successfully synthesized highly dispersed CoTe electro 
through a one-step solvothermal route [187]. The synthe-
sized regular CoTe nanowire electrode material exhibits a 
specific capacitance of 643.6 F g−1 at 1 A g−1 with 76.9% 
retention of its initial capacitance after 5000 cycles. The 
asymmetric supercapacitor-based CoTe nanowire displayed 
an energy and power density of 32.9 Wh kg−1 and 800.27 
W kg−1 at 1 A g−1, and after 5000 charge–discharge, it exhib-
its 90.5% of capacitance retention, showing good cycle per-
formance. Mao et al. prepared CoTe2 nanoflowers through a 
facile solvothermal method for supercapacitor applications 
[188]. The electrochemical performance of CoTe2-based 
supercapacitor exhibits a high specific capacitance of 460 
F g−1 at 1.5 A g−1 with 91% of its initial capacitance hold-
ing over 5000 cycles. Bhat and co-workers prepared CoTe2 
nanomaterial via the anion-exchange reaction method and 
utilized as electrode material for the application of super-
capacitor, stating an electrochemical capacitance of 360 F 
g−1. Ye et al. improved the supercapacitor performance with 
CoTe//AC electrode material through a facile hydrothermal 
route [189]. It displayed a maximum specific capacitance of 
622.8 F g−1 at 1 A g−1. The summary of various methods 

for the synthesis of cobalt chalcogenides based electrodes 
and their supercapacitor performances are given in Table 4.

4.9.5 � Nickel chalcogenides

Among the family of transition metal sulfides, NiS-based 
material earned much attention owing to its low cost, sim-
ple fabrication, high electrical conductivity, and low tox-
icity nature. It exists in various stoichiometric forms and 
thermodynamically stable crystal structures like NiS, NiS2, 
Ni3S2, Ni3S4, Ni6S5, Ni7S6, and Ni9Se8. Till now, many stud-
ies reported the use of nickel sulfide–based supercapacitor. 
But, the practical applications of nickel sulfides are hesi-
tated because of their poor cycling stability and rate perfor-
mance. To enhance the performance, designing, fabricating 
hierarchical nanostructures, compositing pseudocapaci-
tive materials, and preparing materials directly on the cur-
rent collectors are the main strategies. Du et al. prepared 
nanosheet-assembled hollow micro- and nanostructure NiS 
with different shapes like ellipsoid shaped, cube shaped, 
and capsule shaped through various morphological α-Fe2O3 
templates [235]. Among these, the capsule-shaped NiS-
based electrode yields a maximum specific capacitance of 
1159 F g−1 at 2 A g−1 current density. The assembled ASC 
device with capsule-shaped NiS//rGO@Fe3O4 exhibits high 
energy and power density of 43.7 Wh kg−1 and 664 W kg−1 
with 83.3% of initial capacitance retention even after 5000 
charge–discharge cycles. Gaikar et al. worked on the growth 
of interconnected nanorods and nanoplates of NiS on the 
Ti substrate via a simple chemical bath deposition method 
and used it as electrode material for SCs [236]. It yields 
a high specific capacitance of 788 F g−1 at 1 mA.  cm−2 
current density with a better rate capability of 640 F g−1 
at 50 mA. cm−2, and 98% of the initial capacitance was 
retained after 1000 cycles. The assembled NiS electrode-
based supercapacitor exhibits an energy and power density 
of 27.4 Wh kg−1 and 3.05 kW kg−1, respectively. Fu et al. 
synthesized a novel honeycomb-like Ni3S2 nanosheet array 
electrode through a facile synthesis for supercapacitor appli-
cations [237]. It displayed a high specific capacity of 151.2 
mAh/g at 3 A g−1 with excellent cycling stability and rate 
performance. Akbarzadeh et al. reported the electrochemical 
performance of NiS2 nanocubes prepared by using a facile 
solvothermal method for high-performance supercapacitor 
[238]. It yields a high specific capacitance of 2077 F g−1 
at a current density of 0.65 A g−1 with excellent cycling 
stability and rate performance. Gou et al. synthesized a hol-
low sphere of NiS2 by employing a two-step hydrothermal 
method and castoff as electrode material for the supercapaci-
tor [239]. It achieves a high specific capacitance of 1382.0 
F g−1 at 1 A g−1 and 506.1 F g−1 at 20 A g−1 of current 
density. It retained the specific capacitance of 451.1 F g−1 
after 5000 charge–discharge cycles at 10 A g−1. For the first 
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Table 4   Summary of cobalt chalcogenide–based electrode materials with various synthesis methods and their supercapacitor performances

Electrode material for supercapaci-
tor

Method of synthesis Specific capacitance Capacitance retention Reference

Mesoporous Co0.85Se nanosheets on 
Ni foam

One-step hydrothermal method 1378 F g−1 @ 1 A g−1 95.5% after 1000 cycles [190]

Co0.85Se nanosheet Microwave-assisted method 1580 F g−1 @ 1 A g−1 87% after 10,000 cycles [191]
CoSe2 nanoarray Selenization reaction 759.5 F g−1 @ 

1 mA. cm−2
94.5% after 5000 cycles [192]

Bundle-like Co0.85Se nanotube on 
Ni foam

Ion-exchange reaction 1394 F g−1 @ 4 A g−1 84.2% after 2000 cycles [193]

Co0.85Se nanosheets on Ni foam One-step hydrothermal method 1528 F g−1 @ 1 A g−1 92% after 5000 cycles [194]
Ultrathin CoSe nanosheet Hydrothermal synthesis 70.6 mAh/g @ 1 A g−1 95.4% after 20,000 cycles [195]
CoS nanowires Hydrothermal method 508 F g−1 @ 2 mA. cm−2 81.2% after 500 cycles [196]
CoS/CNT composite Annealing method 2140 F g−1 @ 10 mV s−1 91% after 1500 cycles [197]
2D CoSx Sulfidation process 863 F g−1 @ 1 A g−1 64.7% after 10,000 cycles [198]
Cobalt sulfide Hydrangea macro-

phylla nanostructure on Ni foam
One-pot method 324.17 F g−1 @ 10 mV s−1 - [199]

CoS/CNT Hydrothermal process 804 F g−1 @ 0.5 A g−1 93.4% after 1000 cycles [200]
CoSx-NSA on Ni foam Chemical bath deposition 47 F g−1 @ 10 mV s−1 84% after 3000 cycles [201]
FG-CoS nanocomposite Simple approach 1072 F g−1 @ 1 mV s−1 117% after 1000 cycles [202]
Co3S4-NG nanocomposite Chemical route 2427 F g−1 @ 2 mV s−1 98.7% after 800 cycles [203]
CoS-NP/CoS-NS DSNB Annealing method 980 F g−1 @ 1 A g−1 88% after 10,000 cycles [204]
2D CoS nanosheet Hydrothermal method 1314 F g−1 @ 3 A g−1 91.7% after 500 cycles [205]
CoS2 nanocrystals Modified molten salt synthesis 654 F g−1 @ 0.5 A g−1 72% after 600 cycles [206]
CoS nanocage Facile route 1475 F g @ 1 A g−1 88.2% after 1000 cycles [207]
CoS/g-C3N4 Solvothermal method 668 F g−1 @ 2 A g−1 100% after 5000 cycles [208]
Nanocrystalline cobalt sulfide Chemical bath deposition 252.39 F g−1 @ 5 mV s−1 98.9% after 1000 cycles [209]
Cubic Co3S4 Hydrothermal method 505.88 F g−1 @ 2 mV s−1 74% after 1000 cycles [210]
Co9S8/NF Atomic layer deposition 1645 F g−1 @ 3 A g−1 80% after 1500 cycles [211]
Co9S8 particles Mechanical alloying method 55 F g−1 @ 0.5 A g−1 100% after 1500 cycles [212]
Flower-like Co1-xS Solution-based route 674 F g−1 @ 3 A g−1 72% after 1000 cycles [213]
Co9S8@C Chemical route 99.8 F g−1 @ 1 A g−1 86% after 10,000 cycles [214]
CoS-0.4/MMO/rGO/NF Electrodeposition method 3074.5 F g−1 @ 1 A g−1 87% after 5000 cycles [215]
CoS nanosheet Electrochemical route 1471 F g−1 @ 4 A g−1 100% after 1000 cycles [216]
Co9S8/3D-G Glucose-assisted hydrothermal 

method
1721 F g−1 @ 16 A g−1 86% after 1000 cycles [217]

CoS/rGO One-step approach 550 F g−1 @ 1 A g−1 95% after 5000 cycles [218]
Flower-like CoS Microwave-assisted method 586 F g−1 @ 1 A g−1 91% after 1000 cycles [219]
CoSx/MWCNT Hydrothermal method 1324 F g−1 @ 10 A g−1 87% after 2000 cycles [220]
3D CoS/graphene hydrogel One-step hydrothermal route 435.7 F g−1 @ 0.5 A g−1 82.3% after 3000 cycles [221]
rGO/CNT/Co3S4 One-step hydrothermal method 977 F g−1 @ 1 A g−1 63% after 3000 cycles [222]
Co3S4/rGO hybrid Two-step hydrothermal method 2314 F g−1 @ 2 mV s−1 92.6% after 1000 cycles [223]
PPy/CoS/BC In situ method 614 F g−1 @ 

0.8 mA. cm−2
62.4% after 300 cycles [163]

Co9S8 nanotube/Ni foam Two-step hydrothermal method 1775 F g−1 @ 4 A g−1 91.4% after 2000 cycles [224]
Porous Co9S8 Two-step hydrothermal method 1056 F g−1 @ 5 mV s−1 90% after 5000 cycles [225]
T-NT/CoS Electrochemical route 400 F g−1 @ 5 mA. cm−2 80% after 1000 cycles [226]
CoS2 nanowire Direct method 828.2 F g−1 @ 10 mV s−1 97.5% after 4250 cycles [227]
3D CoS/graphene Two-step electrodeposited method 3785 F g−1 @ 1 A g−1 70% after 10,000 cycles [228]
CoS/MoS2/CC Microwave-assisted method 406 F g−1 @ 10 mA. cm−2 95.27% after 10,000 cycles [229]
Dumbbell-shaped CoS Solvothermal method 310 F g−1 @ 5 A g−1 95% after 5000 cycles [230]
Mo-doped CoS HNC Dissolution-regrowth process 781.0 F g−1 @ 0.5 A g−1 88.0% after 10,000 cycles [231]
3D flower-like Co9S8 Microwave synthesis 522 F g−1 @ 0.5 A g−1 97.7% after 1000 cycles [232]
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time, Li et al. successfully prepared Ni7S6 hollow spheres 
with mesoporous shells by a facile hydrothermal method and 
employed as an electrode material for supercapacitor [240]. 
It exhibits a high specific capacitance of 2283.2 F g−1 at a 
current density of 1 A g−1 with 97% of capacitance retention 
after 1000 cycles.

Recently, a combination of various synthesis methods 
appears to be a significant methodology to prepare nano-
phase materials with different shapes, sizes, etc. Using this 
perception, Nandhini et al. used the combination of micro-
wave and hydrothermal methods for the preparation of 
NiS nanostructures and investigated their electrochemical 
performance for the fabrication of supercapacitors [241]. 
The result displayed that the NiS-based electrode exhibits a 
specific capacitance of 964 F g−1 at 1 A g−1 current density 
with undiminished capacitance retention after 2000 cycles. 
Cheng et al. studied a facile electrode fabricated using ion 
implantation and hydrothermal sulfurization method for the 
synthesis of spicules-like Ni3S2 shell grown on Mo nanopar-
ticle-doped Ni foam, which displayed a special hierarchical 
structure [242]. It employed as electrode material for the 
application of supercapacitor showing a specific capacitance 
of 361 C/g at 1 mA. cm−2, and 168% of original capaci-
tance was obtained after 2000 cycles at a current density of 
20 mA. cm−2.

Compared with a single component, sulfide, the compos-
ite of binary metal sulfides, can provide rich active sites for 
the redox reaction and thereby increase the performance of 
the electrochemical reaction. Chang et al. prepared the com-
posite of Ni3S2 and Co9S8 NPs decorated on rGO through 
a facile synthesis and utilized as electrode material for a 
high-performance supercapacitor. It showed a high spe-
cific capacitance of 1929 F g−1 at 1 A g−1 of current den-
sity which is much higher than that of Co-Ni3Se2 (1075.5 
F g−1)-based electrode. It exhibits a high-rate performance 
of 1669.2 F g−1 at 20 A g−1 with initial capacitance reten-
tion of 92.8% after 1000 cycles. Also, Gao et al. prepared 
novel amorphous NixSy@CoS double-shelled polyhedral 
nanocages through a simple facile process for the applica-
tion of supercapacitor [243]. At a current density of 2 A 
g−1, it exhibits a remarkably high specific capacitance of 
2091 F g−1 with long-term cycle stability and excellent rate 
performance. Ghosh et al. prepared hierarchical Ni3S4 on 
reduced graphene oxide hydrogel@Ni foam through the 
hydrothermal method and utilized as electrode material for 

the fabrication of supercapacitor [173]. The aqueous asym-
metric supercapacitor fabricated with the Ni@rGO-Ni3S4 
electrode displayed a specific capacitance of 987.9 F g−1 at 
1.5 A g−1 and retains 97.9% of primary capacitance after 
3000 cycles at a current density of 12 A g−1. Chen et al. 
fabricated a high-performance supercapacitor with intercon-
nected 2D/3D NiS/Ni3S4 composite using a one-pot hydro-
thermal method [244]. The 2D/3D/NiS/Ni3S4 composite at 
a current density of 1 A g−1 exhibits a maximum specific 
capacitance 1796 F g−1 with an original capacitance hold-
ing at 80.5% after 1000 charge–discharge cycles. Li et al. 
prepared 3D Ni9S8 nanorods embedded in oxygen incorpo-
rated MoS2 nanosheets on carbon cloth as an efficient elec-
trode material for supercapacitor [245]. It exhibits a high 
specific capacitance of 907 F g−1 at 2 A g−1 with excellent 
cycling stability after 1200 cycles owing to its unique mutual 
embedding 3D nanostructure [245].

As we know, nickel and selenium have the same elec-
tronic configuration and nearby electronegative value 
(Ni = 1.9, Se = 2.4). Nickel selenide can occur in various 
compositions like NiSe, Ni0.85Se, NiSe2, and Ni3Se2 at room 
temperature. The intrinsic metallization of nickel selenide 
provides high electrical conductivity, and hence, it acts as 
an ideal electrode material. Gu et al. prepared a novel NiSe2 
nanoarray supported on nickel foam by using in situ hydro-
thermal methods and used as an efficient electrode material 
for flexible hybrid supercapacitor [246]. The electrochemical 
behavior of NiSe2 nanoarray-based electrode exhibits a high 
specific capacitance (262 mAh/g) with an energy density of 
33 Wh kg−1 and cycle retention of 90.3% of its initial capaci-
tance over 5000 charge–discharge cycles. Li et al. synthe-
sized nickel selenide thin films with different phases through 
a facile electrodeposition technique and utilized as electrode 
material for the fabrication of asymmetric supercapacitor 
[247]. The result obtained shows that the specific capaci-
tance of Ni3Se2 and NiSe was found to be 581.1 F g−1 at 1 A 
g−1 and 1644.7 F g−1 at 2 A g−1 current density, respectively. 
These values are much comparable to those of transition 
metal oxides and higher than the carbonaceous materials. 
The cycle stability performance of Ni3Se2 and NiSe thin 
films is 90.1% and 75.0% of initial capacitance have been 
achieved even after 10,000 cycles. The ASC device based on 
the NiSe//AC device attained an energy and power density 
of 0.36 mWh cm-3 and 33.35 mW cm-3, respectively. Yu 
et al. prepared a network of porous ultrathin NiSe nanosheets 

Table 4   (continued)

Electrode material for supercapaci-
tor

Method of synthesis Specific capacitance Capacitance retention Reference

Co9S8/rGO/Ni3S2 Hydrothermal method 2611.9 F g−1 @ 3.9 A g−1 91.7% after 1000 cycles [233]
PB/PBA-derived Co0.85Se nanof-

rameworks
Precipitation method 40.8 mAh/g @ 1 A g−1 89% after 3000 cycles [234]
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supported on Ni foam for the fabrication of a high-perfor-
mance hybrid supercapacitor [248]. The inherent nature of 
NiSe attained the highest specific capacity of 443 mAh/g at a 
current density 3 A g−1. The fabricated NiSe nanosheet net-
work/porous carbon-based hybrid supercapacitor achieved 
a high energy and power density of 66.6 Wh kg−1 and 425 
W kg−1 with good rate performance and cycling stability. Du 
et al. prepared honeycomb-like metallic Ni0.85Se nanosheet 
through a one-step hydrothermal approach [249]. The spe-
cific capacitance of Ni0.85Se was found to be 3105 F g−1 at 1 
A g−1 with capacitance retention of 90.1% after 5000 cycles.

Very recently, Eu et al. studied the electrochemical per-
formance of Ni3Se2 grown on Ni foam through a simple 
one-step hydrothermal method with different morphologies 
like irregular film, nanowire array, and microspheres [250]. 
The result displayed that the electrode of Ni3Se2@Ni with 
irregular film, nanowire array, and microsphere exhibits high 
specific capacitance of 504 F g−1, 592 F g−1, and 816 F 
g−1 at a current density of 10 mA. cm−2. Among different 
morphologies, the Ni3Se2@Ni electrode with microsphere 
morphology exhibits excellent electrochemical performance 
for the supercapacitor application and retains 85.5% of its 
initial capacitance after 1000 cycles.

To further enhance the electrochemical performance of 
a selenide-based electrode material, only vital strategy is to 
dope using pseudocapacitive metal ion, which may lead to 
a greater abundance in the redox reaction and thereby raise 
the specific capacitance and improve the electrochemical 
performances owing to the advantage of doped metal ions 
and the synergistic effect of host ion and the doped metal 
ions. Also, it provides a free diffusion path for the fast trans-
portation of ions and facile ion accessibility to storage sites. 
Gu et al. hydrothermally prepared Co-doped NiSe2 nanowire 
for the fabrication of high performance of asymmetric super-
capacitor [251]. The Co@NiSe2-based electrode material 
delivers a high specific capacitance of 3167.6 F g−1 at 1 A 
g−1 current density. The asymmetric supercapacitor based 
on the Co@NiSe2 electrode attained an energy and power 
density of 50.0 Wh kg−1 and 779.0 W kg−1 with excellent 
rate performance and cycle stability. Arul et al. fabricated 
supercapacitor device based on NiSe2/Ni(OH)2 nanocom-
posite electrode through a facile hydrothermal method fol-
lowed by ultrasonication process [252]. It attained a high 
specific capacitance of 2212 F g−1 at 2 mA. cm−2, which 
is higher than the pure NiSe2 (326 F g−1) at the same cur-
rent density with a capacitance retention of 95% over 5000 
cycles. Gu et al. successfully prepared nitrogen-doped rGO 
with NiSe2 nanoparticles for a high-performance superca-
pacitor via a two-step process with a combination of the 
hydrothermal and solvothermal methods [253]. At a cur-
rent density of 1 A g−1, the as-prepared N-rGO/NiSe2 elec-
trode displayed a high specific capacitance of 2451.4 F g−1. 
The assembled N-rGO/NiSe2 electrode-based ASC device 

exhibits an energy density of 40.5 Wh kg−1 at a power den-
sity of 841.5 W kg−1 with good cycling stability and rate 
performance. Jiang et al. used hydrothermally synthesized 
Ni3Se2 nanosheets grown on Ni foam as electrode material 
for supercapacitor [254]. The as-prepared Ni3Se2/Ni elec-
trode delivered a high specific capacitance of 854 F g−1 at 
a current density of 1 A g−1. The device based on Ni3Se2/
Ni//AC ASC exhibits an energy density of 23.3 Wh kg−1 at 
a power density of 398.1 W kg−1 with initial capacitance 
sustained by 91.11% after 5000 cycles. Subramania et al. 
prepared in situ grown NiSe-G nanohybrid through a hydro-
thermal process and utilized as an electrode material for the 
application of asymmetric supercapacitor [255]. The result 
has shown that the NiSe-G nanohybrid electrode possesses 
a high specific capacitance of 1280 F g−1 at 1 A g−1 with 
98% capacitance retention after 2500 cycles. The fabricated 
NiSe-G electrode-based ASC delivers an energy and power 
density of 50.1 Wh kg−1 and 816 W kg−1, respectively. Peng 
et al. prepared NiSe@MoSe2 nanosheet array through a 
facile one-step hydrothermal method and used as electrode 
material for ASC [256]. The prepared NiSe@MoSe2-based 
electrode delivered a specific capacitance of 223 F g−1 at 1 
A g−1. The fabricated asymmetric supercapacitor maintained 
the initial capacitance by 91.4% even after 5000 cycles and 
also yields an energy and power density of 32.6 Wh kg−1 
and 415 W kg−1.

Owing to the high surface area, smaller ionization energy, 
high mechanical stability, increasing redox-active structures, 
and high electrical conductivity (Te, 2 × 102 S/m), nickel tel-
luride (NiTe) has influenced the applications of energy stor-
age devices. Manikandan et al. have successfully prepared 
NiTe nanorods through the hydrothermal method by using 
CTAB as a surfactant and ascorbic acid as a reducing agent 
[257]. NiTe-based electrode material exhibits a specific 
capacitance of 618 F g−1 at 1 A g−1 of current density and 
retains 75% of its initial capacitance after 5000 charge–dis-
charge cycles. During this process, it exhibits a coulombic 
efficiency of 99% which indicates that NiTe-based electrode 
material has good reversibility for the supercapacitor appli-
cations. Pei Zhou et al. used a facile hydrothermal method 
for the preparation of NiTe rods grown on Ni foam and used 
as positive electrode material for the fabrication of asym-
metric supercapacitors [258]. It delivered a high specific 
capacitance of 804 F g−1 at 1 A g−1 with remarkable cycling 
stability 81% of capacitance retention after 3000 cycles.

Additionally, doping is the vital approach to enhance the 
electrochemical performance of materials, since the crys-
tal structure, electrical behavior, and conductivity of the 
materials could be altered after doping of different metal 
and non-metal ions. Based on this concern, Ye et al. syn-
thesized Co ion-doped NiTe supported on Ni foam through 
a one-step hydrothermal method and utilized as electrode 
material for supercapacitor. The result reveals that the 
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specific capacitance of the NiTe:Co electrode is significantly 
improved, and the highest specific capacitance is 1645.6 F 
g−1 at 1 A g−1 which is higher than the pristine NiTe-based 
electrode (872.7 F g−1). Furthermore, the supercapacitor 
was fabricated with NiTe:Co//AC, which delivers an energy 
density of 36.8 Wh kg−1 than NiTe//AC-based supercapaci-
tor (24.4 Wh kg−1) at same power density. Deshagani et al. 
changed the crystal structure of NiTe by doping selenide 
by using a facile hydrothermal method [259]. The prepared 
material exhibits a specific capacitance of 943 F g−1 and 
compared with the NiTe-based electrode shows 1.5 times. Ye 
et al. used a one-step hydrothermal method for the prepara-
tion of Se-doped NiTe electrode materials for SC [260]. The 
result shows that the Se-doped NiTe electrode exhibits a high 
specific capacitance of 998.2 F g−1 at 1 A g−1 which is much 
better than the specific capacitance of NiTe electrode (603.6 
F g−1). Furthermore, the ASC based on Se-doped NiTe elec-
trode delivered a superior energy and power density of 42.7 
Wh kg−1 and 800.6 W kg−1 at 1 A g−1 with remarkable 
cycling stability of 76.4% retention after 10,000 cycles.

Also, Ye et al. fabricated a high-performance asymmetric 
supercapacitor based on NiTe/NiSe composites in situ grown 
on Ni foam [261]. The NiTe/NiSe-based electrode delivered 
a high specific capacitance of 1868 F g−1 at 1 A g−1. The 
fabricated ASC based on NiTe/NiSe//AC device showed a 
high energy and power density of 33.7 Wh kg−1 and 800 
W kg−1 with good cycling stability of 86.2% of its initial 
capacitance after 5000 cycles at 2 A g−1. The summary of 
various synthesis approaches of nickel chalcogenide–based 
electrode materials and their supercapacitor performances 
are shown in Table 5.

4.9.6 � Molybdenum chalcogenides

Among several pseudocapacitive dichalcogenide materi-
als, nanostructured MoS2 could be employed as the most 
auspicious two-dimensional material for the application of 
supercapacitors. Molybdenum disulfide (MoS2) is the first 
TMDCs used as electrode material in lithium-ion batteries 
since it has high energy and current density, and also, it 
possesses high intrinsic ionic conductivity and high redox 
properties. MoS2 has a two-dimensional layered structure 
like graphene which offers an extended surface area for the 
storage of charges and possesses high theoretical capacity 
than the graphite material. The charge storage in nanostruc-
tured MoS2 happens through the diffusion of electrolyte ions 
into the inter-layer or double-layer charging on the external 
surface. Manuraj et al. fabricated high-performance super-
capacitors with MoS2 nanostructures grown Ni foam sub-
strates through a simple hydrothermal process at various 
times. The nanostructured MoS2 electrode exhibits a specific 
capacitance of 244 F g−1 at 1 mV. s−1 with corresponding 
capacitance retention of 92% after 9000 charge–discharge 

cycles. Choudhary et al. used a direct magnetron sputtering 
method to develop MoS2 thin-film supercapacitor electrodes. 
The 3D MoS2 film delivered a specific capacitance of ~ 330 
F. cm−3 with a retention of 97% of its primary capacitance 
after 5000 cycles [334]. Huang et al. worked on the hydro-
thermal synthesis of MoS2 nanosheets as an electrode for 
a supercapacitor, which displayed a specific capacitance 
of 129.2 F g−1 at 1 A g−1 withholding 85.1% of its initial 
capacitance after 500 cycles [335]. Karade et al. prepared 
ultrathin MoS2 nanoflake electrodes through a chemical 
bath deposition method for the fabrication of high-perfor-
mance supercapacitors [336]. At 5 mV. s−1, the homogene-
ous ultrathin MoS2 nanoflake electrodes achieved a specific 
capacitance of 576 F g−1 at a current density, and after 3000 
cycles, it sustained with the initial capacitance by 82%. Li 
et al. reported the electrochemical performance of transpar-
ent 1 T-MoS2 nanofilm through layer-by-layer self-assembly 
technique for high-performance supercapacitors. It exhibits 
a volumetric capacitance of 220 F cm−3 at 0.04 mA. cm−2 
and obtained 130.6% of the original capacitance after 5000 
cycles [337].

Although MoS2 has many merits, its lower capacitance 
and low cycle life result in lower electrical conductivity. 
To overcome these demerits, doping of TMDCS with car-
bonaceous or any other pseudo-active materials is the only 
known strategy. Gupta et  al. prepared two-dimensional 
MoS2 and activated functionalized CNT hybrid through a 
one-step hydrothermal method and employed as electrode 
material for supercapacitor [338]. At a current density of 
0.5 A g−1, it exhibits a high specific capacitance of 516 F 
g−1 with a respective energy density of 71.76 Wh kg−1. Li 
et al. synthesized vertical MoS2 on rGO nanosheets through 
the hydrothermal method, which delivered a specific capaci-
tance of 331 F g−1 at 0.75 A g−1 with good cycling reten-
tion of 110.7% of its initial capacitance even after 15,000 
cycles [339]. The assembled ASC with the MoS2/rGO elec-
trode achieved an energy density of 29.2 Wh kg−1 and a 
power density of 4517.7 W kg−1. Ali et al. worked on a 
mechanically exfoliated MoS2 sheet coupled with conductive 
PANI as an electrode material for the supercapacitor which 
exhibits a specific capacitance of 510.12 F g−1 at a current 
density of 1 A g−1 with corresponding capacitance reten-
tion of ~ 80% after 2500 cycles [340]. Bai et al. synthesized 
MoS2/rGO/PANI through a facile two-step approach involv-
ing hydrothermal and in situ polymerization method [341]. 
The MoS2/rGO/PANI composites achieved a high specific 
capacitance of 570 F g at a current density of 1 A g−1 with 
corresponding capacitance retention of 78.6% after 500 
cycles. Chanda et al. prepared hierarchical heterostructure 
of MoS2 flake anchored on the TiO2 sphere as an electrode 
for SCs, which achieved a specific capacitance of 152.22 F 
g−1 at 0.1 A g−1 current density [342].
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Table 5   Summary of nickel chalcogenide–based electrode materials with various synthesis methods and their supercapacitor performances

Electrode material for supercapaci-
tor

Method of synthesis Specific capacitance Capacitance retention Ref

NiSe microspheres Facile one-step method 492 F g−1 @ 0.5 A g−1  ~ 99% after 2000 cycles [262]
Ni3S2/MnS composite Hydrothermal method 6.70 mAh/cm2 @ 2 mA. cm−2 96.5% after 1000 cycles [112]
Flower-like Ni0.85Se Two-step hydrothermal method 3.35 F cm−2 @ 4 mA. cm−2 75% after 6500 cycles [263]
Ni0.85Se Hydrothermal method 103.4 F g−1 @ 1 A g−1 90.6% after 10,000 cycles [264]
3D-Ni3Se2@Ni(OH)2 hybrid In situ method 281.5 mAh/g @ 3 mA. cm−2 83.6% after 10,000 cycles [265]
NiSe on Ni foam One-step hydrothermal method 1790 F g−1 @ 5 A g−1 70% after 1000 cycles [266]
Cube-likeNiSe2 Hydrothermal method 1044 F g−1 @ 3 A g−1 87.4% after 20,000 cycles [267]
Ni0.85Se One-step alkali salt method 1354 F g−1 @ 1 A g−1 92.4% after 20,000 cycles [268]
Ni0.85Se One-step solvothermal method 114.6 mAh/g @ 1 A g−1 76% after 5000 cycles [269]
Nanoflower sphere-like Ni0.85Se One-pot mixing solvothermal 

method
1010 F g−1 @ 1 A g−1 82.22% after 3000 cycles [270]

NiSe@Co2(CO3)(OH)2 Two-step soft chemistry approach 9.56 F cm−2 @ 4 mA. cm−2 68.1% after 3000 cycles [271]
Ni0.85Se/P Selenization method 506 C/g @ 1 A g−1 73% after 5000 cycles [272]
NiS/GNS/CNT Hydrothermal method 2377 F g−1 @ 2 mV s−1 68% after 1000 cycles [273]
Nanoporous net-like Ni3S2 thin 

films
One-step pulse-reversal electro-

deposition method
600 F g−1 @ 1 A g−1 84.6% after 2000 cycles [274]

TP-NixSy/rGO composite Hydrothermal process 807 C/g @ 1 A g−1  ~ 72% after 5000 cycles [275]
Uniform NiS2 hollow nanoprisms Facial sacrificial template method 1725 F g @ 5 A g−1 122.9% after 10,000 cycles [276]
Ni3S2/MWCNT composite Glucose-assisted hydrothermal 

method
800 F g−1 @ 3.2 A g−1 90% after 5000 cycles [277]

Ni3S2/NiS@Ni3S4 hybrid One-step hydrothermal method 1031 C/g @ 2 A g−1 90.3% after 3000 cycles [278]
NiS/Ni3S2 hybrid nanosheets One-step solvothermal method 315 μAh. cm−2 @ 1 mA. cm−2 86.7% after 8000 cycles [279]
Ni3S2@NF One-step hydrothermal method 736.64 F g−1 @ 0.8 A g−1 82% after 1000 cycles [280]
Ni3S2@Ni One-step solvothermal method 945.71 F g−1 @ 17.15 A g−1 100% after 2000 cycles [281]
Ni3S2@Co(OH)2 nanowires grown 

on Ni foam
Facile two-step process 2139 F g−1 @ 2 mA. cm−2 93.7% after 3000 cycles [282]

NiS/PEDOT:PSS composite Facile synthesis 750.64 F g−1 @ 1.11 A g−1 91.2% after 3000 cycles [283]
NiS/d-Ti3C2 nanohybrid Solvothermal method 840.4 C/g @ 1 A g−1 64.3% after 10,000 cycles [284]
Hierarchical NiS microspheres Trimethylamine-assisted hydrother-

mal method
606 C/g @ 0.5 A g−1 93% after 2000 cycles [285]

Ni3S2@C/rGO 1023.44 F g−1 @ 5 A g−1 70.1% after 5000 cycles [286]
Ni3S2@rGO@NiAl-LDHs com-

posite
Hydrothermal method 2026 F g−1 @ 1 A g−1 87.7% after 10,000 cycles [287]

Ni3S2@PEDOT Electrodeposition method 1589.3 F g−1 @ 2 A g−1 75.5% after 2000 cycles [288]
Ni3S2-Co9S8/NF One-pot solvothermal method 5.37 F. cm2 at 5 mA. cm−2 80% after 1000 cycles [289]
Ni@rGO-Ni3S2 composite Two-step hydrothermal method 987.8 F g−1 @ 1.5 A g−1 97.9% after 3000 cycles [173]
NiS/Ni3S4 composite Hydrothermal method 194.4 mAh/g @ 2 A g−1 65.8% after 6500 cycles [290]
NiS2/ZnS composite MOF-derived self-sacrificing route 1198 F g−1 @ 1 A g−1 87% after 1000 cycles [291]
Ni3S2 nanorod/nanowire array on 

Ni foam
Post hydrothermal method 4.52 F. cm−2 @ 1.25 mA. cm−2 108.3% after 2000 cycles [292]

Ni3S2@β-NiS One-step solvothermal method 1158 F g−1 @ 2 A g−1 97.4% after 2000 cycles [293]
Nanostructured NiS Alternate dip coating method 1044 F g−1 @ 1 mA. cm−2 53.1% after 1000 cycles [294]
Nanoporous nickel sulfide/rGO Hydrothermal method 1312 F g−1 @ 5 mV. s−1 86% after 500 cycles [295]
Ni3S2/Ni One-pot hydrothermal method 1293 F g−1 @ 5 mA. cm−2 69% after 1000 cycles [296]
Ni3S2 film on Ni foam One-step hydrothermal method 2230 F g−1 @ 5 mA. cm−2 91% after 3000 cycles [297]
NiSx-n//CC One-step hydrothermal method 1340 F g−1 @ 1 A g−1 94.5% after 5000 cycles [298]
α-NiS Phase controlled solvothermal 

method
800 F g−1 @ 0.5 A g−1 81.2% after 2000 cycles [299]

Ni3S4@rGO composite In situ hydrothermal method 1830 F g−1 @ 2 A g−1 91.4% after 10,000 cycles [300]
Ni3S4@MoS2 nanosheets/CFP One-step hydrothermal method 1296 F g−1 @ 1 A g−1 96.2% after 5000 cycles [301]
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Table 5   (continued)

Electrode material for supercapaci-
tor

Method of synthesis Specific capacitance Capacitance retention Ref

3D Ni3S2 on Ni foam One-step hydrothermal method 1370.4 F g−1 @ 2 A g−1 91.4% after 1000 cycles [302]
Ni3S2-Cu1.8S nanosheet In suit ion-exchange method and 

one-pot hydrothermal method
1686 F g−1 @ 1 A g−1 95.39% after 10,000 cycles [303]

NiS/NHCS composite Multistep transformation approach 1150 F g−1 @ 1 A g−1 76% after 4000 cycles [304]
Ni3S2/rGO composite Hydrothermal and pyrolysis method 1315 F g−1 @ 1 A g−1 85.6% after 5000 cycles [305]
3D GNs/Ni3S2 composite Q-CVD technique 652.5 F g−1 @ 1 A g−1 93% after 2000 cycles [306]
Ni3S2 film Solvothermal-assisted sulfuration 

method
3.42 F cm−2 @ 1 mA. cm−2 102% after 4250 cycles [307]

C@Ni3S2@MoS2 nanorods Hydrothermal method 1544 F g−1 @ 2 A g−1 92.8% after 2000 cycles [308]
NiS hollow microsphere with 

mesoporous shell
Hydrothermal method 1848.0 F g−1 @ 1 A g−1 74.3% after 1000 cycles [309]

NiS hexagonal nanoplates Anion-exchange method 1897 F g−1 @ 1 A g−1 100% after 4000 cycles [310]
NiS NPs Microwave-assisted method 845 F g−1 @ 1 A g−1 81.6% after 1000 cycles [311]
Mesoporous NiS hierarchical 

structure
Solvothermal method 11.15 F g @ 0.16 A g−1  ~ 88.57% after 5000 cycles [312]

NiS thin film Chemical bath deposition method 750.6 F g−1 @ 5 mV. s−1 85.3% after 3000 cycles [313]
NiS nanostructure Hydrothermal method 1073.8 F g−1 @ 1.2 A g−1 89% after 1000 cycles [314]
NiS2 nanocubes Microwave-assisted method 695 F g−1 @ 1.25 A g−1 93.4% after 3000 cycles [315]
Graphene-wrapped Ni3S2 nano-

cubes
One-step hydrothermal method 616 C/g @ 1 A g−1 92.7% after 5000 cycles [316]

Ni3S2@polypyrrole/Ni foam Hydrothermal electrodeposition 
method

1.13 F. cm−2 @ 30 mA. cm−2 100.10% after 3000 cycles [317]

NiS hierarchical hollow cubes Anion-exchange reaction 874.5 F g−1 @ 1 A g−1 90.2% after 3000 cycles [318]
Ni3S2/CNT composite Electrodeposition and ion-exchange 

method
1643 F g−1 @ 1 A g−1 91.5% after 2000 cycles [319]

NiS-PbS composite Chemical bath deposition method 125.89 mAh/g @ 2 A g−1 88.97% after 3000 cycles [320]
R-NiS/rGO composite In situ sulfuration transformation 

method
744 C/g @ 1 A g−1 89% after 20,000 cycles [321]

NiS NTs/Ni foam Wet chemistry approach 752.71 μAh. cm−2 @ 
4 mA. cm−2

89.4% after 3000 cycles [322]

N-doped GN/nickel sulfide compos-
ite

Hydrothermal method 1120 F g−1 @ 1 A g−1 82% after 3000 cycles [323]

Square rod-like NiS2 General solution method followed 
by post-annealing technique

1020.2 F g−1 @ 1 A g−1 93.4% after 1000 cycles [324]

NiS/C-dot composite Hydrothermal method 880 F g−1 @ 2 A g−1  ~ 99% after 2000 cycles [325]
3D hemp-activated carbon/Ni3S2 

composite
Electrodeposition method 2797.43 F g−1 @ 1 A g−1 83.4% after 10,000 cycles [326]

Carbon sphere@nickel sulfide Low-temperature water bath 
method

1022 F g−1 @ 1 A g−1  ~ 83% after 4000 cycles [327]

α-NiS NPs embedded carbon NRs Phase-controlled and in situ sulfu-
ration method

1092 F g−1 @ 10 A g−1 100% after 2000 cycles [328]

Cabbage-like α-NiS Solvothermal followed by annealing 
method

235.88 mAh/g @ 1 A g−1 87.1% after 2000 cycles [329]

NiS/GO nanocomposite Hydrothermal method 800 F g−1 @ 1 A g−1 - [330]
Ni3S2@CdS core–shell structure Hydrothermal method 2100 F g−1 @ 2 mA. cm−2 86.7% after 4000 cycles [49]
Ni3S4microflower Hydrothermal method 1797.5 F g−1 @ 0.5 A g−1 93% after 5000 cycles [331]
Co-Ni3S2@CNT/GNF Hydrothermal method 4.1 F. cm−2 @ 1 mA.cm−2 89.8% after 1000 cycles [332]
CuSe-decorated NiSe2 nanocubes Hydrothermal method 376 C/g @ 1 A g−1 91.7% after 10,000 cycles [333]
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Chang et al. synthesized MoS2/PPy nanocomposite via 
hydrothermal approach and employed as an electrode mate-
rial for the application of supercapacitor [343]. The MoS2/
PPy electrode material delivered a specific capacitance of 
307.5 F g−1 which is much higher than the pristine MoS2 
(138.5 F g−1) and polypyrrole (106.3 F g−1) at a current 
density of 1 A g−1 with excellent cycling stability of 96.47% 
after 1000 charge–discharge cycles. For the first time, Chao 
et al. synthesized oxygen-incorporated MoS2/PANI/rGO 
hierarchical nanosheet composite through oxygen incorpo-
ration and polyaniline intercalation method and used it as an 
efficient electrode material for the fabrication of SCs [344]. 
At a current density of 1 A g−1, MoS2/PANI/rGO hierar-
chical nanosheet composite exhibits a specific capacitance 
of 752.0 F g−1 using a three-electrode system. Fan et al. 
reported the electrochemical performance of mesoporous 
MoS2/C composite through a facile hydrothermal method 
and employed it as an electrode for SC. The specific capaci-
tance of MoS2/C composite was found to be 201.4 F g−1 at 
0.2 A g−1 with excellent cycling stability and rate perfor-
mance, which is much higher than that of pristine MoS2 
and carbon [345]. For the first time, Niu et al. synthesized 
Mo2S3@Ni3S2 nanowires on a nickel foam through a simple 
CTAB-assisted hydrothermal method [346]. The Mo2S3@
Ni3S2 nanowire electrode unveils a high specific capaci-
tance of 998.9 F g−1 at 1 A g−1 with outstanding retention 
of 90.55% of its initial capacitance after 650 cycles.

The monolayer MoS2 is known to have two phases, 
namely the trigonal prismatic phase and the octahedral 
phase. The trigonal prismatic phase is labeled as 2H with 
a space group of D3h, while the octahedral phase is labeled 
as 1 T with a space group of Oh. The 2H phase is relatively 
stable but semiconducting and of poor conductivity, while 
the 1 T phase is metastable under room temperature but 
metallic and of better conductivity. Recently, the metallic 
1 T phase was reported to be of great advantage for MoS2 
NS-based supercapacitors. But if the higher conductivity 
of 1 T phase and the higher stability nature of the 2H phase 
can be hybridized in monolayer MoS2, both high charge 
transportation and large specific surface area will be gained 
which are the most beneficial factors for supercapacitors. 
Based on this perspective, Jiang et al. synthesized 1 T-2H 
phase hybridization of monolayer MoS2 through a chemi-
cal exfoliated method. The electrochemical performance of 
1 T-2H monolayer MoS2 was observed to be 366.9 F g−1 
at 0.5 A g−1 withholding the stability at 92.2% of its initial 
capacitance after 1000 cycles [347].

As like graphene, molybdenum chalcogenides, MX 
(where M = Mo, and X = S, Se, and Te), has a layered struc-
ture which arose as one of the most promising candidates 
for the sensor, phototransistors, catalysis, and energy stor-
age devices owing to their distinctive crystal structures and 
diverse material properties. These types of chalcogenide 

materials interact through strong chemical bonds in the 
molecular layers, while the individual layers interact via 
weak Van der Waals force of attraction, materializing a 
graphene-like layered structure. This layered structure is 
favorable for the insertion and extraction of a variety of ions 
in the electrolyte. Among various Mo-based chalcogenides, 
MoSe2 has received much attention in the field of energy 
storage devices. MoSe2 has a layered structure of Se-Mo-Se, 
with a narrow band gap and interlayer spacing of 0.646 nm. 
The interlayer spacing of MoSe2 is much higher than that of 
MoS2 (0.615 nm) and graphite (0.335 nm). Gao et al. pre-
pared a sphere-feature MoSe2 with excellent electrochemical 
activity through a facile hydrothermal method [348]. The 
electrochemical performance of MoSe2 spheres yields a high 
specific capacitance of 243 F g−1 at 0.5 A g−1 and recollects 
90.3% of its initial capacitance over 1000 cycles at a current 
density of 1 A g−1. For the first time, Aziz and co-workers 
synthesized a hierarchical nanostructure of orthorhombic 
Mo9Se11 through colloidal processing and utilized as an 
electrode for the application of asymmetric supercapacitor 
[349]. At a current density of 5 mV. s−1, it yields a specific 
capacitance of ~ 510 F g−1. The cycle life of the Mo9Se11 
electrode retains about 60% of its initial capacitance after 
4000 cycles. Jia et al. used a simple and facile solvothermal 
method for the preparation of a MoSe2 microsphere com-
posed of 2D nanosheets, and at a current density of 1 A g−1, 
it exhibits a specific capacitance of 272 F g−1 [350].

Although MoSe2 has several advantages, the poor 
electrical conductivity of MoSe2 obstructs its electro-
chemical performance and practical application. Hence, a 
frequently employed strategy to further raise the electro-
chemical performance of MoSe2 includes a novel design 
of hybrid nanostructures with carbon-based or any other 
electrically active materials. Balasingam et al. developed 
a new MoSe2/rGO composite nanosheet using a simple 
and straightforward hydrothermal process and used as an 
electrode material for supercapacitor applications [351]. 
The MoSe2/rGO-based electrode delivered a high spe-
cific capacitance of 211 F g−1 at a scan rate of 5 mV. s−1 
and gained 180% of its primary capacitance over 10,000 
cycles. Lately, isoelectronic doping in Mo-based chalco-
genides has received considerable attention attributing to 
the impeding generation of defects and dislocations and 
ease of alloy formation. In this perspective, Bhat et al. 
worked on the preparation of tungsten-doped MoSe2/
graphene through a facile hydrothermal method for the 
supercapacitor. The W-MoSe2/G electrode possesses a 
specific capacitance of 248 F g−1 with capacitance reten-
tion of 102% after 20,000 cycles. Karade et al. prepared 
a 2D cryptomelane-like MoSe2 on MWCNT hybrid film 
through a “dip and dry” method followed by the CVD 
technique. The MoSe2/MWCNT hybrid electrode exhibits 
a specific capacitance of 232 F g−1 at a current density of 
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1.4 A g−1 with an outstanding cyclic stability of 93% after 
1000 cycles [352]. Huang et al. prepared a porous layered 
MoSe2-graphene composite on nickel foam for the appli-
cation of the high performance of supercapacitor [353]. It 
showed a high specific capacitance of 1422 F g−1 at 1 A 
g−1 with retention of 100.7% even after 1500 cycles.

Li et al. synthesized the 3D MoSe2-acetylene black elec-
trode through a facile hydrothermal method [354]. At a cur-
rent density of 1 A g−1, the 3D MoSe2/AB composite shows 
a high specific capacitance of 2020 F g−1 with good cycling 
stability of 107.5% after 1500 cycles. He et al. synthesized 
MoSe2 nanosheets wrapped on carbon aerogel nanospheres 
as an efficient electrode material for supercapacitor which 
showed a specific capacitance of 775.3 C/g with capacitance 
retention of 98% after 1500 cycles at a current density of 1 A 
g−1 [355]. Kirubasankar et al. synthesized a 2D-2D MoSe2/
graphene nanohybrid through a sonochemical method and 
employed as an electrode for supercapacitor [356]. The 
MoSe2/graphene nanohybrid shows a maximum specific 
capacitance of 945 F g−1 at a current density of 1 A g−1. The 
fabricated asymmetric supercapacitor with MoSe2/graphene 
hybrid electrode yields an energy and power density of 26.6 
Wh kg−1 and 0.8 kW kg−1 with better cycling stability of 
88% of its initial capacitance even after 3000 cycles. Also, 
Kirubasankar et al. prepared 2D MoSe2/Ni(OH)2 nanohy-
brid through a one-step hydrothermal method [357]. The 2D 
MoSe2/Ni(OH)2 electrode delivered a high specific capaci-
tance of 1175 F g−1 at 1 A g−1 which is much higher than 
the Ni(OH)2 nanosheets (933 F g−1) under same current den-
sity. The fabricated asymmetric supercapacitor based on 2D 
MoSe2/Ni(OH)2 nanohybrid achieved an energy and power 
density of 43 Wh kg−1 and 8181 W kg−1 with a retention 
of 91.6% of its initial capacitance after 5000 charge–dis-
charge cycles. The summary on various synthesis methods 
of molybdenum-based electrode materials and their super-
capacitor performances are shown in Table 6.

5 � Bimetal chalcogenides and its composites

The combination of two different metals will improve the 
redox chemistry of the electroactive materials and their per-
formance when compared to single-metal sulfides. Binary 
metal chalcogenides and their composites have been studied 
vastly owing to their extensive properties like good electri-
cal conductivity, high catalytic activity, and redox poten-
tial and low electronegativity. But very recently, bimetal 
chalcogenides and its composites showed superior elec-
trochemical performance compared to their corresponding 
counterparts, owing to their multiple oxidation states and 
high redox properties. Cai et al. developed a composite of 
honeycomb-like nickel manganese sulfide nanosheet on car-
bon cloth via a facile two-step approach, which delivers a 

specific capacitance of 205 mAh/g at 2 mA. cm−2 [397]. 
The fabricated supercapacitor exhibits an energy and power 
density of 27.3 Wh kg−1 and 505.2 W kg−1 with retaining 
at 75.3% of its initial capacitance after 6000 cycles. Cao 
et al. used a one-pot approach for the preparation of porous 
nickel-manganese sulfides with tunable compositions [398]. 
The optimized nickel-manganese sulfides employed as an 
electrode exhibits a specific capacitance of 1068 F g−1 at 1 
A g−1 current density. Chen et al. studied the electrochemi-
cal performance of CoxMn3-x sulfides by changing Co/Mn 
ratios through solvothermal techniques [399]. Among vari-
ous compositions, Co2.5Mn0.5 sulfide showed a high specific 
capacitance of 289 C/g at 1 A g−1 with outstanding cycling 
stability of 95.1% after 2000 cycles. Peng et al. reported 
the electrochemical performance of supercapacitor fabri-
cated with heterostructure cobalt manganese sulfide (CMS) 
nanoneedle arrays by a low-temperature hydrothermal 
method [400]. The as-obtained CMS nanoneedles exhibit 
a specific capacity of 0.53 mAh. cm−2 at 2 mA. cm−2 with 
a cycle life of 93.7% of capacitance retaining after 1500 
cycles. Bolagam et al. successfully fabricated the pseudoca-
pacitor based on cobalt ruthenium sulfides through a simple 
hydrothermal method, which exhibits a specific capacitance 
of 75 F g−1 at 1 A g−1 with retention of 81% of its initial 
capacitance after 1000 cycles [401]. Pazhamalai et al. devel-
oped an ASC based on copper tungsten sulfide grown on Ni 
foam binder-free electrodes, which showed an outstanding 
specific capacitance of 2666.6 F g−1 at a current density of 
10 mA. cm−2 [402]. The electrochemical behavior of copper 
tungsten sulfides/Ni/graphene possesses a high energy and 
power density of 48.57 Wh kg−1 and 102 µWh cm−2 with 
better cycle life over 10,000 cycles. Du et al. prepared a 
high-performance hybrid supercapacitor based on nanopo-
rous nickel-copper sulfide/carbon cloth through an anion-
exchange reaction, which delivers a high specific capaci-
tance of 936 F g−1 at 1 A g−1 with better rate performance 
of 76% [403].

Nguyen et al. demonstrated the synthesized procedure 
of the bimetal selenide system of nickel-vanadium selenide 
(NixV3-xSe4) and nickel–iron selenide (NixFe3-xSe4) through 
a facile and simple hydrothermal method followed by sele-
nization for flexible asymmetric supercapacitors (Fig. 14) 
[84]. The prepared NiV2Se4 and NiFe2Se4 electrodes showed 
a specific capacitance of ~ 329 and 261 mAh/g at a current 
density of 1 mA. cm−2 with rate performance of 79.33% 
and 77.78% and excellent cycling stability of 98.6% and 
97.9% after 10,000 cycles, respectively. The fabricated 
flexible ASC based on NiV2Se4//NiFe2Se4 electrodes exhib-
its a high energy and power density of 73.5 Wh kg−1 and 
0.733 kW kg−1 with capacitance retention of 96.6% after 
10,000 cycles (Fig. 15). Deka et al. fabricated a superca-
pacitor based on copper-cobalt selenide nanowire-anchored 
woven carbon fiber, which showed an energy density of 
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191.64 mWh kg−1 and power density of 36.65 W kg−1 with 
retention of 77.3% of its initial capacitance [404]. Du et al. 
used a two-step method involving hydrothermal and cation-
exchange process for the preparation of (Ni0.5Co0.5)0.85Se 
nanosheet arrays which possesses high electrochemical prop-
erties. The supercapacitors fabricated with (Ni0.5Co0.5)0.85Se 

possesses an energy and power density of 70.58 Wh kg−1 
and 320.02 W kg−1 with 91.88% capacitance retention after 
8000 charge–discharge cycles.

Guo et al. used different ratios of Ni and Co for preparing 
a series of ternary materials through the co-exchange method 
and fabricated a supercapacitor based on Ni@Ni0.8Co0.2Se 

Table 6   Summary of molybdenum chalcogenide–based electrode materials with various synthesis methods and their supercapacitor perfor-
mances

Electrode material for supercapaci-
tor

Method of synthesis Specific capacitance Capacitance retention Ref

MoSe2/Ni Electrochemical deposition method 548 mAh/kg @ 5 mV s−1 80% after 1000 cycles [358]
MoSe2@CN Hydrothermal method 101.3 mF.cm−2 @ 5 mV. cm−2 80% after 10,000 cycles [359]
MoSe2 NFs//MoSe2NRs Hydrothermal method 133 F g−1 @ 2 A g−1 92% after 2000 cycles [360]
2H-MoSe2 nanosheets Hydrothermal method 25.31 F g−1 @ 5 mV s−1 87% after 10,000 cycles [361]
MoSe2/rGO One-pot hydrothermal method 814.4 F g−1 @ 1 A g−1 81.7% after 5000 cycles [362]
MoS2/NPG composite One-pot hydrothermal method 588 F g−1 @ 1 A g−1 91.67% after 5000 cycles [363]
Mn incorporated MoS2 nanoflowers One-step hydrothermal method 430 F g−1 @ 10 A g−1 77% after 5000 cycles [364]
MoS2/graphene Electrospinning process 334 F g−1 @ 0.5 A g−1 83.8% after 5000 cycles [365]
Few-layered MoS2 Solvothermal method 330.8 F g−1 @ 2 A g−1 88.8% after 5000 cycles [366]
HGRs/MoS2/MnO2 composite CVD and hydrothermal method 608 F g−1 @ 1 A g−1 89.3% after 2500 cycles [367]
MoS2/PANI/rGO HNSs Hydrothermal method 330.7 F g−1 @ 10 A g−1 81.9% after 40,000 cycles [368]
MoSe2/CNT nanocomposite One-step hydrothermal method 74.05 F g−1 @ 2 A g−1 80.8% after 1000 cycles [369]
MoS2/MWCNT Hydrothermal and in-situ polymeri-

zation method
255.8 F g−1 @ 1 A g−1 91.6% after 1000 cycles [370]

MoS2/N-doped carbon shell Self-polymerization technique 276 F g−1 @ 1 A g−1 90.59% after 6000 cycles [371]
MCMoS2/rGO Microwave heating 265 F g−1 @ 10 mV s−1 92% after 1000 cycles [372]
ACFTs/MoS2 Hydrothermal method 308.5 F g−1 @ 5 mV s−1 97.38% after 6000 cycles [373]
MoS2 nanoflakes Freeze-drying method 0.11 F g−1 @ 500 mV s−1  ~ 40% after 500 cycles [374]
MoS2/3D graphene Hydrothermal method 2182.33 mF.cm−2 @ 1 mA.cm−2 116.83% after 5000 cycles [375]
MoS2/MWCNT Two-step hydrothermal method 452.7 F g−1 @ 1 A g−1 95.8% after 1000 cycles [376]
MoS2/carbon matrix Microwave hydrothermal method 589 F g−1 @ 0.5 A g−1 104% after 2000 cycles [377]
MoS2/Mo Hydrothermal method 192.7 F g−1 @ 1 mA.cm−2 98% after 1000 cycles [378]
MoS2-Co3S4 Solvothermal method 1369 F g−1 @ 1 A g−1 83% after 10,000 cycles [379]
MoS2/rGO@PANI Hydrothermal-polymerized method 1224 F g−1 @ 1 A g−1 82.5% after 3000 cycles [380]
MoS2/CoS2 composite One-step hydrothermal method 490 F g−1 @ 2 mV s−1 93.1% after 1000 cycles [381]
MoS2/NiCo2S4@C HMSs Self-template method 250 mAh/g @ 2 A g−1 90.1% after 10,000 cycles [382]
MoS2@HCS Glucose-assisted one-pot synthesis 458 F g−1 @ 1 A g−1 86% after 1000 cycles [383]
MoS2-rGO-WS2 composite Simple chemical method 365 F g−1 @ 1 A g−1 70% after 3000 cycles [384]
MoS2/Ni3S2 composite One-pot hydrothermal method  ~ 1.033 C/cm2 @ 1 mA. cm−2 62.5% after 10,000 cycles [385]
Carbon-MoS2 composite Co-growth mechanism 1000 F g−1 @ 1 A g−1 93% after 20,000 cycles [386]
MoS2/MoOx Microwave- assisted hydrothermal 230 F g−1 @ 5 mV s−1 128% after 1500 cycles [387]
O-MoS2 microsphere Hydrothermal method 744.2 F g−1 @ 1 A g−1 77.8% after 10,000 cycles [388]
carbon@MoS2/MoO2nanosphere Facile method 569 F g−1 @ 1 A g−1 81% after 5000 cycles [389]
MoS2/Mn3O4 nanostructure Hydrothermal-chemical precipita-

tion method
119.3 F g−1 @ 1 A g−1 69.3% after 2000 cycles [390]

Rambutan-like MoS2/Carbon sphere Two-step hydrothermal method 411 F g−1 @ 1 A g−1 93.2% after 1000 cycles [391]
Flower-like MnP-MoS2 Hydrothermal method 432.3 F g−1 @ 1 A g−1 84.4% after 2000 cycles [392]
Flower-like MoS2/rGO Hydrothermal method 352 F g−1 @ 0.2 A g−1 - [393]
SeMoTe Wet chemical method 1057 F g−1 @ 1 A g−1 97% after 5000 cycles [394]
MoS3−x@3DnCF Hydrothermal method 97.5 mF. cm−2 @ 0.5 mA. cm−2 - [395]
Mn-incoporated MoS2 nanoflowers Hydrothermal method 430 F g−1 @ 1 A g−1 77% after 5000 cycles [396]
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Fig. 14   Schematic representation for the design and fabrication of hierarchical NixV3-xSe4 and NixFe3-xSe4 nanostructures for solid-state ASCs, 
images are reproduced with permission from ref. [84] under Copyright © 2019, American Chemical Society

Fig. 15   Electrochemical performance of the NiV2Se4//NiFe2Se4 ASC 
device, a schematic illustration of the assembled ASC with NiV2Se4 
and NiFe2Se4 electrodes, b CV curves of the flexible ASC at scan 
rates from 10 to 100 mV  s−1, c GCD curves of the flexible ASC at 
current densities from 1 to 50 A g−1, d specific capacity values as a 
function of applied current densities for the flexible ASC, e cycling 

performance of the flexible ASC exemplified at 20  mA.  cm−2 with 
10,000 charge–discharge cycles (the inset shows the first and last ten 
GCD cycles), and f Ragone plot of the flexible ASC as compared 
with the reported literature, images are reproduced with permission 
from ref. [84] under Copyright © 2019, American Chemical Society
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electrode which exhibits high energy and power density 
of 17 Wh kg−1 and 1526.8 W kg−1, respectively [405]. Hu 
et al. designed a series of hierarchical nickel cobalt selenide 
NPs/NSs through a low-temperature selenization method for 
fabricating a high-performance supercapacitor [406]. The 
electrochemical performance of Ni0.67Co0.33Se NPs/NSs 
at a current density of 1 A g−1 exhibited a large specific 
capacitance of 447 C/g and retains 97% of initial capaci-
tance after 2000 cycles. Quan et al. designed a hierarchi-
cal nanostructure of nickel cobalt selenide (Ni0.33Co0.67)Se2 
complex with improved electrochemical performance via 
a facile ion-exchange reaction [407]. The specific capaci-
tance of the optimized complex is observed to be 827.9 F 
g−1 at a current density of 1 A g−1. Wang et al. explored the 
improvement of the electrochemical performance of super-
capacitors by preparing Ni0.6Co0.4Se2 electrode through a 
hydrothermal method [408]. At 1 A g−1, it exhibits a supe-
rior specific capacitance of 606.6 C/g retaining 91.0% of 
initial capacitance after 5000 cycles. Xie et al. investigated 
the electrochemical performance of the NixCo1-xSe2 series 
by fabricating a high-performance asymmetric superca-
pacitor [409]. At 1 A g−1 current density, it exhibits a high 
specific capacitance of 1580 F g. The assembled ASC with 
Ni0.6Co0.4Se2-based electrode exhibits high energy and 
power density of 44.1 Wh kg−1 and 691.3 W kg−1 with long 
cycling stability. Cheng et al. designed a novel core–shell 
structure ZnCo2S4 electrode through a solvothermal method, 
which delivered a specific capacitance of 1045.3 F g−1 at 2 
A g−1 and retains 95.5% of its initial capacitance after 5000 
charge–discharge cycles [410]. Elshahawy et al. prepared 
sulphospinel MnCo2S4 material through a controlled sul-
furization method, which offers an excellent specific capaci-
tance of 938 F g−1 at 20 A g−1 and retains about 95% of its 
capacitance after 5000 cycles [411]. The assembled hybrid 
supercapacitor delivered an energy and power densities of 
43 Wh kg−1 at 0.801 kW kg−1, respectively. Guo et al. used 
a straightforward hydrothermal process to create crystalline 
and amorphous copper-cobalt sulfide, which is then exam-
ined as an electrode material for supercapacitor applica-
tions [412]. Among various samples, the sample CuCo2S4 
prepared at 150 °C attained a highest specific capacitance 
of 515 F g−1 at 1 A g−1 with ~ 93.3% of capacitance reten-
tion over 10,000 cycles. Huang et al. works on tip-welded 
ferric-cobalt sulfide hollow nanoneedles on conductive 
carbon fibers through a two-step sulfidation technique and 
researched as electrode material for supercapacitor [413]. 
It showed a high specific capacitance of 2282 F g−1 at 1 A 
g−1 with 82.3% of capacitance retention after 5000 cycles. 
Ai et al. worked on nanostructured CoNi2S4 with various 
morphologies grown on carbon cloth through a facile precur-
sor transformation method by adjusting the anions in nickel 
and cobalt salts [414]. The as-prepared CoNi2S4 electrodes 
attained a specific capacitance of 2714 F g−1 at a current 

density of 1 A g−1 and retain long-term cycling stability 
and excellent rate capability. Beka et al. used a simple two-
step hydrothermal method for the preparation of coral-like 
CoNi2S2 grown on NF and researched as supercapacitor 
electrode material [415]. The as-obtained sample exhibits 
a high specific capacitance of 2864 F g−1 at 1 A g−1 with 
extraordinary cycling life of ~ 117% over 10,000 continuous 
cycles. Liang et al. designed a novel hierarchical core–shell 
and hollow structure of CoNi2S4 using TEOA-assisted 
hydrothermal method and investigated their electrochemical 
performance for supercapacitor application [416]. The pre-
pared CoNi2S4 nanospheres achieved an ultrahigh specific 
capacitance of 2035 F g−1 at 1 A g−1 with superior cycling 
stability of about 91.3% after 3000 cycles. Anthuvan et al. 
synthesized a rambutan-like cobalt–nickel sulfide (CoNiS4) 
through a one-step hydrothermal method for improving the 
electrochemical performance of supercapacitor [417]. The 
as-synthesized CoNi2S4 sample at 1 A g−1 achieved a spe-
cific capacitance of 1102.22 F g−1 with 75% capacitance 
retention over 3000 cycles.

For the first time, Zhang et al. improved the electrochemi-
cal performance of supercapacitors by synthesizing nickel 
cobalt telluride grown on Ni foam through a simple sol-
vothermal method followed by an ion-exchange reaction 
[418]. The constructed Ni0.33Co0.67Te electrode superca-
pacitor possesses a specific capacity of 131.2 mAh/g at 1 
A g−1 current density with high energy and power density 
of 54.0 Wh kg−1 and 918 W kg−1 and retains about 90% of 
initial capacitance over 5000 cycles. Chandrasekaran et al. 
employed a microwave-assisted approach to synthesize 
nanostructured tin nickel sulfide (SnNi2S4) composite and 
utilized it as an active material for supercapacitors [419]. 
The as-synthesized SnNi2S4 sample reached a high specific 
capacitance of 1483.42 F g−1 at 2 A g−1 with excellent reten-
tion of 97.34% of initial capacitance after 5000 charge–dis-
charge cycles. Balamurugan et al. prepared a hierarchical 
copper-nickel sulfide (Cu1-xNixS) nanosheets for improving 
the performance of asymmetric solid-state supercapacitors 
using an anion-exchange method, which exhibits a high 
specific capacitance of 2672 F g−1 at 2 mA. cm−2 current 
density [420]. The constructed ASC based on Cu1-xNixS 
showed high energy of ~ 94.05 Wh kg−1 at a power den-
sity of 1.09 kW kg−1 with outstanding cycling stability 
of 95.86% after 10,000 charge–discharge cycles. Ke et al. 
designed a high-performance supercapacitor based on a 
porous, hierarchical structured ammonium nickel molyb-
date/nickel sulfide/rGO composite electrode prepared by a 
two-step hydrothermal method [421]. At 1 A g−1, the active 
material achieved a high specific capacitance of 150 mAh/g 
with better rate performance and cycling stability. Elkholy 
et al. reported the electrochemical activity of the ZnMoS4 
electrode-based supercapacitor prepared by a simple solvo-
thermal method [422]. It exhibits a specific capacitance of 
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280 F g−1 at 0.7 A g−1 with 86.79% of capacitance retention 
after 1000 cycles. Sahoo et al. first prepared a binder-free 
electrode material based on copper-molybdenum sulfide 
on Ni foam, which delivered a specific capacitance of 663 
mAh/g with a superior energy density of 23.61 Wh kg−1 and 
long-term cycling stability. Zhang et al. synthesized a novel 
potassium copper selenide nanowire (KCu4Se8) through a 
modified composite-hydroxide mediated (M-CHM) method. 
The synthesized KCu4Se8 NWs with 30 µm of length is stud-
ied for the application of solid-state supercapacitor, and their 
electrochemical performance was tested. It showed a specific 
capacitance of 25.3 F g−1 at 5 mV s−1 with excellent long-
term cycling stability over 5000 cycles [423].

Even though the abovesaid binary TMCs have lots of 
advantages, meager cycling stability, low specific capaci-
tance, low rate capability, etc. have hindered its practical 
applications. Generally, composite materials help to raise 
the performance of electroactive materials. Al Haj et al. syn-
thesized N-doped graphene-encapsulated cobalt iron sulfide 
indicated as Co8FeS8@NG through the in situ hydrother-
mal method and utilized as an efficient electrode material 
for SCs [424]. It exhibits a specific capacitance of ~ 1374 
F g−1 at 2 A g−1 with ~ 96.1% of capacitance retention 
after 10,000 cycles. The fabricated Co8FeS8@NG//FeS@
NG ASC showed an outstanding energy and power densi-
ties of ~ 70.4 Wh kg−1 and 0.598 kW kg−1, respectively. Xu 
et al. demonstrated a facile solid-state synthesis of ultrathin 
Mo0.91W0.09S2 nanosheets/amorphous carbon compos-
ites for supercapacitor applications [425]. The optimized 
Mo0.91W0.09S2/amorphous carbon nanosheets possess a high 
specific capacitance of 432.7 F g−1 at 1 A g−1 with retention 
of 93.8% of its initial capacitance after 500 cycles.

Diggikar et al. studied the performance of silver vana-
dium sulfide/PANI composite prepared by the in situ polym-
erization method for supercapacitor applications [426]. It 
revealed a high specific capacitance of 440 F g−1 which is 
exceeding the pristine PANI (128 F g−1) under the same 
current density. Guo et al. employed a novel strategy for 
preparing a high-quality cobalt copper sulfide NPs anchored 
on N-graphene NSs (Co2CuS4/NG) through a simple solvo-
thermal method [427]. This composite at a current density 
of 1 A g−1 displayed a high specific capacitance of ~ 1005 
F g−1 with 96.3% of capacitance after 5000 cycles. Anna-
malai et al. synthesized a highly exposed NiCo2S4-rGO 
nanoporous through a simple facile technique [428]. The 
prepared NiCo2S4-rGO nanoporous electrode offered a spe-
cific capacitance of 1527 F g at a scan rate of 10 mV s−1. 
The fabricated supercapacitor shows a high energy density 
of 60.9 Wh kg−1 at a power density of 1.4 kW kg−1 with 
excellent cycling stability and rate performance. Bahaa et al. 
proposed to design and prepare a hierarchal copper-cobalt 
sulfide (CuCo2S4) nanosheet arrays from a metal–organic 
framework, which offers an improved electroactive site 

for the diffusion of electrolyte ions [429]. The as-prepared 
CuCo2S4 exhibits a high specific capacity of ~ 409.2 mAh/g 
at 3 mA. cm−2 with ~ 94.2% of cycling stability after 10,000 
cycles. The assembled supercapacitor with CuCo2S4 NS//
Fe2O3/NG electrode exhibits an energy and power densities 
of ~ 89.6 Wh kg−1 and ~ 663 W kg−1, respectively. Han et al. 
investigated the electrochemical activity of ternary metal 
sulfides of manganese cobalt sulfide (MCS) with RGO has 
grown on nickel foam for the application of supercapacitors 
[215]. The prepared electrode exhibits an outstanding spe-
cific capacity of 1356 C/g at 1 A g−1 with long cycle stability 
of 92.9% after 3000 cycles. Li et al. successfully synthe-
sized NiCo2S4 nanosheets on porous graphitic carbon nitride 
(g-C3N4) NSs and employed as electrode material for super-
capacitor [430]. The NiCo2S4/P-g-C3N4 electrode showed a 
high specific capacitance of 506 C/g at 1 A g−1 with 99% 
of cycling stability after 5000 continuous cycles. Du et al. 
studied the superior electrochemical performance of the 
CoNi2S4/graphene nanocomposite electrode prepared by a 
facile physical approach [431]. At a current density of 1 A 
g−1, the constructed CoNi2S4/graphene composite achieved a 
specific capacitance of 2009.1 F g−1 and maintained 755.4 F 
g−1 at 4 A g−1 even after 2000 continuous charge–discharge 
cycles. Lv et al. constructed a high-performance asymmetric 
solid-state supercapacitor based on hierarchical zinc cobalt 
sulfide@nickel sulfide (Zn0.76Co0.24S@Ni3S2) nanosheet 
cores through a simple hydrothermal method followed by 
sulfurization technique. The designed ASC achieved a high 
specific capacitance of 1209 C/g at 2 A g−1 with 94.9% of 
capacitance retention after 5000 cycles. Also, it exhibits an 
energy density of 53.8 Wh kg−1 at a power density of 853 
W kg−1 with excellent rate performance. Li et al. created 3D 
manganese molybdenum sulfide with rGO/NF using a two-
step hydrothermal process and employed it as an electrode 
material for supercapacitor applications [432]. The result 
obtained showed that MMS/rGO/NF composite achieved a 
specific capacitance of 1637.1 C/g at 1 A g−1 with long-term 
cycling stability of 96.5% after 8000 cycles. Sahoo et al. 
synthesized a novel Cu2MoS4 NPs embedded rGO sheets 
through a simple one-pot hydrothermal method [433]. It 
exhibits a specific capacitance of 231.51 F g−1 at 5 mV s−1 
than the pristine Cu2MoS4 (135.78 F g−1) electrode. Sazo-
nov et al. demonstrated the electrochemical performance of 
CoMoS4/Co3V2O8 nanocomposite prepared by a chemical 
precipitation method. It exhibits a specific capacitance of 
584 F g−1 at 0.5 A g−1 with superior cycling stability after 
3000 cycles [434].

Also, morphology and structures are very significant 
to enhance the electrochemical properties of electroactive 
materials and thereby facilitate excellent contact with elec-
trolyte. On this concern, Zhu et al. reported a novel archi-
tecture of sea urchin–like cobalt manganese sulfide NWs 
arrays through a two-step hydrothermal method followed 
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by anion-exchange sulfuration process [435]. It displayed 
a specific capacitance of 502 C/g at current density of 1 A 
g−1 with excellent capacitance maintenance at 107% after 
2000 cycles. An et al. synthesized a coral-like Ni0.9Co1.92Se4 
nanostructural electrode through a two-step solvothermal 
method that exhibits a specific capacitance of 1021.1 F g−1 
at 2 mA. cm−2 with excellent rate capability of 77% over 
2–5 mA. cm−2 and cycling stability of 88.39% after 5000 
cycles [436]. Yang et al. synthesized a highly exposed active 
surface of (NixCo1-x)9Se8 series through a one-step growth 
solid solution reaction for high-performance solid-state 
supercapacitor [437]. The prepared (Ni0.1Co0.9)9Se8 nano-
dendrites delivered a specific capacitance of 3762 F g−1 at 5 
A g−1 and retain 94.8% of its initial capacitance after 5000 
cycles. For the first time, Zhang et al. investigated the for-
mation and electrochemical performance of double-shelled 
zinc cobalt sulfide dodecahedral cages through a sequential 
chemical etching and sulfurization method [438]. The opti-
mized zinc cobalt sulfide showed enhanced electrochemi-
cal performance with an outstanding specific capacitance 
of 1266 F g−1 at 1 A g−1 and retains 91% of the capacitance 
over 10,000 cycles. Yu and Lin studied the morphological 
variation and electrochemical performance of nickel ions 
delivered by Ni foam and nickel salt in the hydrothermal 
route for preparing nickel cobalt sulfide [439]. The as-pre-
pared NCS electrode at a current density of 4 A g−1 exhibits 
a specific capacitance of 2206 F g−1 with a good rate capac-
ity of 1655.8 F g−1 and retains about 94.6% of capacitance 
after 2000 cycles. Nan et al. studied the intrinsic energy 
storage mechanism of low crystallinity NiCo2S4 for superca-
pacitor application, which delivered a high specific capaci-
tance of 666.27 F g−1 at 5 A g−1 and retains about 65.29% 
of its initial capacitance after 10,000 cycles [440]. Talha 
et al. used a one-step facile method for preparing copper-
cobalt sulfide for the application of supercapacitors [441]. 
The copper-cobalt sulfide electrode achieved a high specific 
capacitance of ~ 516 F g−1 even at higher current density of 
10 A g−1 with a rate performance of ~ 72% and retains ~ 66% 
of capacitance after 10,000 cycles. The assembled superca-
pacitor exhibits high energy and power densities of ~ 35.2 
Wh kg−1 and ~ 6.6 kW kg−1, respectively. Chen et al. syn-
thesized hierarchical core–shell NiMoO4@NiCoS nanorods 
grown on Ni foam by two-step method [442]. The well-
designed nanorods exhibit a specific capacitance of 1892 F 
g−1 at 5 mA.cm−2 with a retention of 91.7% capacitance after 
6000 cycles. He et al. studied the improved supercapacitors 
performance by introducing the hierarchical Ni-Co-S@Ni-
W–O core–shell NSAs on nickel foam by a facile three-step 
hydrothermal method [443]. These hybrid nanosheet arrays 
provide a high specific capacitance of 1988 F g−1 at 2 A g−1 
current density, and the constructed supercapacitor using 
this hybrid NSAs offers a high energy and power densi-
ties of 55.1 Wh kg−1 and 799.8 W kg−1, respectively. Tang 

et al. prepared a highly electronic conductive cobalt–nickel 
sulfide dendrite/quasi-spherical nanocomposite through a 
facile hydrothermal method. The constructed Co1.5Ni1.5SS4 
electrode-based supercapacitor at a power density of 103.4 
W kg−1 achieved an energy density of 32.4 Wh kg−1 and 
served with better cyclic stability.

Hussain et  al. prepared rod-like zinc cobalt sulfide 
through a single-step hydrothermal method and used as 
an electrode material for supercapacitor [444]. At a current 
density of 1 A g−1, the ZCS-based electrode exhibits an 
outstanding specific capacitance of 2418 F g−1 and 83% of 
long cycling stability over 10,000 cycles. Ai et al. studied 
the application of a supercapacitor by using a novel 3D 
flower-like CoNi2S4/carbon nanotube composite through a 
simple and facile precursor transformation approach [445]. 
The electrochemical activity of CoNi2S4/carbon nanotubes 
showed a specific capacitance of 2094 F g−1 at 1 A g−1 
with a 72% rate capacity even at 10 A g−1. Wang et al. first 
prepared a novel rhombic dodecahedron ZIF-67-derived 
amorphous CoNi2S4 nanocage structure through a sulfuri-
zation technique and employed as electrode material for 
supercapacitor [446]. The electrochemical performance of 
CoNi2S4 nanocage reached an ultrahigh specific capaci-
tance of 1890 F g at 4 A g−1 with superior capacitance 
retention of 89.9% over 1000 charge–discharge cycles. 
Moreover, the constructed supercapacitor attained out-
standing energy and power density of 35 Wh kg−1 and 
640 W kg−1, respectively. Wang et al. designed a kelp-like 
structured NiCo2S4-C-MoS2 composite electrode-based 
supercapacitor, which achieved a specific capacitance of 
1601 F g−1 at a current density of 0.5 A g−1 [447]. The 
ASC based on this composite exhibits superior energy and 
power densities of 27.7 Wh kg−1 and 400 W kg−1, respec-
tively, with cycling stability of 60% after 1000 cycles.

Due to their relatively high cycle stability and specific 
capacitance, transition metal oxysulfides (TMOS) have been 
considered promising electrode materials for energy stor-
age devices. Liu prepared cobalt–nickel oxysulfide through 
a hydrothermal method, which delivered a specific capaci-
tance of 592 F g−1 at 5 A g−1 current density with retention 
of 81.5% of its initial capacitance after 2000 cycles [448]. In 
another work, Liu synthesized manganese cobalt oxysulfide 
grown on Ni foam via a two-step hydrothermal route that 
parades a specific capacitance of 490 C/g at 2 A g−1 with 
excellent cycling stability of 86.5% after 3000 cycles. Also, 
Liu studied the electrochemical performance of zinc cobalt 
oxysulfide for energy storage applications and revealed a 
specific capacity of 645.5 C/g at 1 A g−1 with capacitance 
retention of 76% after 1000 cycles. Yao et al. used the elec-
trochemical deposition technique for the synthesis of manga-
nese oxysulfide, which exhibits an enhanced specific capaci-
tance of 214 F g−1 at 1 mA. cm−2 with 75.4% of cycling 
stability after 1000 cycles. Based on this works, Asen et al. 
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employed an electrochemical deposition method for the 
preparation of iron vanadium oxysulfide nanostructures 
with different ratios [449]. The iron vanadium oxysulfide 
at 2:1 ratio showed an improved specific capacitance of 217 
F g−1 at 3 A g−1 with 92% of capacitance retention after 
4000 cycles. The summary of bimetal chalcogenide-based 
electrode materials and their supercapacitor performances 
are shown in Table 7.

6 � Trimetallic chalcogenides and its 
composites

Compared to monometallic (NiS, CoS, FeS, etc.) and 
bimetallic sulfides (nickel cobalt, nickel manganese, etc.), 
the electrochemical influences of cobalt, nickel, manga-
nese, and ions in the trimetallic sulfides delivered rich 
redox reactions resulting in outstanding specific capaci-
tance. Generally, Co, Ni, and Mn-based supercapacitors 
displayed a high specific capacitance, energy density, and 
power density at low current density. Also, it is reported 
that electrodes of mixed transition metals offer superior 
electrochemical performance than single TMSs. Thus, the 
coupling of three metal species could render the mixed 
TMO/TMSs and will surely increase the redox reaction 
with high electrical conductivity, which is favorable for 
the application of energy storage devices. Wei et al. pre-
pared a yolk-shell hollow sphere of nickel cobalt man-
ganese sulfide via a self-templating strategy, which pos-
sesses a high specific capacitance of 1360 F g−1 at a 
current density of 1 A g−1 [524]. The fabricated nickel 
cobalt manganese sulfide supercapacitor device showed 
an energy and power densities of 49.8 Wh kg−1 and 1700 
W kg−1, respectively, with only a 1.8% loss of its initial 
capacitance even after 6000 cycles. Sahoo et al. used a 
cathodic electrodeposition method for preparing nickel 
cobalt manganese sulfide (NCMS) nanosheets on Ni foam 
for the fabrication of high-performance supercapacitors 
[525]. The optimized NCMS, at 1 A g−1, offers a larger 
specific capacitance of 2717 F g−1 with great cycle life and 
energy density (94.7 Wh kg−1). Gao et al. synthesized a 
single-phase CuCo2-xNixS4 electrode through a facile two-
step hydrothermal method to improve the electrochemi-
cal activity of supercapacitor [526]. The electrochemical 
performance of the CuCo2-xNixS4 electrode reached up to 
647 F g−1 of specific capacitance at 1 A g−1 of current 
density with ~ 98% of capacitance retention after 10,000 
cycles. Verma et al. investigated the pseudocapacitive 
behavior of cobalt manganese nickel sulfide (CoMnNiS) 
nanosheet grown on Ni-foam through a simple electrodep-
osition method [527]. The designed CoMnNiS electrode 
achieved a specific capacitance of 257.4 mAh/g at 2.5 A 
g−1. They fabricated an asymmetric supercapacitor based 

on both CoMnNiS/NiCuO and CoMnNiS/CNT electrodes 
with a superior energy density of 8.4 and 6.3 Wh kg−1 
at a power density of 985 and 211 W kg−1, respectively. 
Isacfranklin et al. developed a newer form of chalcoge-
nides using copper, iron, and tin to form Cu2FeSnS4/
PVP/rGO-decorated nanocomposite that are prepared by 
simple hydrothermal method and followed by nucleation 
process in later studies in quaternary chalcogenides for 
use as electrode material [528]. The developed electrode 
material exhibits an excellent specific capacitance value 
of 328 F g−1 (45.55 mA h/g) at 0.5 A g−1, and the sym-
metric cell made using this electrode exhibits energy and 
power densities of 73 Wh kg−1 and 749 W kg−1 at 1 A 
g−1. With 20,000 cycles, it has a coulombic efficiency of 
99.99% and a 63% capacity retention. They also developed 
marigold flower-like structured Cu2NiSnS4 by employing 
simple solvothermal process, and the electrode revealed 
high 1029 F g−1 specific capacitance at 0.5 A g−1 current 
density. To prove its application towards practical technol-
ogy development, a full-cell asymmetric solid-state device 
is fabricated which delivers 41.25 Wh kg−1 and 750 W 
kg energy and power density at 0.5 A g−1 [529]. Song 
et al. developed NixCoyMnzS/Ni(SeO3) (NCMS/NSeO) 
heterostructure that is prepared on Ni-plated carbon cloth 
and employed them as electrode for supercapacitor; the 
optimized electrodes exhibit a high capacity of 536 mAh 
g−1 at 1 A g−1, the assembled asymmetric supercapacitor 
achieves an ultrahigh energy density of 141 Wh kg−1, and 
the main highlight of this work is an impressive high-rate 
capability and cyclability combination with 124% capaci-
tance retention after 10,000 cycles at a large current den-
sity of 50 A g−1 [530].

7 � Outlook and future prospects

For high energy storage, long cycle, and reliability, super-
capacitors are the most predominant technology that can 
complement the strength of batteries. Firstly, we pointed out 
the advantages and disadvantages of carbonaceous materials 
like graphene, MWCNT, metal oxides, and polymers that 
fail to provide high specific capacitance and cycling sta-
bility in supercapacitors. In this study, we collected many 
transition metal chalcogenides and their composites with 
different morphologies-based electrode materials that offer 
high ratings in supercapacitors. From the above discussion, 
the TMCs and their composite-based electrode material pos-
sess better specific capacitance with high-rate capability and 
long-term stability than carbon-based materials. Despite 
being promising candidates, it has some demerits of having 
low energy and power density compared to batteries. Hence, 
many morphological changes and doping of metals have 
been done to rectify these limitations. Recently, researchers 
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Table 7   Summary of bimetal chalcogenide–based electrode materials with various synthesis methods and their supercapacitor performances

Electrode material for supercapacitor Method of synthesis Specific capacitance Capacitance retention Ref

3D NCS/CNS composite Hydrothermal method 15.6 F cm−2 @ 10 mA. cm−2 93% after 5000 cycles [415]
NiCo2S4/RGO hybrids One-pot refluxing method 1526 F g−1 @ 1 A g−1 83% after 2000 cycles [450]
Ni2CoS4@NiCoO4/N-doped carbon 

xerogels
Hydrothermal method 1501 F g−1 @ 1 mA. cm−2 87.6% after 10,000 cycles [451]

NiCo2S4 One-step potentiostatic deposition 
method

1080 F g−1 @ 1 A g−1 93.4% after 1500 cycles [452]

NiCo2S4 composite Co-deposition method 1418 F g−1 @ 5 A g−1 90.6% after 50,000 cycles [453]
NiCo2S4 NT @ NiCo2S4 NSs on Ni 

foam
Hydrothermal method 4.38 F. cm−2 @ 5 mA. cm−2 81% after 5000 cycles [454]

NiCo2S4 on Ni foam Chemical liquid method 1777 F g−1 @ 1 A g−1 83% after 3000 cycles [455]
Tremelliform NiCo2S4 One-step hydrothermal method 150.9 F g−1 @ 1 A g−1 88.3% after 5000 cycles [456]
NiCo2S4@NiCO2O4 NCAs Facile method 2258.9 F g−1 @ 0.5 A g−1 92.5% after 6000 cycles [457]
CuCo2S4 NRAs Two-step hydrothermal method 1536.9 F g-1 @ 1 A g−1 88% after 5000 cycles [457]
Hierarchical NiCo2S4@NiCoxSy 

core/shell NAs
Two-step hydrothermal route 3.9 F cm−2 @ 1 mA. cm−2 77% after 1500 cycles [458]

NiCo2S4 nanotubes Hydrothermal and ion-exchange 
reaction

1005 F g−1 @ 1 A g−1 79.34% after 5000 cycles [459]

CuCo2S4 nanowire arrays Two-step hydrothermal method 2446 F g−1 @ 1 A g−1 78% after 10,000 cycles [460]
CuCo2S4 on graphene Solvothermal method 668 F g−1 @ 1 A g−1 72% after 8000 cycles [461]
MnCo2S4 NPs Hydrothermal method 1150 F g−1 @ 1 A g−1 88.2% after 5000 cycles [462]
HM-NCS ellipsoids Hydrothermal method  ~ 495 F g−1 @ 10 A g−1  ~ 99% after 5000 cycles [463]
Ni3xCo3-3xS4@ carbon Hydrothermal method 696 F g−1 @ 1 A g−1 73% after 2000 cycles [464]
NiCOS4 Solvothermal method 2215 F g−1 @ 0.5 A g−1 90.16% after 10,000 cycles [465]
Porous NiCo2S4 nanotubes Sacrificial template method 1093 F g−1 @ 0.2 A g−1 63% after 1000 cycles [466]
NiCoS/PAN Electrospinning method 1513 F g−1 @ 5A g−1 82.2% after 5000 cycles [467]
NiCo2S4 nanosheet Chemical bath deposition method 1155 F g−1 @ 10 mV s−1 95% after 2000 cycles [468]
Core–shell NiCo2S4 nanostructure 

on nickel foam
Two-step hydrothermal method 1948 mF. cm−2 @ 1 mA. cm−2 94% after 5000 cycles [469]

CS@Ni-Co-S core–shell microstruc-
ture

Hydrothermal method 724.4 F g−1 @ 2 A g−1 97.9% after 2000 cycles [470]

Fe-Co-S/NF Solvothermal sulfurization 2695 F g−1 @ 1 A g−1 84% after 1000 cycles [471]
Ni-Co sulfide nanowires on nickel 

foam
Two-step hydrothermal method 2415 F g−1 @ 2.5 mA. cm−2 78.5% after 3000 cycles [472]

Ni-Co-sulfide NSs Micelle-confined growth and sul-
furization

1304 F g−1 @ 2 A g−1 93.5% after 6000 cycles [473]

Zn-Co-S nanowires Two-step method 366.7 mAh/g @ 3 mA. cm−2 93.2% after 10,000 cycles [474]
ZnxCo1-xS nanoartichokes Facile oil phase approach 486.2 F g−1 @ 2 A g−1 86.4% after 2000 cycles [475]
NiCo2S4/GA composite Solvothermal method 704.34 F g−1 @ 1 A g−1 80.3% after 1500 cycles [476]
NiCo2S4@MnO2 Hydrothermal route 1337.8 F g−1 @ 2 A g−1 82% after 2000 cycles [477]
ZCS microspheres Solvothermal method 1516 F g−1 @ 1 A g−1 94% after 2000 cycles [478]
ZCS NPs Hydrothermal method 1269.1 F g−1 @ 0.5 A g−1 91.6% after 5000 cycles [479]
CS-NCS composite One-step hydrothermal method 1093 F g−1 @ 0.5 A g−1 91% after 8000 cycles [480]
MnCo2S4 Hydrothermal method 2067 F g−1 @ 1 A g−1 89% after 5000 cycles [481]
NiCo2S4 NTs/carbon cloth Two-step hydrothermal method 578 C/g @ 0.5 A g−1 71.13% after 6000 cycles [482]
FeCo2S4 nanowire Two-step hydrothermal method 337 mAh/g @ 2 A g−1 90% after 2000 cycles [483]
Hierarchical NCS Two-step hydrothermal method 574 C/g @ 1 A g−1 88% after 1500 cycles [484]
Zn0.76Co0.24S@Ni3S2 on Ni foam Hydrothermal and sulfurization 

method
1209 C/g @ 2 A g−1 94.9% after 5000 cycles [485]

Zn0.76Co0.24S Two-step synthesis 2484 F g−1 @ 2 A g−1  ~ 99% after 10,000 cycles [486]
NiCo2S4/RGO-C Solvothermal method 1467 F g−1 @ 0.5 A g−1 83% after 10,000 cycles [487]
Mixed NCSs Solvothermal method 2599.6 F g−1 @ 10 mV s−1 95% after 3000 cycles [488]
NiCo2S4 NTs on nickel foam Two-step method 738 F g−1 @ 4 A g−1 93.4% after 4000 cycles [489]
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have developed supercapacitors with a novel ternary meta 
for energy storage systems due to their large surface area, 
high conductivity, and feasibility towards electrochemical 
performance. In addition, the morphology-controlled ter-
nary metals are attractive at high-temperature operations. 
Also, a few recent reports show that the trimetallic-based 
electrode is a promising candidate in supercapacitor with 

extraordinary specific capacitance and power density. Hence, 
we conclude that among various electrodes, bi- and trimetal-
lic-based electrodes offer high efficiency in comparison with 
lithium-based batteries. Lastly, we conclude that the efficient 
electrode materials used in testing supercapacitors must be 
practically developed and used in the commercial market.

Table 7   (continued)

Electrode material for supercapacitor Method of synthesis Specific capacitance Capacitance retention Ref

NiCo2S4@NCNT composite Hydrothermal method 783.5 C/g @ 1 A g−1 88.9% after 3000 cycles [490]
CuCo2S4-glycerol Solvothermal method 5030 F g−1 @ 20 A g−1 79.5% after 2000 cycles [491]
Ni1.77Co1.23S4 Hydrothermal method 224.5 mAh/g @ 0.25 A g−1 64.82% after 1000 cycles [492]
CoFe2Se/CoNiSe2 composite Facile method 183.4 mAh/g @ 1 A g−1 99.2% after 3000 cycles [493]
N-GNTs@NiCoSe2/Ni3Se4 One-step electrodeposition method 1308 F g−1 at 1 A g−1 94.4% after 10,000 cycles [494]
CoNi2S4@NiSe NAs Three-step solution based method 312.95 mF. cm−2 @ 5 mV s−1 97.59% after 1000 cycles [495]
3D flower-like CoNi2S4/G-NF Chemical vapor deposition method 6.528 F cm−2 @ 6 mA. cm−2 85% after 3500 cycles [496]
CoNi2S4 NPs/ 3D-CNT Electrodeposition method 1530 F g−1 @ 1 A g−1 85% after 10,000 cycles [497]
rGO/CoNiSx/N–C nanocomposite One-step carbonization/sulfurization 

method
1028.2 F g−1 @ 1 A g−1 93.6% after 2000 cycles [498]

CoNi2S4 nanosheet arrays/NF One-step potentiostatic deposition 
method

1932 F g−1 @ 2 A g−1 89.2% after 1000 cycles [499]

rGO-CoNi2S4/ NF Two-step hydrothermal method 1680 F g−1 @ 1 A g−1 62% after 5000 cycles [500]
CoNi2S4 nanosheet arrays on Ni 

foam
Two-step hydrothermal method 2906 F g−1 @ 5 mA. cm−2 98% after 3000 cycles [501]

Reduced CoNi2S4 NSs Facile moderate-reduction process 1117 C/g @ 2 A g−1 80% after 10,000 cycles [502]
Ultrathin CoNi2S4 nanosheet Microwave-assisted method 247 mAh/g @ 8 A g−1 82% after 10,000 cycles [503]
CoNi2S4/RGO composite One-pot hydrothermal method 1709 F g−1 @ 0.5 A g−1 92% after 2000 cycles [504]
NiCo2S4/NiS hollow nanospheres Two-step hydrothermal method 1947.5 F g−1 @ 3 mA. cm−2 90.3% after 1000 cycles [505]
NixCo9-xS8@C Two-step solvothermal method 1404 F g−1 @ 2 A g−1 95.8% after 2000 cycles [506]
CoNi2S4/Co9S8 composite Chemical bath deposition method 1183.3 F g−1 @ 2 A g−1 97.3% after 1000 cycles [507]
CoNi2S4-G-MoSe2 composite Ultrasonication and hydrothermal 

method
1141 F g−1 @ 20 A g−1 108% after 2000 cycles [508]

CoMoS4 Chemical co-precipitation method 415 F g−1 @ 0.5 A g−1 100% after 10,000 cycles [509]
CoMo2S4/3DSG composite Hydrothermal method 1288.33 F g−1 @ 1 A g−1 90% after 2000 cycles [510]
Nickel-molybdenum-sulfide/NF SILAR method 2224 C/g @ 4 mA. cm−2 95% after 5000 cycles [511]
GN-CoMoS4 hybrid Hydrothermal method 774 F g−1 @ 1 A g−1 94.49% after 6000 cycles [512]
T-MnxMo1−xS2−ySey Hydrothermal method 0.76 mAh/cm2 @ 1 mA. cm−2 81% after 10,000 cycles [513]
MoFe2S4−zSez Hydrothermal method 0.534 mAh/cm2 @ 

1 mA. cm−2
86.2% after 10,000 cycles [513]

Co–W–S Wet chemical method 1929 F g−1 @ 5 mV s−1 66% after 10,000 cycles [514]
Ag-decorated Ni–Fe-Te Wet chemical method 1.1 mAh/cm2 @ 3 mA. cm−2 80.4% after 3000 cycles [515]
CF@NiCoO4Se3/Ni2Co-LDH 3270 F g−1 @ 1 A g−1 95.6% after 10,000 cycles [516]
Cu3SbS4 Solution-based method 397 F g−1 @ 5 mV s−1 - [517]
Flowery EuZrSe3 Wet chemical method 1543 F g−1 @ 3 A g−1 93.58% after 10,000 cycles [518]
NiCo2Se4/RGO microsphere Hydrothermal method 1776.1 F g−1 @ 2 A g−1 93.5% after 5000 cycles [519]
Cu0.5Co0.5Se2 nanosheets Hydrothermal method 1695 F g−1 @ 1 A g−1 91.1% after 10,000 cycles [520]
FeO@CuCo2S4 microfilms Hydrothermal and magnetron sput-

tering
3213 F g−1 @ 1 A g−1 116% after 10,000 cycles [521]

NbMo6S8/NC Hydrothermal method 167.89 mAh/g @ 0.25 A g−1 87.60% after 15,000 cycles [522]
Ni-Co–C-N-OS Electrochemical deposition 555.35 µAh/cm2 @ 1 mA cm−2 100% after 45,000 cycles [523]
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