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Abstract
The inadequate impedance matching and weak attenuation capability for incident electromagnetic waves exhibited by 
carbon fibers (CF) are critical factors limiting their application served as absorbing materials. Constructing a nanocom-
posite system that simultaneously exhibits both dielectric loss and magnetic loss characteristics is a feasible strategy to 
overcome these limitations. In the present study, a core-shell CF@PPy@CoFe2O4 nanocomposite is fabricated through 
electrodeposition and subsequent hydrothermal methods to enhance the attenuation capacity and impedance matching 
of bare CF. Under the synergistic effects of diverse components and a peculiar network structure, the nanocomposite 
demonstrates optimized conductive loss and polarization loss, which results in a remarkable electromagnetic wave 
absorption performance with a minimum reflection loss (RLmin) of -55.33 dB and an effective absorption bandwidth 
(EAB) of 6.48 GHz (12 ~ 18 GHz) at optimal thicknesses of 2.11 and 2.42 mm, respectively, suggesting its promising 
application as a candidate absorber. More importantly, the exploration concerning the absorption mechanism provides 
significant insights into the attenuation modes of the dielectric-magnetic loss hetero-junction, which is beneficial for 
developing similar absorbing materials.

Keywords  Conductive loss · Polarization loss · Electromagnetic absorption · The absorption mechanism · Dielectric-
magnetic loss hetetero-junction · The synergistic effects

1  Introduction

Over the last decade, a variety of electronic devices that use 
electromagnetic wave as a medium have been extensively 
deployed in various domains, including telecommunica-
tions, aerospace, and automobiles [1]. However, the wide-
spread presence of these electronic products has heightened 
public concerns about electromagnetic radiation pollution 
and potential health risks [2, 3]. To mitigate these issues, 
electromagnetic wave absorbing materials, which possess 
the capability to effectively dissipate electromagnetic wave 
and convert it into other energy forms, have increasingly 
captured the attention of researchers [4, 5].

Currently, due to their high electrical conductivity, excel-
lent chemical stability, tunable dielectric properties, cost-
effectiveness, and wide availability of raw materials, carbon-
based materials (such as carbon nanotubes, porous carbon, 
graphene, and carbon fibers, etc.) have emerged as the pre-
ferred choice for producing electromagnetic wave absorbers 

 *	 Meng Zhang 
	 mengzhang@qust.edu.cn

 *	 Zhenjiang Li 
	 zhenjiangli@qust.edu.cn

1	 College of Materials Science and Engineering, Qingdao 
University of Science and Technology, Qingdao, 
Shandong province 266042, China

2	 College of Electromechanical Engineering, Qingdao 
University of Science and Technology, Qingdao, 
Shandong province 266061, China

3	 College of Chemical Engineering, Key Laboratory 
of Optic‑electric Sensing and Analytical Chemistry for Life 
Science, Shandong Key Laboratory of Biochemical Analysis, 
College of Chemistry and Molecular Engineering, MOE, 
Qingdao University of Science and Technology, Qingdao, 
Shandong province 266042, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s42114-024-00864-z&domain=pdf


	 Advanced Composites and Hybrid Materials (2024) 7:7070  Page 2 of 16

[6]. Undoubtedly, carbon fiber (CF) [7], serving as a out-
standing reinforcing material, has exhibited exceptional per-
formance in the realm of high-strength structural composites 
[8, 9]. As the concept of integrated structure and function 
in carbon fiber materials gradually takes root, research into 
their novel functional characteristics becomes increasingly 
pressing. This exploration is beneficial for expanding their 
application range and meeting the practical requirements of 
electromagnetic protection in various future industries [10].

It is widely acknowledged that a single carbon component 
struggles to achieve optimal impedance matching conditions 
[11]. Moreover, the simplistic mechanism by which CF 
interacts with incident electromagnetic wave often results 
in unsatisfactory attenuation effects. Constructing CF-based 
composite is a feasible and frequently utilized strategy, often 
employed by numerous researchers to enhance the electro-
magnetic wave absorption performance of individual CF 
[12]. Wang et al. [13] successfully developed flexible CF@
ZnO composites, which achieve an effective absorption 
bandwidth (EAB) of 10.6 GHz, covering both the whole 
X and Ku bands. In another study, Wang and colleagues 
[14] fabricated a CF@MXene@MoS2 nanocomposite with 
a three-dimensional layered structure, and the product 
achieves a minimum reflection loss (RLmin) of -61.51 dB 
at a matching thickness of 3.5 mm, while demonstrating an 
EAB value of 7.6 GHz at 2.1 mm. Zhang et al. [15] inves-
tigated the wave absorption performance of the CF@MoS2 
composite, which exhibited an EAB value of 10.85 GHz at 
a matching thickness of 3.8 mm. These research achieve-
ments have not only contributed significantly towards con-
structing CF-based composite absorbing materials, but also 
highlighted the tremendous application potential as effec-
tive electromagnetic wave absorbers. However, the pursuit of 
superior absorption performance at thinner matching thick-
ness inspires ongoing research in this field.

Conductive polymers [16], represented by polyurethane, 
polypyrrole, and polythiophene, fall under the category of 
dielectric loss type absorbing materials, which also exhib-
its remarkable compatibility with CF [17]. The composite 
made of CF and conductive polymer retains the native con-
ductive loss of CF. It also enhances the interface loss capa-
bility when encountering incident electromagnetic wave, 
achieving superior absorption performance compared to CF 
alone. On the other hand, the magnetic components based 
on iron, cobalt, nickel can generate strong magnetic loss 
against incident electromagnetic wave. By compounding 
them with dielectric loss components, it ensures that the 
composite material obtains more appropriate impedance 
matching condition and improved electromagnetic wave 
attenuation performance. However, when relying solely on 
dielectric loss and interface polarization, these composites 
struggle to effectively attenuate incident electromagnetic 
wave [18]. Moreover, the impedance matching has not yet 

reached optimal condition, resulting in that the EAB value, 
matching thickness, and RLmin cannot meet the requirements 
for “thinness, lightness, width, and strength” [19–21]. To 
address this issue, magnetic components are typically intro-
duced into the absorbing material system [22]. While realiz-
ing the dual action of dielectric-magnetic losses [23], it fur-
ther improves the impedance matching of the composites, 
thus achieving superior absorptive performance [24, 25]. 
Ding et al. [26] fabricated a core-shell nanomaterial (TiO2@
Fe3O4@PPy) via a sequential solvent heat treatment and 
polymerization process. By manipulating the thickness of 
the polypyrrole layer, the electromagnetic wave absorption 
properties can be regulated. This achieves a RLmin of -61.8 
dB at a thickness of 3.2 mm and an EAB value of 6 GHz at 
an optimal thickness of 2.2 mm. Zhang and collaborators 
[27] successfully synthesized CF@PANI@Fe3O4 hybrid 
nanocomposite and also proposed a synergistic mechanism 
of multiple reflection/scattering, dipole polarization, inter-
facial polarization, eddy current, and magnetic resonance, 
thus demonstrating a multiple attenuation method of inci-
dent electromagnetic wave, and the RLmin of 46.86 dB was 
achieved at a matching thickness of 2.7 mm. Liu’s group 
[28] successfully synthesized structured Fe3O4@SiO2@
PPy microspheres using a microemulsion polymerization 
technique. The product demonstrated a RLmin of -40.9 dB at 
a matching thickness of 5 mm and an EAB value of approxi-
mately 6.88 GHz (11.12 ~ 18 GHz), which encapsulates the 
entire K-band (12 ~ 18 GHz).

In this paper, a nanocomposite electromagnetic wave 
absorber, CF@PPy@CoFe2O4, is developed by succes-
sively depositing a PPy layer and magnetic CoFe2O4 par-
ticles onto the CF surface using the electrodeposition and 
hydrothermal methods, respectively. The PPy layer enhances 
the impedance matching condition and dielectric loss capa-
bility, while the presence of CoFe2O4 nanoparticle provides 
magnetic loss capability to the bare CF, further amplifying 
its attenuation capability. Through the use of a large num-
ber of heterogeneous interfaces, the coaxial core-shell struc-
tures generate robust interfacial polarization, meanwhile, the 
structural defects and adsorbed functional groups produce 
dipole polarization, owing to the synergistic effect of these 
multiple loss mechanisms, the CF@PPy@CoFe2O4 nano-
composite exhibits optimal impedance matching and excel-
lent attenuation capabilities.

2 � Experimental methods

2.1 � Materials and chemicals

The CF substrate used in this study was provided by Shang-
hai Huayu Instrument Co., Ltd. Various chemical reagents, 
including hydrochloric acid (HCl), sodium chloride (NaCl), 
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iron chloride hexahydrate (FeCl3·6H2O), cobalt chloride hex-
ahydrate (CoCl2·6H2O), and ethylene glycol (EG) were all 
purchased from Sinopharm Chemical Reagent Co., Ltd. Pyr-
role (C4H5N) and anhydrous sodium acetate (CH3COONa) 
were acquired from Aladdin Reagent. The pyrrole used was 
of analytical purity grade, whereas the other reagents were 
of chemical grade and did not require further purification.

2.2 � Preparation process of CF@PPy nanocomposite

In this study, a CF@PPy composite was prepared by electro-
chemical deposition using CF as the substrate. Initially, the 
CF was segmented into 2 cm x 2 cm sections, then immersed 
in 1 mol/L hydrochloric acid for 3 h, followed by repeated 
rinsing with deionized water. In the electrochemical worksta-
tion setup, the CF served as the working electrode, a platinum 
plate electrode was employed as the counter electrode, and 
the Hg/Hg2Cl2 was used as reference electrode. The elec-
trolyte was prepared with a pyrrole monomer concentration 
of 0.1 mol/L and a sodium chloride solution concentration 
of 1 mol/L. Cyclic voltammetry mode (CV) was conducted 
within a voltage window of 0 ~ 0.8 V at a scan rate of 10 mV/s. 
At a predetermined cycles number, the sample was rinsed 
with deionized water and dried at 60 °C to obtain the CF@
PPy sample. By varying the number of cycles to 30, 60, 90, 
and 120, the corresponding resultant samples were labeled as 
CP-30, CP-60, CP-90, and CP-120, respectively.

The formation mechanism of PPy molecules can be sum-
marized as follows: Firstly, under the influence of an electric 
field, pyrrole monomer molecules lose electrons at the sur-
face of the electrode, resulting in the formation of cationic 
free radicals. Then, these pyrrole free radicals interact with 
another monomer to create a pyrrole dimer. Subsequently, an 
extensive PPy molecular chain is produced through a series 
of similar reactions.

2.3 � Preparation of CF@PPy@CoFe2O4 nanocomposite

A solution was prepared by dissolving 5 mmol FeCl3·6H2O 
and 2.5 mmol CoCl2·6H2O in 70 mL ethylene glycol, followed 
by vigorous stirring for 30 min. Subsequently, 7.3 g anhydrous 
sodium acetate was added to the solution and stirred for an 
additional hour. The resulting mixture was then transferred 
into a reaction vessel, and the pre-determined CF@PPy sam-
ple was also introduced. The reaction was maintained at a 
temperature of 180 °C for a period of 8 h. The sample was 
subsequently rinsed with deionized water and dried at 60 °C 
to yield the CF@PPy@CoFe2O4 nanocomposite.

2.4 � Characterization

The electrochemical deposition process was conducted using a 
CHI660E electrochemical workstation. The morphology of the 

products was examined using scanning electron microscopy 
(SEM, Hitachi S-8400) and transmission electron microscopy 
(TEM, Hitachi H-8100), while their phase composition was 
investigated by a powder X-ray diffraction (XRD, Bruker D8) 
conducted at room temperature. Fourier infrared spectroscopy 
(FT-IR, Nicolet-6700) was used to analyze the functional 
groups of the products, and Raman spectroscopy (Renishaw 
2000) was employed to evaluate the graphitization degree 
and defect content within the samples. The magnetization 
hysteresis loops of CF@PPy@CoFe2O4 hybrid nanomaterial 
was recorded using a vibrating sample magnetometer (VSM, 
Quantum Design, PPMS-9). X-ray photoelectron spectrom-
eter (XPS, Thermo Scientific, ESCALAB 250XI) was used 
to detect the composition and chemical bonding state of the 
samples. The N2 adsorption/desorption isotherm was deter-
mined by automatic specific surface and porosity analyzer 
(Micromeritics ASAP 2460), and the specific surface area of 
the sample was calculated by Brunauer-Emmett-Teller (BET) 
the model. Thermogravimetric analysis (TGA) of CF@PPy@
CoFe2O4 nanocomposite was carried out in an argon atmos-
phere with a heating rate of 10 ℃/min. The electromagnetic 
wave absorption performance of the samples was gauged by 
measuring electromagnetic parameters using a vector net-
work analyzer (Agilent, N5230A) after compressing a ring 
with an internal diameter of 3.04 mm, an external diameter of 
7.00 mm, and a thickness of 3.00 mm, which was mixed with 
epoxy resin under a packing load of 2 wt%.

3 � Results and discussion

Figure 1a depicts a schematic representation of the synthe-
sis process of CF@PPy@CoFe2O4 nanocomposite. The PPy 
shell was initially wrapped on the surface of CF via an elec-
trodeposited process, resulting in the creation of CF@PPy 
nanocomposite. Subsequently, magnetic CoFe2O4 nanoparti-
cles were integrated onto the nanocomposite using a straight-
forward hydrothermal method. To provide a more detailed 
understanding of the microscopic morphology, SEM was 
employed for characterization. Figure 1b displays a repre-
sentative SEM image of a parallel CF sample with a diameter 
of approximately 8 μm. Notably, numerous subtle ditches 
aligned along the axis direction of CF provide a wealth of 
functional groups and active sites, which is beneficial for the 
subsequent growth of PPy shell. Figure 1c–f display typical 
SEM images of the CF@PPy nanocomposite, with the PPy 
shell densely coated on the CF surface, without disturbing 
the original orientation of the CF. Significantly, an increase 
in the nanocomposites diameter is observed in line with the 
number of electrodeposition cycles. Figure S1 provides cross-
sectional SEM images of various CF@PPy nanocomposites. 
It can be clearly observed that the variation in the diameter 
of different nanocomposites can be clearly attributed to the 
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increasing thickness of the PPy shell, which correlates directly 
with the number of electrodeposition cycles. Furthermore, the 
PPy shell demonstrates an irregular profile, which potentially 
causes incident electromagnetic wave to undergo multiple 
reflections, thereby enhancing the attenuation characteris-
tics of the nanocomposites. Crucially, an effective interface 

is established between the CF and the PPy shell, fostering 
increased interfacial polarization and promoting the loss of 
incident electromagnetic waves at the interface.

The phase structure information of CF and CF@PPy 
samples was analyzed using XRD, with results displayed 
in Fig. 2a. The XRD patterns of the pure CF sample reveal 

Fig. 1   a Schematic illustration of synthesis process of the CF@PPy@CoFe2O4 nanocomposite; SEM images of the b CF, c CP-30, d CP-60, 
e CP-90, f CP-120; g Comparison of the diameter values of the CF and the as-prepared CF@PPy samples
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two broad diffraction peaks at approximately 25.8° and 
44.6°, characteristic of disordered carbon. The diffraction 
peaks in the CF@PPy sample are notably less intense than 
in the CF, suggesting the formation of amorphous PPy. To 
better understand the microstructure of PPy on CF, Raman 
and FT-IR spectra were captured, as depicted in Fig. 2b–e. 
Figure 2b shows the Raman spectra of the two samples 
with characteristic PPy peaks delineated in the highlighted 
yellow box (Fig. 2c). The peaks at 931 cm-1 and 970 cm-1 
correspond to the polarization and bipolarization prop-
erties of the quinone-type structure, while the peak near 
1044 cm-1 can be assigned to the in-plane deformation of 
the C-H bonds [29]. Moreover, the peaks observed near 
1355 cm-1 and 1568 cm-1 can be associated with the ring 
stretching of C=C bonds and the π-bonded conjugated 
structure of the polymer backbone [30, 31]. Both sam-
ples, due to the presence of carbon materials, exhibit two 
characteristic peaks around 1340 cm-1 and 1591 cm-1, rep-
resenting the D-band and G-band, respectively [32]. The 
D-band arises from the vibrations of defects in the disor-
dered graphitic carbon and sp3 hybridization, while the 
G-band is induced by the planar vibrations of sp2 hybrid-
ized graphitic carbon within the carbocyclic ring system. 

Generally, the relative intensity ratio (ID/IG) of the D and 
G bands is representative of the degree of graphitization 
or defects within the carbon material. In the given figure, 
the ID/IG values of the two materials are 1.17 and 0.52, 
respectively. The decrease in the ID/IG value of CF@PPy 
nanocomposite is mainly due to the incorporation of PPy, 
which results in a greater degreee of π-bond conjuga-
tion within the polymer backbone [33]. This leads to an 
enhanced level of graphitization and a subsequent decrease 
in the ID/IG value [34].

Figure 2d shows the FT-IR spectra of the sample, with 
the sections enclosed in the boxes of varying colors repre-
senting the distinct peaks of the CF. The peaks located near 
3646 cm-1 and 1664 cm-1 correspond to the O-H stretching 
vibration of the hydrogen bond, while the features located 
near 2912 cm-1 and 1021 cm-1 are attributed to the in-plane 
vibration of the -C-H bond [35]. The characteristic peak 
appearing near 1385 cm-1 is due to the C-O bending vibra-
tion. Some characteristic peaks of PPy can be observed in 
the locally zoomed-in image within the yellow box [36]. 
These encompass the stretching vibration of the C-N bond 
located near 1382 cm-1, the intra-plane deformation vibra-
tion of the NH+ detected near 1094 cm-1, and the intra-plane 

Fig. 2   a XRD patterns, b Raman 
spectra of the CF@PPy; 
c Raman localized magnification 
of CF@PPy; d, e FT-IR spectra 
of CF@PPy; High-resolution 
XPS spectra of CF@PPy f total 
spectrum; g O 1s; h C 1s; i N 1s
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deformation vibration of the N-H bond as well as C-H bond 
(1048 cm-1). The characteristic peaks positioned at 960 cm-1 
and 880 cm-1 can be respectively ascribed to the ring out-of-
plane deformation vibrations of the C-C bond and the ring 
out-of-plane deformation vibrations of the C-H bond.

XPS was employed to investigate the surface elemen-
tal valence states and chemical bonding configurations of 
CF@PPy. The comprehensive XPS spectrum of the CF@
PPy sample (Fig. 2f) distinctly demonstrates the presence 
of C, N, and O elements. Compared with bare CF charac-
terization results (Fig. S2) [37], the detection of N can be 
reasonably attributed to the introduction of PPy [38]. The 
energy spectrum of O1s (Fig. 2g) reveals a characteristic 
peak at a binding energy of 531.79 eV, correlating with the 
surface adsorption of water (OH-) [39]. The C1s energy 
spectrum of CF@PPy (Fig. 2h) can be deconvoluted into 
four splitting peaks, corresponding to C-C (284.8 eV), 
C-N (285.6 eV), C-O (286.3 eV), and C=O (288.2 eV) 
bonds. The emergence of C-N is most likely due to the 
existence of PPy [40]. Furthermore, the N1s energy spec-
trum (Fig. 2i) can be divided into three splitting peaks, 
indicating that the N atom primarily exists in the form of 
benzenemethanamine (-NH-), with a lesser amount present 
as quinoneimine (-N=) and a positively charged nitrogen 
atom (-NH+=) [41]. These findings further corroborate 
the successful introduction and encapsulation of PPy on 
the CF surface.

For evaluating the response characteristics of an absorber 
to electromagnetic waves, two factors are significant, relative 
complex permittivity (εr = ε′-jε″) and complex permeability 
(µr = µ′-jµ″) [42]. These factors reflect the capability to store 
and dissipate electric field energy and magnetic field energy, 
and further determine the reflection coefficient and trans-
mission coefficient of the absorber. Figure 3a–c depict the 
trends of ε′, ε″, and tanδε curves of both CF and CF@PPy 
nanocomposites within the frequency range of 2 ~ 18 GHz 
[43]. It is clearly evident from the figure that the CF@PPy 
nanocomposites exhibit superior values of ε′, ε″, and tanδε 
as compared to bare CF, signifying an enhanced dielectric 
loss capacity. Moreover, Fig. 3a demonstrates that with an 
increase in frequency, the curves tend to stabilize in the fre-
quency range of 2 ~ 12 GHz, indicating a consistent capabil-
ity of the absorber to store electrical energy. However, the ε’ 
curves of all samples exhibit fluctuations within the range of 
12 ~ 18 GHz, likely due to inherent defects. In the ε″ curve 
(Fig. 3b), multiple resonance peaks are observed in the CF@
PPy samples, which can be attributed to the existence of 
numerous heterogeneous interfaces. These interfaces induce 
interfacial polarization, leading to the appearance of reso-
nance peaks. The dielectric loss capability of an absorber is 
usually assessed by its dielectric loss tangent, calculated as 

tanδε = ε″/ε′. As depicted in Fig. 3c, the CP-90 sample also 
exhibits elevated ε″ values and superior dielectric loss capa-
bility, suggesting that the complex permittivity of the sample 
can be effectively manipulated by adjusting the number of 
electrodeposition cycles, thereby optimizing its dielectric 
loss capability [44].

In above formula, the normalized input impedance is 
denoted as Zin, while Z0 represents the impedance in free 
space [45]. The complex permittivity and complex per-
meability are εr and µr, respectively. The frequency of the 
incident electromagnetic wave is denoted as f, while the 
matching thickness of the absorber is symbolized as d, and 
c denotes the propagation speed of the electromagnetic wave 
in free space.

Figure 3d illustrates the RL projection curve of the CF 
sample, which reveals a poor electromagnetic wave absorp-
tion performance is revealed with a RLmin value of -7.93 
dB at a matching thickness of 5.50 mm. The absorption 
performance of the CF@PPy nanocomposites is markedly 
enhanced with the application of a PPy shell to the CF core. 
As the thickness of the PPy shell increases, the absorption 
performance first increases but subsequently decreases, as 
indicated in Fig. S3. Figure S3a displays RL values versus 
frequency of the CP-30 nanocomposite, displaying an RLmin 
value of -10.07 dB at a matching thickness of 2.90 mm. 
For the CP-60 nanocomposite (Fig. S3b), the RLmin value 
is -13.21 dB at a matching thickness of 5.50 mm, and the 
optimal EAB value is 1.12 GHz. Figure 3e illustrates the 
performance of the CP-90 nanocomposite with a RLmin value 
of -27.98 dB at a matching thickness of 3.05 mm and an 
EAB value of 2.72 GHz at a matching thickness of 5.25 mm. 
Figure S3c shows RL values versus frequency of CP-120 
nanocomposite, from which it can be seen that the RLmin 
value is -13.21 dB when the matching thickness is 2.57 mm, 
and the optimal EAB value is 1.12 GHz when the matching 
thickness is 2.60 mm Fig. 3f provides a more visual com-
parison of the absorption performance of the various CF@
PPy samples with a bar graph of the RL and EAB values. 
Unquestionably, the CP-90 nanocomposite outperforms the 
others in terms of absorption performance.

It is widely acknowledged that dipole polarization sig-
nificantly contributes to the dielectric loss absorbing mate-
rial, which can be explained by the Debye relaxation phe-
nomenon. The relaxation process of electromagnetic wave 
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absorbing materials can be represented by the following 
equation:

herein, εs and ε∞ represent the static and high-frequency 
optical permittivity, respectively. According to above equa-
tion, the relationship between ε′ and ε″ should form a semi-
circle, and each semicircle corresponds to a Debye relaxation 
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process. As illustrated in Figs. 3g and S4, several semicir-
cles can be identified in both the CF and CF@PPy samples, 
indicating the presence of multiple dielectric relaxations. 
The CP-90 nanocomposites display more semicircles, which 
may stem from the interfacial polarization instigated by the 
hetero-interfaces between CF and PPy, as well as from the 
inherent dipole polarization of the absorber, suggesting its 
good electromagnetic wave absorption capacity.

It is universally acknowledged that the impedance match-
ing and attenuation coefficient are crucial when evaluating 

Fig. 3   a Real part of complex permittivity, b Imaginary part of com-
plex permittivity, c  tanδε of CF, CP-30, CP -60, CP -90, CP -120; 
d RL values versus frequency of CF; e RL values versus frequency 

of CP -90; f Comparison plots of RL and EAB; g Cole-Cole curve of 
CP -90; h |Zin/Z0| of CP -90; i Attenuation constant of CF, CP -30, CP 
-60, CP -90, CP -120
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the efficiency of an absorber designed for electromagnetic 
wave absorption. An optimal absorber should permit the 
maximum penetration of electromagnetic waves, neces-
sitating effective impedance matching, which is typically 
evaluated using the delta function, as delineated in the fol-
lowing formula:

in which, the values of K and M can be determined by the 
relationship between complex permittivity and complex per-
meability, as expressed in the following equation. 

In general, a material possesses optimal impedance 
matching when the |Δ| value tends to zero. When the |Δ| 
value is less than 0.4, it can be considered that the material 
exhibits effective impedance matching. Figures 3h and S10 
illustrate the impedance matching and |Δ| values of various 
CF@PPy nanocomposites under their optimal conditions, 
respectively. It can be observed that the CP-90 nanocom-
posite exhibits a larger mapping area (|Δ| < 0.4) compared 
to other materials. These findings indicate that CP-90 
nanocomposites demonstrate optimal impedance matching, 
enabling a higher penetration of incident electromagnetic 
waves into the absorber. The attenuation coefficient is used 
to assess the dissipation ability of incident electromagnetic 
waves within the absorbing material. When an absorber 
exhibits good impedance matching, it is necessary to maxi-
mize the dissipation of the incident electromagnetic waves 
to achieve effective electromagnetic wave absorption. This 
can be quantified using the following equation. 

As depicted in Fig.  3i, the CF@PPy nanocomposite 
exhibits a significantly higher attenuation coefficient α com-
pared to the CF sample. Notably, CP-90 demonstrates the 
highest α value (especially in Ku band), indicating its supe-
rior capability to dissipate electromagnetic waves energy. 
These findings highlight the importance of synergistically 
considering both impedance matching and attenuation capa-
bility to achieve outstanding microwave absorption perfor-
mance. Therefore, it can be observed that the incorporation 
of the conductive polymer PPy effectively enhances the 
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impedance matching and electromagnetic wave loss capa-
bility of CF sample.

To induce magnetic loss within the CF@PPy nanocom-
posite, CoFe2O4 magnetic nanoparticles are fabricated 
using CF@PPy as substrate, resulting in the construction of 
multi-layer heterogeneous CF@PPy@CoFe2O4 nanocom-
posite. As illustrated in Fig. 4a, b, the CoFe2O4 nanopar-
ticles have been successfully dispersed across the surface 
of the CF@PPy nanocomposites without any discernible 
agglomeration. The diameter of the CF@PPy@CoFe2O4 
nanocomposite is approximately 18 μm, larger than CF@
PPy nanocomposites. The typical XRD spectrum analysis of 
CF@PPy@CoFe2O4 is presented in Fig. 4c. The broad dif-
fraction peak observed near 26° is attributed to the presence 
of CF and PPy. Moreover, other distinct diffraction peaks 
located at 30.08°, 35.50°, 43.05°, 56.98°, and 65.68° cor-
respond to the (220), (311), (400), (511), and (440) crystal-
lographic facets of the CoFe2O4 phase (JCPDS No 22-1086) 
[46], thereby verifies the successful preparation of CoFe2O4 
nanoparticles. As PPy and CoFe2O4 were coated on the CF 
surface step by step, and the CF had good stability under 
the given reaction conditions, the mass of CF would keep 
remain unchanged before and after the reaction [47, 48]. To 
obtain the actual content of CF and PPy in the CF@PPy@
CoFe2O4 nanocomposite, we compared the mass changes 
of the products before and after the reaction and designed 
several contrast experiments. The actual mass fractions of 
various components were obtained, as shown in Table S1. 
The employed CF sample was 0.055 g. After being coated 
with the PPy layer, its mass increased to 0.092 g. The final 
mass of the obtained CF@PPy@CoFe2O4 nanocomposite 
was 0.104 g. Therefore, it can be calculated that the mass 
fraction of CF in the product is approximately 53.9 wt%, 
and the mass fraction of PPy in the product is approximately 
34.6 wt%. To further investigate the thermal stability and 
decomposition behavior of the CF@PPy@CoFe2O4 nano-
composite, thermogravimetric analysis (TG) coupled with 
differential scanning calorimetry (DSC) measurements were 
conducted [9]. The TG-DSC curves are presented in Fig. S6 
Within the test temperature range, the mass change of the 
product can be roughly divided into three distinct stages. 
In the first stage, from room temperature to 120 °C, a mass 
loss of 3.59% was observed, which can be attributed to the 
decomposition of physically adsorbed water and the removal 
of functional groups on the surface of the sample. The sec-
ond stage, from 120 to 840 °C, exhibited a significant mass 
loss of 32.16%, corresponding to the decomposition of PPy. 
This value is in good agreement with the calculated mass 
fraction of PPy in the nanocomposites (Table S1). During 
this stage, the decomposition of PPy involves the evolution 
of various small-molecule substances, such as water, carbon 
monoxide, carbon dioxide, and ammonium chloride, in the 
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Fig. 4   a, b  SEM images, c  XRD pattern, d, e  Typical TEM images and f–h  HRTEM images of CoFe2O4 coating capture from CF@PPy@
CoFe2O4, i Raman spectra, j hysteresis loop, XPS spectra k full scan, l Co 2p, m Fe 2p, n O 1s of CF@PPy@CoFe2O4
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form of gas. The third stage, above 840 °C, showed a rela-
tively slow and steady mass loss, which can be ascribed to 
the gradual decomposition of CoFe2O4 and the remaining 
carbon residue. It is important to note that the mass loss 
observed in the third stage does not solely correspond to the 
decomposition of CoFe2O4. Therefore, the value of 1.43% 
reported in the previous version of the manuscript does 
not accurately represent the CoFe2O4 content in the nano-
composites. Figure S7a illustrates typical type IV nitrogen 
adsorption-desorption isotherms of the CF@PPy@CoFe2O4 
nanocomposites in the relative pressure (P/P0) range of 
0.5 ~ 1.0. The BET specific surface area of the sample is 
evaluated to be around 56.59 m²/g, which is larger than that 
of the employed commercial CF carrier (about 1.31 m²/g, 
provided by the manufacturer). Figure S7b shows the pore 
size and their distribution obtained from the adsorption 
branch by the Barrett-Joyner-Halenda (BJH) method, dem-
onstrating that the pore diameter is 3.818 nm.

Systematic characterization results revealed that the CF 
carrier used in the experiment and the electrodeposited PPy 
coating are amorphous, while the CoFe2O4 synthesized via 
the hydrothermal method is crystalline. To further inves-
tigate the microstructure of the product, TEM characteri-
zation was performed. Figure 4d shows a representative 
image of the product, with a size of several microns, cor-
responding to the micro protrusions observed on the fiber 
surface in Fig. 4b. Figure 4e shows a magnified view of the 
region marked by the light blue block in Fig. 4d, revealing 
distinct contrast differences. Figure 4f–h are high-resolu-
tion TEM images taken from the corresponding areas in 
Fig. 4e, respectively. Numerous nanoscale crystal particles 
are randomly distributed on the product surface, exhibit-
ing clearly visible lattice stripes. Their lattice stripes are 
clearly visible, and the interplanar crystal spacing corre-
sponds to the (220), (311), (222), (400), (422), (511) plan-
ers of cobalt ferrite, respectively.

Additionally, to determine the physical phase composi-
tion of the composites, Raman and FT-IR analyses were 
conducted. The Raman energy spectrum of the CF@PPy@
CoFe2O4 nanocomposite is displayed in Fig. 4i. The D and 
G bands are discernible around 1350 cm-1 and 1554 cm-1, 
respectively. The ID/IG ratio value increases to 0.87, indi-
cating the presence of more defect in the CF and polypyr-
role due to the introduction of CoFe2O4 nanoparticles. 
Significantly, the characteristic peaks of PPy remain vis-
ible in the magnified image (highlighted in yellow). Addi-
tionally, the peaks at 614 cm-1 and 661 cm-1 are associated 
with the T1g

-1 and A1g
-1 vibrational modes of the CoFe2O4 

phase respectively. Figure S8 depicts the FT-IR spectra of 
the CF@PPy@CoFe2O4 nanocomposite [49]. No new dis-
tinctive peaks emerge when compared with CF@PPy, sig-
nifying that the PPy continues to be encapsulated on the 
CF and that the integration of CoFe2O4 nanoparticles has 

not compromised its structural integrity. The magnetiza-
tion capacity of the CF@PPy@CoFe2O4 nanocomposite is 
characterized by room-temperature hysteresis loops [50], as 
depicted in Fig. 4j. The saturation magnetization intensity 
is 26.86 emu/g, while the remanent magnetization intensity 
(Mr) stands at 4.76 emu/g, as seen in the magnified image. 
The coercivity (Hc) is measured at 163.3 Oe, denoting the 
ferromagnetic nature of the CoFe2O4 nanoparticles. This 
magnetic attribute permits the composite to exhibit magnetic 
loss contribution, thus enhancing its impedance matching 
potential and loss capacity.

Figures 4k and S9 presents the XPS full scan of the 
CF@PPy@CoFe2O4 nanocomposite, with the emergence 
of characteristic peaks associated with the elements Fe and 
Co, signifying the successful incorporation of CoFe2O4 
nanoparticles into CF@PPy [51]. Figure 4l illustrates the 
Gaussian-fitted Co 2p spectrum, comprising two primary 
peaks aligned with the Co 2p1/2 and Co 2p3/2 energy levels, 
supplemented by two vibrational satellite peaks. The bind-
ing energies of the primary Co 2p3/2 peaks are observed at 
780.5 eV and 781.6 eV, while the peak at 796.4 eV/781.9 eV 
corresponds to Co 2p1/2, indicating the existence of two 
distinct valence states of Co. The peaks at 785.7 eV and 
803.2 eV are vibrational peaks originating from the coupling 
of the d-electron orbitals of Co atoms with spin orbita. In 
the Fe 2p spectrum (Fig. 4m), four main peaks are observed, 
with additional vibrational satellite peaks at 719.5 eV and 
733.7 eV. The peaks situated at 713.7 eV and 727.5 eV 
mainly derive from Fe3+ in the tetrahedral sites, while the 
peaks at 711.6 eV and 723.6 eV are mainly contributed by 
Fe2+ in the octahedral sites, indicating the presence of two 
distinct valence states of the Fe elements. Figure 4n depicts 
the O 1s spectrum, which can be deconvoluted into two dis-
tinctive peaks. The peak located at 530.6 eV corresponds to 
the M-O bond, typical of CoFe2O4 (Co single bond O single 
bond Fe), while the peak at approximately 531.8 eV can be 
attributed to the O-H bond, originating from surface oxygen-
ated functional groups and adsorbed water molecules [52].

In order to further elucidate the role of CoFe2O4 mag-
netic nanoparticles, the electromagnetic parameters of the 
CF@PPy@CoFe2O4 nanocomposite were examined, as 
illustrated in Fig. 5a–c. In Fig. 5a, a decrease ε′ values of 
the CF@PPy@CoFe2O4 nanocomposite is observed with 
increasing frequency. This trend aligns with the frequency 
dispersion behavior, mainly attributed to the delayed 
response rate of dipole polarization to the rapidly alternat-
ing electromagnetic field. This emergence of frequency 
dispersion behavior enables a broader absorption band of 
incident electromagnetic waves. The enhanced ε′ value 
of CF@PPy@CoFe2O4 nanocomposite may be ascribed 
to the incorporation of magnetic CoFe2O4 nanoparticles, 
which creates a greater number of heterogeneous inter-
faces between the three materials, thereby prompting 
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Fig. 5   a Real part of complex permittivity, b imaginary part of com-
plex permittivity, c  tanδε of CF, CF@PPy and CF@PPy@CoFe2O4; 
d  RL values versus frequency; e  conduction loss and f  polarization 
loss of CF, CF@PPy and CF@PPy@CoFe2O4; g Cole-Cole curve of 
CF@PPy@CoFe2O4; h impedance matching of CF@PPy@CoFe2O4; 

i attenuation constant of CF,CF@PPy and CF@PPy@CoFe2O4; j 
schematic illustration of conductive loss and polarization loss of CF, 
CF@PPy and CF@PPy@CoFe2O4 samples; k RLmin versus thickness 
of microwave absorbing materials reported recently
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stronger interfacial polarization and distinct polarization 
relaxation phenomena. Figure 5b presents the variation 
curves of ε” values with frequency for the three materials. 
Notably, the CF@PPy@CoFe2O4 nanocomposite displays 
significantly higher values than the other two samples, 
suggesting its superior microwave absorption properties. 
The existence of resonance peaks in the high-frequency 
range also indicates the occurrence of more polariza-
tion phenomena. As depicted in Fig. 5c, the CF@PPy@
CoFe2O4 nanocomposite exhibits an enhanced capacity 
for dielectric loss, particularly within the Ku band. Figure  
S10a illustrates the variation of µ′ and µ˝ values with 
the varying frequency of the CF@PPy@CoFe2O4 nano-
composite. The µ′ values range from 0.8 to 1.2, while µ˝ 
values span from 0 to 0.8. Notably, the complex perme-
ability exhibits resonance peaks in 12 ~ 16 GHz, indicat-
ing its effective attenuation of incident microwave energy 
magnetic field. Generally, magnetic loss tangent (tanδµ), 
a measure of a material’s magnetic loss ability, is char-
acterized by higher values indicating greater dissipation 
of magnetic field energy. The tanδµ curve of the CF@
PPy@CoFe2O4 nanocomposite (Fig. S10b) mirrors the 
trend observed in the imaginary part of the permeability 
(as shown in Fig. S10a). Notably, in the range of 2 ~ 18 
GHz, the dielectric loss tangent values overshadow those 
of the magnetic loss tangent, suggesting that the dielectric 
loss mechanism plays a dominant role in the attenuation 
of electromagnetic waves. Figure S10c presents the C0 
curve for the CF@PPy@CoFe2O4 nanocomposite. The C0 
value remains low, while in the 2 ~ 7 GHz range, it gradu-
ally decreases, indicating that magnetic loss is primarily 
caused by natural ferromagnetic resonance. Additionally, 
slight fluctuations in C0 values in the 12 ~ 16 GHz range 
suggest magnetic losses due to exchange resonance. Figure  
5d presents the RL projection drawing of the CF@ 
PPy@CoFe2O4 nanocomposite, shows their exceptional 
microwave absorption properties. Notably, the RLmin 
reaches − 55.33 dB at a matching thickness of 2.11 mm, 
indicating efficient absorption of electromagnetic waves. 
Furthermore, the EAB spans a broad range of 6.48 GHz 
at an optimal thickness of 2.42 mm, demonstrating the 
material’s wide absorption band. Figure S11 shows RL-
frequency curves, and the relationship between the simu-
lated thickness and the peak frequency for the samples. 
The quarter-wavelength formula is shown below:

where tm is the matching thickness of the absorber, λ is 
the wavelength of the incident electromagnetic wave, c rep-
resents the speed of light in vacuum, and ƒm is the corre-
sponding matching frequency. It can be clearly seen that the 
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vertical line of the RLmin peak of the CF@PPy@CoFe2O4 
nanocomposite is on the 1/4λ curve at the corresponding 
matching thickness.

To further analyze the dominant role of the loss mecha-
nism in dielectric loss, ε″ can be divided into two parts, as 
represented by the following equations:

where σ denotes the conductivity of the absorbing mate-
rial, �p′′ and �c′′ represent the polarization loss and conduc-
tive loss of the absorber, respectively. The values of �p′′ and 
�c

′′ are obtained using the nonlinear least-squares method 
of fitting. Typically, �c′′ can be equated to the parallel cir-
cuit of resistance and capacitance, while �p′′ represents the 
series circuit of resistance and capacitance. Since both CF 
and PPy are dielectric absorbing materials, the main loss 
mechanism is dielectric loss. Furthermore, the introduc-
tion of CoFe2O4 magnetic nanoparticles plays a role in 
optimizing the impedance matching as well as providing 
a certain amount of magnetic loss. The contribution of the 
CF@PPy@CoFe2O4 nanocomposite to the loss mecha-
nism, including polarization loss and conductive loss, was 
analyzed and fitted, and the results are depicted in Fig. 5e, 
f. As revealed in Fig. 5e, the conductive loss curves of all 
three samples exhibit a gradual decrease with the increas-
ing frequency. The polarization loss of CF@PPy@CoFe2O4 
nanocomposite is about 1.5 in the high frequency region. 
Furthermore, the polarization loss curves of the three sam-
ples show similar variations to the imaginary part of the 
complex permittivity, displaying several resonance peaks 
at high frequency (Fig. 5b). Figure S12 reveals that the 
polarization loss ratio of the sample is greater than 0.5, 
indicating that the polarization loss is the dominant factor 
in the dielectric loss. However, it is crucial to realize that 
neither of these loss mechanisms can be ignored over the 
entire range of measured frequencies. In contrast, dielectric 
loss is the result of the combined action of conductive loss 
and polarization loss. The dielectric relaxation phenome-
non of CF@PPy@CoFe2O4 nanocomposite is investigated 
using Cole-Cole semicircular curves, as shown in Fig. 5g. 
The appearance of semicircles indicates the occurrence of 
Debye relaxation phenomenon, which positively affects the 
dielectric relaxation of the absorber. Furthermore, the lin-
ear tails observed in the Cole-Cole curves suggest that the 
dominant loss mechanism in the material is conductive loss 
in the low-frequency range. Furthermore, the |Δ| value of 
the CF@PPy@CoFe2O4 nanocomposite (Fig. 5h) indicates 
a significantly larger area (|Δ| < 0.4) compared to the other 
two reference samples, CF and CF@PPy, suggesting that 
the introduction of CoFe2O4 magnetic nanoparticles greatly 
enhances the impedance matching, enabling more efficient 
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penetration of electromagnetic waves into the interior of the 
absorbing material. In Fig. 5i, it can be observed that the 
attenuation coefficient of the CF@PPy@CoFe2O4 nanocom-
posite is higher compared to the other two samples. It sug-
gests that the incident electromagnetic wave can be absorbed 
to a greater extent after entering the interior of the material.

To gain a deeper understanding of the loss mechanisms 
of the three materials, a comprehensive comparison of their 
respective conduction and polarization losses was under-
taken, as illustrated in Fig. 5j. It becomes apparent that the 
integration of PPy shells and CoFe2O4 nanoparticles into 
the CF matrix creates multiple heterogeneous interfaces, 
leading to interfacial polarization. Furthermore, these 
diverse interfaces give rise to a multiple of dipoles that act 
as polarization centers, facilitating effective absorption of 
incident electromagnetic waves. Additionally, the introduc-
tion of magnetic CoFe2O4 nanoparticles not only enhances 
the polarization loss but also enriches the magnetic loss 
mechanisms of the nanocomposite. Consequently, the 
superior electromagnetic wave absorption capacity of CF@
PPy@CoFe2O4 nanocomposite is governed by the combined 
effect of conductive loss in the low frequency range and the 
polarization loss in the high frequency range. In Fig. 5k, 
we present a comprehensive comparison of the electromag-
netic wave absorption properties of the CF@PPy@CoFe2O4 
nanocomposite with those of recently reported similar nano-
composites containing conductive polymers, and magnetic 
particle components [26, 29, 33, 53–59]. Notably, the CF@
PPy@CoFe2O4 nanocomposite stands out with its broader 
EAB and superior RLmin compared to the other materials. 

These remarkable findings highlight the exceptional electro-
magnetic wave absorption performance of the CF@PPy@
CoFe2O4 nanocomposite, making it a highly promising can-
didate for applications demanding thin, width band, light-
weight, and mechanically robust absorbers.

Figure 6 exhibits the electromagnetic loss mechanism 
diagram of the CF@PPy@CoFe2O4 nanocomposite, and 
its outstanding microwave absorption properties can be 
summarized to the following reasons. Firstly, the highly 
conductive CF constructs a 3D conductive network, pro-
viding efficient pathways for electrons hopping and migra-
tion, thereby amplifying the conduction loss of the sam-
ple. Additionally, the 3D conductive network triggers a 
multiple scattering effect, generating several reflections 
and scattering for the incident electromagnetic wave reach-
ing the absorber surface. Secondly, during the fabrication 
process of CF@PPy@CoFe2O4 nanocomposite, an abun-
dance of defects and surface functional groups are intro-
duced, resulting in the congregation of dipoles within the 
product. Influenced by the alternating electromagnetic 
field, the motion of these dipoles cannot keep up with 
the periodic changes of the electromagnetic wave, lead-
ing to the polarization dissipation of the electromagnetic 
wave. Additionally, the CoFe2O4 nanoparticles within the 
nanocomposites present eddy current effects and natural 
resonance, contributing to the magnetic loss capability of 
the sample and enriching its microwave absorption per-
formance. Finally, the core-shell structure of CF@PPy@
CoFe2O4 nanocomposite leads to multiple heterogeneous 
structures, inducing interfacial polarization phenomena, 
further enhancing the electromagnetic attenuation capabil-
ity of the material. In conclusion, these results provide an 
in-depth exploration of the electromagnetic wave attenua-
tion mechanism of the CF@PPy@CoFe2O4 nanocomposite 
and highlight the reasons behind their superior microwave 
absorption properties.

4 � Conclusions

In this study, a core-shell heterogeneous structure by inte-
grating a dielectric CF core, a conductive polymer PPy 
interlayer, and magnetic CoFe2O4 nanoparticles have been 
innovatively developed via electrodeposition and hydrother-
mal methodologies. The synthesized CF@PPy@CoFe2O4 
nanocomposite displays excellent electromagnetic wave 
attenuation ability and optimal impedance matching prop-
erties, which can be attributed to the synergistic interplay of 
the various components. Notably, at a matching thickness of 
2.11 mm, the nanocomposite attains a RLmin of -55.33 dB 
and an EAB value of 6.48 GHz at a matching thickness of 
2.42 mm, covering the entire Ku-band. This superior per-
formance is credited to multiple loss mechanisms, including 

Fig. 6   Schematic diagrams of electromagnetic wave attenuation 
approaches of CF@PPy@CoFe2O4 nanocomposite
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conduction loss, interfacial/dipole polarization, and natural 
resonance, which interact with each other and contribute 
to the electromagnetic wave attenuation of the absorber. 
Importantly, the introduction of the conductive polymer 
PPy enhances the impedance matching of the sample, while 
the employment of CoFe2O4 nanoparticles enriches the 
magnetic loss mechanisms. In conclusion, the CF@PPy@
CoFe2O4 nanocomposite provides significant insights into 
the microwave absorption mechanism of core-shell struc-
tured nanocomposites and serve as a robust foundation for 
future investigations in this arena.
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