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Abstract
Poly(lactide)/poly(butylene adipate-co-terephthalate)/carbon nanotubes (PLA/PBAT/CNTs) composites with a fixed com-
position were prepared by melt blending without strict control of the pretreatment of CNTs. Then, γ-ray irradiation was 
utilized to control microstructure, enhance component-interaction, and improve the performance of the prepared PLA/
PBAT/CNTs composites, and the effects of different doses of γ-ray irradiation on mechanical and dielectric properties of the 
composites were investigated. Mechanical test results reveal that the irradiated PLA/PBAT/CNTs composites exhibit much 
better mechanical properties than the unirradiated composites. Especially when the irradiation dose is 6 kGy, the tensile 
strength of the composites increases from 31.9 to 42.1 MPa; meanwhile, the elongation at break increases from 160 to 230%. 
Dielectric test results indicate that when the irradiation dose reaches 24 kGy, the dielectric constant of the composites is 
significantly enhanced and the dielectric loss is obviously decreased. The rheology tests reveal the irradiated PLA/PBAT/
CNTs composites display a significant increase in the storage modulus compared to unirradiated composites, which suggests 
that the γ-ray irradiation can induce the formation of crosslinking network in the polymer matrix; meanwhile, the interaction 
force between CNTs and polymer matrix is enhanced in the composites. The significant morphological changes observed 
in the SEM micrographs can be consistence with the rheology test results. This work provides a facile way for constructing 
high-performance PLA blend composites, which can be applied in electronic fields.
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1 Introduction

Polymer composite dielectrics have attracted numerous 
attention for outstanding flexibility, easy-to-process, and 
lightweight compared with ceramic materials, and they are 

considered the ideal choice for many power electronics, 
power conditioning, and pulsed power applications [1–7]. 
Yet, most of petroleum-based polymer is difficult to degrade. 
The waste electrical equipment based on polymer composite 
dielectrics can lead to “white pollution.” Poly(lactide) (PLA) 
is a biodegradable polymer synthesized by ring-opening  
polymerization of lactide, which can be derived from  
renewable sources such as corn, and PLA has been regarded 
as one of the most promising polymer matrix for polymer 
composite dielectrics owing to its excellent biodegradability, 
renewability, high strength, and easy processibility [8–10].

However, the poor dielectric properties of PLA restrict 
its application in dielectric materials. Blending PLA with 
particles which have excellent electrical properties is an 
effective way to improve the dielectric properties. The spe-
cific functional fillers, such as some carbon materials and 
transition metal oxides, exhibit good electrical properties 
[11–15]. Among the functional particles, carbon nanotubes 
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(CNTs) have excellent thermal, electrical, and mechanical 
properties; hence, CNTs as conductive fillers are increas-
ingly used to improve the dielectric properties of PLA com-
posites [16–18]. The mechanical and dielectric properties of 
PLA composites containing CNTs are strongly dependent on 
the CNTs-polymer interactions and the dispersion of CNTs 
in polymer matrix, but it has been reported that usually at the 
interface between the CNTs and the polymer, there is just a 
van der Waals interaction that is able to produce only a weak 
normal forces and almost null shear strength [19]. In order 
to improve the CNTs-polymer interactions and refine the 
dispersion of CNTs in polymer matrix, various attempts have 
been made. Surface functionalization of CNTs is an effective 
way to improve the interaction between CNTs and polymer 
matrix. Raja et al. introduced UV/ozone-modified carbon 
nanotubes into polyurethane (PU)/PLA blends, and it was 
found that the composites containing modified CNTs exhibit 
better properties compared to the pristine CNTs loaded sys-
tem, which is attributed to the higher polymer-CNTs inter-
actions and the fine dispersion of the modified CNTs in the 
matrix [20]. Seligra et al. prepared PLA-based nanocompos-
ites reinforced by Fenton reaction CNTs, and the excellent 
dispersion of the fillers in the PLA matrix was observed 
[21]. Sun and He synthesized CNT-g-poly(d-lactide) via 
ring-opening polymerization initiated by modified CNTs, 
and the results indicated that stereocomplex crystallites 
can be formed between the PLA matrix and CNT-g-poly(d-
lactide), which leads to the strong covalent/stereocomplex 
CNT-matrix interactions and well dispersion of CNTs [22].

On the other hand, the brittleness of PLA also restricts 
its application in dielectric materials. Blending PLA with 
flexible biodegradable polymers such as poly(butylene 
adipate-co-terephthalate) (PBAT), polycaprolactone (PCL), 
and polybutylene succinate (PBS) is efficient in improving 
the toughness of PLA [23–26]. PLA/PBAT blends are highly 
promising materials due to the considerable mechanical 
strength and the extreme toughness, but the PLA/PBAT 
blends are thermodynamically immiscible owing to their 
low interfacial adhesion, and the compatibility of PLA and 
PBAT is the key technical point to be addressed in order to 
obtain materials with excellent performance. Incorporating 
compatibilizers into the PLA/PBAT blends can improve 
the phase interface affinity of PLA and PBAT, and the 
compatibilizers can be mainly divided into two types that 
include physical compatibilizer and reactive compatibilizer.

The physical compatibilizers are commonly block 
copolymers or graft copolymers that can emulsify the 
phase interface to improve the interfacial adhesion of PLA/
PBAT blends. Wang et al. investigated the effect of the 
chain length of PLA-PBAT-PLA tri-block copolymers on 
the compatibilization of PLA/PBAT blends, and the results 
showed that the tri-block copolymer with long-chain PLA 
blocks achieved more effective compatibilization of PLA 

and PBAT compared to the short-chain PLA blocks [27]. 
Reactive compatibilizers can form a chemical bonding 
between the PLA and PBAT, thus enhancing the inter-
facial adhesion between the polymer phases. Wang et al. 
employed a multifunctional epoxy oligomer (ADR) as 
a reactive compatibilizer for improving the compatibil-
ity of PLA and PBAT, and it was revealed that ADR can 
induce the in situ formation of PLA-g-PBAT-branched 
copolymers and enhance the compatibility between PLA 
and PBAT [28]. Han et al. used environmentally friendly 
epoxidized soybean oil (ESO) to improve the compatibility 
of PLA and PBAT, and the results indicated that the ESO 
could react with PLA and PBAT to form a chemical bond-
ing interface [29].

Although the pretreatment of CNTs and the introduc-
tion of compatibilizers are demonstrated to be important in 
improving the interaction between PLA and PBAT in PLA/
PBAT blends or the interactions between CNTs and PLA in 
PLA/CNTs composites, to evaluate a facile way to realize 
the simultaneously effective control of the polymer–polymer 
interaction and CNTs-polymer interactions microstructure of 
PLA/PBAT/CNTs composites is still a challenge.

When exposed to the irradiation of high energy rays, free 
radicals can be formed inside the polymer matrix, and they 
may couple with each other to form covalent bonds, which 
is helpful in enhancing the interfacial adhesion between the 
polymer components [30, 31]. Jeon et al. blended poly(ε-
caprolactone) (PCL) into PLA and compatibilized the PLA/
PCL blends by electron-beam irradiation in the presence of 
glycidyl methacrylate (GMA), and the results showed that 
the electron-beam irradiation can induce the occurrence of 
cross-copolymerization at the PLA/PCL interface in the 
presence of GMA, which will lead to the improvement of 
interfacial adhesion in PLA/PCL blends [32]. Meanwhile, 
it has been reported that high energy ray irradiation has the 
potential to enhance the interaction force between nanofiller 
and polymer matrix. Tarawneh et al. prepared PLA-based 
thermoplastic elastomer containing CNTs and montmoril-
lonite nanoclay, and the results indicated that γ-ray irradia-
tion promoted better interactions and improved the compat-
ibility between the nanofiller and TPE [33].

However, according to our knowledge, there are few 
works utilizing γ-ray irradiation to control the microstruc-
ture and properties of PLA/PBAT/CNTs composites. In this 
work, we focus on whether the γ-ray irradiation can lead 
to the in situ enhancement of the component interaction in 
the composites. An epoxy chain extender (ADR) was intro-
duced into the composites in order to improve the process-
ing stability of PLA and PBAT during melting blending. 
Trimethylolpropane trimethacrylate (TMPTMA), an irra-
diation sensitizer, was incorporated into the system for the 
in situ formation of the crosslink network inside composites 
during γ-ray irradiation. The effects of γ-ray irradiation on 
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component interaction, mechanical, and dielectric properties 
of PLA/PBAT/CNTs composites were investigated.

2  Experimental section

2.1  Materials

PLA (4032D) was procured from Nature Works LLC, the 
USA, which possesses a weight average molecular mass 
(Mw) of 195,000 g/mol. PBAT (FBX 7011) was provided 
from BASF Corporation, Germany, which possesses a Mw 
of 40,000 g/mol. ADR (4468) was obtained from BASF 
Corporation, Germany, with a Mw of 7250 g/mol and an 
epoxy equivalent of 310 g/mol. CNTs with a 10–20-nm outer 
diameter ranger and 10–30-µm length ranger were purchased 
by Nanjing XFNANO Material Technology Co., Ltd., with 
a purity of over 95%. TMPTMA was provided from KPX 
Green Chemical Co., Ltd.

2.2  Sample preparation

The PLA/PBAT/CNTs composites were prepared using a 
melt compounding process employing HAPRO rheometer 
(RM-200C) at 180 °C and 50 rpm. The CNTs, TMPTMA, 
and ADR contents are fixed at 4 wt%, 3 wt%, and 2 wt%, and 
the composite had a PLA:PBAT composition of 70:30. The 
melt-blended composites were put into a vacuum flatbed 
vulcanizing machine and hot-pressed at 180 °C and 5 MPa.

2.3  Irradiation conditions

The samples were irradiated in vacuum at ambient condi-
tions with a 60Co γ source at the University of Science and 
Technology of China, Hefei, China, at an average dose rate 
of approximately 3 kGy/h. Target doses of 0, 6, 12, and 
24 kGy were applied. The sample preparation process is 
shown in Fig. S1.

2.4  Characterization

The tensile properties of the PLA/PBAT/CNTs composites 
were investigated by using an electrical universal testing 
machine (CMT4304, MTS) according to the ISO 527–3 
standards. The dielectric permittivity was measured using 
an Agilent E4980A LCR meter at a temperature of 30 °C. 
The rheological behavior of the composites was obtained 
by a rotating rheometer (DHR-1, TA, USA) with a paral-
lel plate geometry of 25  mm in diameter and a gap of 
0.9 mm at 180 °C. The morphologies of the cryofracture 
surfaces of PLA/PBAT/CNTs composites were observed by 
using a SU-8020 field emission scanning electron micros-
copy (FESEM; Hitachi, Japan) at 5 kV. The atomic force 

microscopy (AFM) measurements were carried out using 
tapping mode on a Dimension ICON AFM (Bruker, USA), 
and AFM pictures of the cryofracture surfaces were collected 
in the air temperature without any extra preparation. A Talos 
F200X G2 high-resolution transmission electron micros-
copy (HRTEM; Thermo Fisher Scientific, USA) was also 
employed to observe the structure of the composites. The 
nonisothermal crystallization behavior was performed by 
DSC (TA Q2000). The samples were firstly heated from 40 
to 200 °C and maintained for 5 min to eliminate thermal his-
tory, then cooled down to − 60 °C at a rate of 10 °C/min, and 
heated to 200 °C again. Thermal gravimetric analysis (TGA) 
was conducted to determine the thermal stability of the com-
posites under nitrogen atmosphere. A TA Q500 model TGA 
instrument was employed, and samples were heated from 
room temperature to 600 °C at a heating rate of 10 °C/min. 
The dynamic mechanical analysis (DMA) test was performed 
from 30 to 140 °C at a heating rate of 3 °C/min and frequency 
of 1 Hz by using the DMA Q800 (TA, USA).

3  Results and discussion

3.1  Mechanical properties, dielectric behavior, 
and rheological behavior of the composites

Figure 1a, b shows the mechanical properties of PLA/PBAT/
CNTs composites with different γ-ray irradiation doses. The 
unirradiated PLA/PBAT/CNTs composites exhibit a ten-
sile strength of about 31.9 MPa and an elongation at break 
of about 160%. When the irradiation is 6 kGy, the tensile 
strength of the composites reaches about 42.1 MPa, and the 
elongation at break of the composites reaches about 230%, 
which suggests that the mechanical properties of PLA/
PBAT/CNTs composite can be significantly improved after 
receiving a low dose of γ-ray irradiation. As the irradiation 
dose further increases, tensile strength of the composites is 
not obviously improved, but the elongation at break of the 
composites is decreased. It may be because that when the 
irradiation dose is further increased, the formation of more 
crosslinking network inside composites owing to the radi-
cal reactions induced by γ-ray can hinder the movement of 
polymer chain. Meanwhile, chain scission reactions can also 
occur inside the crosslinking network; thus, the elongation 
at break of the composites is decreased [34–36].

The dielectric constant (ε′) and dielectric loss (Tan δ) of 
the PLA/PBAT/CNTs composites are presented in Fig. 1c, d, 
individually. Compared to the unirradiated samples, the ε′ of 
the composites increases slightly when the irradiation dose is 
6 kGy, but the Tan δ decreases significantly. Above phenom-
enon can be related to the enhancement of the polymer-CNTs 
interaction. As discussed before, when under γ-ray irradia-
tion, the radicals can be formed in the composites, and the 
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CNTs can trap the generated radicals, leading to the increase 
in the interaction between polymer matrix and CNTs. The 
adjacent CNTs can act as electrodes, and the polymer can 
act as a dielectric to assemble the microcapacitor, which 
greatly increases the interfacial polarization and enhances 

the ε′ [37–40]. In addition, the enhanced interaction between 
the matrix and the filler can effectively reduce the Tan δ. 
When the irradiation dose further increases to 12 kGy, the 
ε′ and Tan δ decrease compared to the composite with an 
irradiation dose of 6 kGy. It is because when the irradiation 

Fig. 1  Mechanical properties, 
dielectric behavior, and rheo-
logical behavior of PLA/PBAT/
CNTs composites with different 
irradiation dose: a, b stress–
strain curve and mechanical 
parameters; c, d dielectric 
behaviors; e, f, g rheological 
behavior
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dose increases, the chain segment motion of the polymer 
matrix is also inhibited owing to the more densely crosslink-
ing networks in the polymer matrix; thus, the Tan δ of the 
composites is reduced. Moreover, the structural change of 
CNTs may lead to the change in the interfacial structure 
between polymer matrix and CNTs, resulting in the reduced 
interfacial polarization; hence, the ε′ of the composites is 
decreased. Interestingly, when the irradiation dose reaches 
24 kGy, the ε′ of the composites increases significantly, while 
the Tan δ remains lower than that of the unirradiated samples. 
It is possible that high-dose irradiation can further change 
the interfacial structure between CNTs and polymer matrix 
[41]. Meanwhile, further aggravation of chain scission reac-
tions can increase the molecular dipole orientation [42]. The 
smaller molecular size increases the number of interfaces per 
unit volume, which favors an increase in interfacial polariza-
tion, leading to an increase in the ε′ [43–46]. According to 
rheological results, a three-dimensional network of CNTs is 
formed when the irradiation dose reaches 24 kGy, indicat-
ing the formation of a conductive pathway, which causes 
an increase in leakage current, and ultimately a relatively 
high Tan δ compared to the irradiated sample [37, 47–49]. 
Overall, γ-ray irradiation has a strong effect on the interfacial 
structure between CNTs and polymer matrix, which leads 
to charge accumulation and induces interfacial polarization, 
resulting in lower Tan δ [43, 50].

Figure 1e−g displays the storage modulus (G′), loss 
modulus (G″), and complex viscosity (η*) of unirradiated 
and irradiated PLA/PBAT/CNTs composites, respectively. 
It should be pointed out that when the irradiation dose 
reached 24 kGy, a clear platform appeared in the low fre-
quency region according to the curves of G′ of PLA/PBAT/
CNTs composites with scanning angular frequency versus 
the logarithm of sweep frequencies, and G′ is not sensitive 
to the change in frequency, indicating that the motion of 
long-range polymer chains is significantly restricted [51]. 
The significant restriction of the motion of polymer chain 
is owing to the formation of the crosslinking network inside 
polymer matrix and the enhancement of the interaction 
between polymer matrix and CNTs. The G″ of the com-
posites is also significantly decreased compared to other 
irradiated samples. It is because the solid network of CNTs 
in the polymer matrix is more stable when the irradiation 
dose reaches 24 kGy; thus, the internal energy dissipation of 
the filler/polymer interphase is decreased [52–54]. Accord-
ing to mechanical properties and dielectric behavior, it may 
be assumed that when the irradiation dose is 24 kGy, the 
optimized interfacial structure between the polymer matrix 
and CNTs is obtained, although the structural change of the 
crosslinking network inside polymer matrix can weaken the 
mechanical properties of the composites.

In conclusion, the γ-ray irradiation has a strong effect on 
the mechanical properties, dielectric behavior, and rheological 

behavior of the composites, which might be attributed to 
the enhancement of the CNTs-polymer interactions and 
polymer–polymer interactions induced by the irradiation.

3.2  Morphological analysis of the composites

The SEM, AFM, and TEM micrographs of cryogenically frac-
tured surfaces of PLA/PBAT/CNTs composites are presented 
in Fig. 2. As can be observed from the SEM micrographs, 
compared to the unirradiated composites, the irradiated com-
posites show a rough fracture surface over the entire micro-
graphs. Moreover, more CNTs are pulled out from the polymer 
matrix with the increase of irradiation dose. The roughness 
observed for the fractured surface of the irradiated samples 
could evidence vigorous interfacial interactions between PLA 
and PBAT phases. Meanwhile, AFM micrographs suggest that 
the phase structure of the composites is significantly changed 
after irradiation. When the composites are under irradiation, 
macromolecular radicals can be formed in the polymer matrix; 
they can couple with each other to form a crosslinking network 
structure. The reactions between PLA macromolecular radicals 
and PBAT macromolecular radicals can enhance the interac-
tion between PLA and PBAT, especially the TMPTMA located 
at the interface between two polymer phases can promote the 
crosslinking reactions between PLA and PBAT chains, which 
can further improve the compatibility of two polymers [55]. 
Thus, the phase structure of the composites and the interac-
tion between the polymer matrixes are obviously changed after 
irradiation. On the other hand, since the CNTs can act as a 
radical scavenger and anchor radicals on CNTs, the interaction 
between CNTs and polymer matrix can also be improved after 
irradiation [56]. Take consideration that CNTs tend to migrate 
into the low-viscosity PBAT phase, the covalent interactions 
between CNTs and PBAT macromolecular radicals may play 
a dominant role in the composites [57]. Owing to the simul-
taneously enhancement of the polymer–polymer interaction 
and polymer-CNTs interaction, the microstructure of the PLA/
PBAT/CNTs composites is significantly changed after irradia-
tion. It should be mentioned that the structure of CNTs is not 
significantly changed after irradiation according to the TEM 
micrographs; hence, the enhancement of the mechanical and 
dielectric properties of the composites is mainly due to the 
change in the polymer–polymer interactions and polymer-
CNTs interactions under irradiation.

3.3  Nonisothermal crystallization behavior 
and thermal stability of the composites

The DSC and TG curves of the unirradiated and irradiated 
composites are exhibited in Fig. 3, and the relevant parameters 
are listed in Tables 1 and 2. The results show the γ-ray irradia-
tion has a significant influence on the crystallization behavior 
of the PLA/PBAT/CNTs composites. As can be seen in Fig. 3a, 
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PLA does not exhibit any crystallization peak during the cool-
ing process. The cold crystallization temperature (Tcc) of irra-
diated samples is all increased during the secondary heating 
process in Fig. 3b, while the melting point (Tm) of PLA is also 
decreased. It is because the formation of crosslink network 
can restrict the PLA chain segment motion for crystallization, 
so that PLA segments are hard to stack regularly, and the Tcc 
of the PLA is increased. On the other hand, imperfect crystal-
lites are formed inside the composites after irradiation because 
the crosslinking network interferes with the crystallization 
process; hence, the Tm of the PLA is decreased [58–60]. It  
should be mentioned that although the crystallization ability 
of PLA is weakened, the glass transition temperature of PLA  
is significantly enhanced, which is benefit for the improve-
ment of the thermal stability of the composites [61].

The residual mass of the composites after thermal decom-
position can be used to characterize the actual amounts of 
inorganic fillers added. As can be seen in the TG curves, 
the residual mass of all composites is essentially the same 
at 6%, indicating the presence of residual carbon formed 
by polymer cracking in addition to CNTs [62–64]. On the  
other hand, there is a slight drop in the mass of the compos-
ite around 200–300 °C for unirradiated composite, which 
may correspond to the decomposition of TMPTMA. After 
irradiation, the slight drop in mass disappears; it is because 
that the covalent bond is formed between TMPTMA and 
polymer chains inside composites owing to the irradiation-
induced radical reactions, which improve the thermal sta-
bility of TMPTMA. As the irradiation dose increases, the 
thermal stability of the composites does not significantly 

Fig. 2  SEM, AFM, and TEM micrographs of PLA/PBAT/CNTs com-
posites with different irradiation doses: a, e SEM images (0 kGy); b, 
f SEM images (6 kGy); c, g SEM images (12 kGy); d, h SEM images 

(24 kGy); i, j AFM image (0 kGy); k, l AFM image (24 kGy); m, n 
TEM image (0 kGy); o, p TEM image (24 kGy)
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change. Although the formation of crosslinked polymer net-
work inside composites induced by irradiation is helpful for 
the improvement of thermal stability of the composites, the 
concurrent chain scission reactions can also weaken the ther-
mal stability of the composites; hence, the thermal stability 
of the samples is not obviously improved [65–67].

3.4  Dynamic mechanical analysis of the composites

Temperature dependence of storage modulus and loss factor 
(Tan δ) for the composites with different irradiation dose are 
shown in Fig. 4. The storage modulus of the composites is 
obviously increased and then decreased during irradiation. 
On the other hand, all irradiated composites exhibit higher 
glass transition temperature determined for the maximum 
of the loss factor. Above phenomenon also indicates the 
enhancement of the CNTs-polymer interactions, and 
polymer–polymer interactions inside composites induced by 
irradiation can significantly restrict the movement of PLA 

and PBAT chains, which is consistence with the DSC and 
rheological results. When the irradiation dose reaches 24 kGy, 
the storage modulus of the composites is decreased; it may be 
because that the free chains formed at higher irradiation dose 
can improve the mobility of PLA and PBAT chains.

In summary, high performance PLA/PBAT/CNTs 
composites are obtained when exposed to the γ-ray. The 
structural evolution of the composites under irradiation is 

Fig. 3  Nonisothermal crystal-
lization behavior and thermal 
stability of PLA/PBAT/CNTs 
composites with different irra-
diation dose: a, b DSC curves; c 
TG curves; d DTG curves

Table 2  Thermal stabilities characterization date of PLA/PBAT/
CNTs composites with different irradiation doses

Irradiation 
dose (kGy)

T5% (°C) T50% (°C) Tmax1 (°C) Tmax2 (°C)

0 318.4 359.3 355.8 394.3
6 318.7 358.1 354.3 391.3
12 319.3 358.8 353.3 389.8
24 315.4 356.9 351.8 393.0

Table 1  Thermal characteristics 
data from DSC analysis of PLA/
PBAT/CNTs composites with 
different irradiation doses

Irradiation dose 
(kGy)

Tg (°C) Tc (°C) Hcc (J/g) Tm (°C) Hm (J/g) Xc (%)

0 55.3 109.5 16.9 158.5/164.2 19.5 4.4
6 60.2 116.5 17.8 160.6 18.6 1.3
12 60.0 117.3 18.3 160.3 18.9 1.0
24 60.3 120.6 22.7 158.2 23.7 1.7



 Advanced Composites and Hybrid Materials (2024) 7:4545 Page 8 of 11

illustrated in Fig. 5. After irradiation, PLA and PBAT mac-
romolecular radicals can be formed in the composites, and 
the reactions between PLA macromolecular radicals and 
PBAT macromolecular radicals can enhance the interaction 
between PLA and PBAT. The TMPTMA located at the inter-
face can promote the crosslinking reactions between PLA 
and PBAT chains, thus further improve the interfacial adhe-
sion between PLA and PBAT. Meanwhile, the TMPTMA 
can also facilitate the crosslinking process of PLA or PBAT, 
which is beneficial for the improvement of the mechanical 
properties of the composites. The interaction between CNTs 
and polymer matrix can be also improved after irradiation. 
Although CNTs tend to migrate into the low-viscosity PBAT 
phase and the irradiation may not significantly change the 
dispersion of CNTs in the polymer matrix, the simultane-
ously enhancement of the polymer–polymer interaction 
and polymer-CNTs interaction can obviously improve the 
properties of PLA/PBAT/CNTs composites, especially the 
change in interaction between polymer matrix and CNTs 

has a strong impact on the dielectric properties of the 
composites.

4  Conclusion

PLA/PBAT/CNTs composites with excellent mechanical and 
dielectric properties were prepared without strict control of 
the pretreatment of CNTs, because the in situ enhancement 
of component interaction in the composites could be real-
ized when the composites are exposed to γ-ray irradiation. 
The microstructure and properties of the composites can be 
effective controlled by simply adjusting the irradiation dose. 
When the irradiation dose is 6 kGy, the tensile strength of 
the composites increases from 31.9 to 42.1 MPa, and the 
elongation at break increases from 160 to 230% compared 
to unirradiated composites. As the irradiation dose reaches 
24 kGy, the dielectric constant of the composites is sig-
nificantly enhanced, and the dielectric loss is obviously 

Fig. 4  DMA curves of PLA/
PBAT/CNTs composites with 
different irradiation doses: a 
temperature dependence of 
storage modulus, b temperature 
dependence of tan δ

Fig. 5  The structural evolution 
of the PLA/PBAT/CNTs com-
posites under γ-ray irradiation
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decreased; meanwhile, the composites also possess good 
rigidity-toughness balance. The formation of crosslinking 
network and the enhancement of interaction force between 
CNTs and polymer matrix in the nanocomposites are proved 
by rheology tests, and SEM micrographs indicate the mor-
phology of the composites is significantly changed with the 
γ-ray irradiation. In summary, this work provides a facile 
way to construct high-performance PLA blend composites 
without the pretreatment of CNTs, which can be applied in 
electronic fields.
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