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Abstract
In comparison with unfoamed polymers, polymer foams find extensive application in various civil and industrial fields such 
as packaging, sports equipment, absorbents, and automotive components due to their advantages of lightweight, high strength-
to-weight ratio, excellent insulation properties, high thermal stability, high impact strength, toughness, and long fatigue life. 
The preparation of conventional polymer foam typically necessitates the incorporation of chemical foaming agents into the 
polymer, raising environmental issues, which pave the way for the utilization of supercritical fluids. Supercritical fluids 
exemplified by supercritical carbon dioxide or supercritical nitrogen, are renowned for their environmentally friendly and 
non-toxic characteristics, thus offering a viable alternative to conventional chemical foaming agents. Supercritical fluids 
exhibit gas-like diffusion and liquid-like density, offering excellent plasticization effects on polymer melts. This substan-
tially reduces the melt viscosity, melting point, and glass transition temperature of the polymer, facilitating the preparation 
of uniformly distributed, smaller-sized, and higher-density microcellular foams. This review first provides an overview of 
the characteristics of supercritical fluids and commonly used supercritical fluid foaming agents. Subsequently, the dissolu-
tion, diffusion, and interactions of supercritical fluids in polymers were discussed, followed by a focused elucidation of the 
cell nucleation (homogeneous and heterogeneous) and growth (island model and cell model). Finally, the application of 
supercritical fluids in the foam manufacturing techniques is highlighted, including batch foaming, extrusion foaming, and 
injection foaming, while emphasizing the challenges that still exist in polymer foaming.
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1 Introduction

Polymer foam is a kind of solid/gas composite material 
characterized by a polymer matrix replete with numerous 
tiny foam holes, commonly referred to as porous polymer 
material. In contrast to unfoamed polymers, polymer foam 
exhibits many advantages, including low density, lower ther-
mal conductivity, high impact strength, and lower dielectric 
constant, etc. [1–4]. Owing to their outstanding functional 
characteristics and low material cost, polymer foam can be 
widely used in some fields such as aircraft, automobiles, 
food packaging, sports equipment, insulation materials, 
and filter materials [5–14]. In recent years, the increased 
demand for polymer foam, coupled with its extensive appli-
cations, has driven the rapid development of the polymer 
foam industry.

The conventional approach for preparing polymer 
foams employs chemical foaming technology [15–20]. 
Chemical foaming agents, such as azodicarbonamide, 
p-toluenesulfonyl hydrazine, sodium bicarbonate, and zinc 
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carbonate, have often been employed in polymer foaming, 
releasing gases such as carbon dioxide  (CO2) and nitrogen 
 (N2) upon decomposition by heating. The released gas 
dissolves within the polymer matrix and initiates bubble 
nucleation, thereby facilitating the creation of a cellular 
structure. In addition to adding a chemical blowing agent 
into the polymer matrix, the inert gases also would be 
generated by chemical reactions between the two polymers, 
which can initiate the nucleation and growth of cells. The 
chemical foaming method has attracted much attention due 
to its advantages, including cost-effectiveness, simplicity, 
shortened molding cycles, and the capacity to fabricate 
large and intricate structural components. However, 
there are some drawbacks in chemical foaming: firstly, 
incomplete decomposition of the foaming agent leads to the 
existence of residues in the resulting foam, restricting its 
applications, especially in the medical industry. Secondly, 
the gas generated by chemical foaming is not easy to 
diffuse uniformly within the polymer, posing challenges 
in controlling the ultimate cellular structure [21]. The 
prepared foam material presented inferior cell morphology 
and non-uniform cell size, which is not conducive 
to improving the performance of the foam product. 
Furthermore, chemical foaming agents are detrimental to 
the human body, resulting in skin, respiratory irritation 
and allergic reactions [22–24], thus failing to meet green 
environmental protection standards.

To meet the green, healthy, and pollution-free develop-
ment, supercritical fluids are being considered as sustainable 
alternatives for the replacement of the traditional chemical 
blowing agents during polymer foaming. Supercritical flu-
ids combine the properties of both liquids and gases. They 
exhibit densities and solvating properties akin to liquids 
while concurrently possessing diffusivity and viscosity lev-
els on par with gases. The plasticizing effect of supercriti-
cal fluid on polymers can drastically reduce the melt vis-
cosity, melting point, and glass transition temperature (Tg) 
of the polymer, which is conducive to obtaining moderate 
processing conditions and easy to control over the process-
ing procedure. Polymer foaming with supercritical fluids 
offers several advantages over chemical foaming, including 
the absence of organic solvents, non-toxicity, better control 
of foaming conditions (e.g., temperature and pressure), and 
the ability to achieve microcellular foam with higher cell 
density, uniform cell size distribution, and smaller cell size. 
Consequently, the preparation of polymer foam using the 
supercritical fluid has emerged as a central research focus. 
Several articles have been published, covering various topics 
such as the formation of nanocellular foam [25–27], polymer 
blend foaming [28, 29], semi-crystalline polymers foaming 
[30, 31], the foaming of elastomer materials [32–34], engi-
neering plastics and composites foaming [35, 36], and bio-
logical materials foaming [37, 38]. Polymer foaming assisted 

by supercritical fluid constitutes a multifaceted dynamic 
process necessitating an in-depth grasp of polymer science, 
physics and chemistry of solutions and interfaces, thermo-
dynamics, and interacting substances, in addition to basic 
knowledge of process engineering and polymer materials. 
In this letter, we initially present fundamental insights into 
supercritical fluids and subsequently delve into a compre-
hensive analysis of their applications in polymer foaming 
processes. Lastly, we discussed the research and develop-
ment of supercritical fluids in foam technology.

2  Supercritical fluids

2.1  Supercritical fluids: definition and properties

The growth of the economy has led to a heightened promi-
nence of environmental concerns. Green chemistry stands 
out as a vital approach for addressing contemporary envi-
ronmental challenges. Simultaneously, there is a growing 
emphasis on adopting a green and health-oriented lifestyle. 
Consequently, physical foaming agents, particularly super-
critical fluids, are progressively supplanting chemical foam-
ing agents [39].

Pure substances undergo state changes, transitioning 
between gas, liquid, and solid phases as dictated by tempera-
ture and pressure. At a specific combination of temperature 
and pressure, the liquid–gas interface disappears, marking 
the critical point. Supercritical fluid is characterized as 
a dense-phase fluid with both pressure and temperature 
exceeding their respective critical values (see Fig. 1). Under 
these conditions, the substance presents a behavior between 
gases and liquids. Specifically, it can permeate solids akin 
to a gas and dissolve materials in a manner reminiscent of 
a liquid (see Table 1) [40]. Furthermore, in proximity to 
the critical point, it is possible to finely adjust the density 

Fig. 1  Typical phase diagram for a pure substance
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of supercritical fluids through minor alterations in pressure 
or temperature within the critical region [41]. Table 2 lists 
the parameters of supercritical fluids of several common 
substances [40]. Supercritical fluids exhibit low viscosity 
and nearly zero surface tension. Consequently, they facilitate 
rapid mass transfer into swollen polymers [42]. Moreover, 
Supercritical fluids are characterized by their chemical inert-
ness, non-toxicity, and non-flammability [43]. The unique 
amalgamation of gas-like viscosity and liquid-like density 
found in the supercritical fluids renders them the outstand-
ing solvents or plasticizers in polymer processing, such as 
polymer blending, polymer modification, particle produc-
tion, polymer composites, polymer synthesis, and especially 
in microcellular foaming [2, 44–47].

2.2  Supercritical carbon dioxide

Currently, supercritical  CO2 represents the predominant 
foaming agent in supercritical foaming technology, offer-
ing the greatest practical potential for development. It serves 
as the primary compressible fluid capable of facilitating the 
formation of polymer foam with microcells in both batch 
and continuous processes [48]. The plasticizing effect of 
Supercritical  CO2 on polymers can enhance the mobility 
of polymer chains and reduce the viscosity of polymer melt 
[49–52] by lowering the Tg or melting temperature (Tm) [53].

Furthermore,  CO2 possesses numerous advantages: (a) 
Being a component of the atmosphere,  CO2 is cost-effective 

to obtain and readily available, as it can be directly extracted 
from the air without causing environmental pollution. (b) 
It exhibits favorable physical properties, including non-
toxicity, chemical stability, and non-flammability. (c)  CO2 
stands as the most commonly employed substance, primarily 
owing to the low critical temperature (31.1 °C) and moderate 
critical pressure (7.38 MPa), rendering it well-suited for 
polymer foaming applications.

Supercritical  CO2 foaming technology offers several nota-
ble advantages. (a) It does not emit harmful gas, avoiding 
damage to the environment. (b) Controlling the foaming 
parameters is straightforward, allowing for precise adjust-
ment of cell size. (c) Supercritical  CO2 exhibits high solubil-
ity, robust diffusion capabilities, making it advantageous for 
producing porous polymer materials with a high nucleation 
density. (d)  CO2 removal is straightforward and leaves no 
residual traces [54–58].

Supercritical foaming technology employing supercriti-
cal  CO2 as the foaming agent finds extensive application. 
Firstly, it aids in the extrusion foaming for various appli-
cations, including food production and the manufacture of 
composite materials. Nevertheless, this integrated approach 
is a recent development and necessitates additional investi-
gation [59]. Secondly, it amalgamates the benefits of pro-
cessing materials from solvent solutions and supercritical 
 CO2 batch foaming to create foams with controllable cells 
while minimizing solvent residues [48]. Thirdly, supercriti-
cal  CO2 foaming yields porous silicone rubber foam materi-
als suitable for mechanical energy harvesting. For example, 
supercritical  CO2 is used in extrusion foaming to produce 
samples for energy harvesting from tires, while supercriti-
cal  CO2 injection foaming is employed to fabricate shoe-
shaped samples for capturing energy produced by human 
motion [57]. Fourthly, supercritical  CO2 is integrated with 
the elimination of solid porogens to produce drug-loaded 
scaffolds, addressing the challenge of cell size adjustment 
druing foaming [56].

2.3  Supercritical nitrogen

Supercritical fluid technology utilizing  N2 as the foaming 
agent encompasses the following characteristics. (a) The 
resulting polymer foam exhibits a significantly small cell 
size and a high cell density. (b) This foaming process is 
environmentally friendly and does not emit toxic gases. (c) 
 N2 diffuses slowly, reducing the probability of foam collapse 
after formation. The utilization of supercritical  N2 proves 
advantageous for foaming elastic materials. Compared to 
supercritical  CO2, the more uniform cell structure in ethyl-
ene-propylene diene monomer (EPDM) rubber profile extru-
dates was observed when supercritical  N2 was employed as 
the foaming agent [60]. The foaming behavior of polypro-
pylene (PP) injection molds with  N2 and  CO2 as physical 

Table 1  Value Ranges of Density, Viscosity, and Diffusivity for Gas, 
Supercritical Fluid, and Liquid

Properties Gas Supercritical fluid Liquid

Density (g/L) 0.6–2 100–1000 600–1600
Viscosity (μPa.s) 10–50 10–30 200–3000
Diffusivity ×  10−9  (m2/s) 10,000 10–100 0.2–2

Table 2  Critical Conditions of Representative Supercritical Fluids

Solvent Critical Temperature (°C) Critical 
Pressure 
(bar)

CO2 31 74
N2 -147 34
ammonia 132 113
diethyl ether 194 36
hexane 234 30
acetone 235 47
methanol 239 81
ethanol 243 64
toluene 319 41
water 374 221
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foaming agents was studied using a visual observation 
device equipped with temperature and pressure monitoring 
systems [61]. The results showed that polymer foams with 
smaller cell size, uniform cell structure and higher cell den-
sity employing  N2 as the foaming agent could be obtained, 
which can ascribed to the lower solubility and higher super-
saturation of  N2 within the polymer. In supercritical foaming 
technology, compared to  CO2, the effectiveness of  N2 as 
a foaming agent is notably lower, resulting in a relatively 
higher consumption of  N2. As a result, in practical applica-
tions, the cost of using  N2 as the foaming agent surpasses 
that of utilizing  CO2.

2.4  Co‑foamer

Supercritical  CO2 and supercritical  N2 are the predomi-
nant foaming agents employed in contemporary super-
critical foaming technology, with infrequent utilization of 
other supercritical fluids. Furthermore, co-foaming agents 
involving the admixture of supplementary reagents, includ-
ing ethanol, water, and acetone, with supercritical  CO2 or 
supercritical  N2 are introduced during the supercritical 
foaming technology to enhance the foaming ability of plas-
tic materials.

In batch foaming, the effects of ethanol content, tempera-
ture, and pressure on the cell structure of polycaprolactone 
(PCL) were studied by using  CO2 and  CO2-ethanol mix-
tures, respectively [62]. Compared to supercritical  CO2, a 
more uniform cell structure was produced with  CO2-ethanol 
mixtures as the blowing agent. Furthermore, the cell size 
increases and the cell density decreases with increasing etha-
nol concentration. The foaming behavior of thermoplastic 
polyurethane (TPU) was studied by employing  CO2-water as 
co-foaming agents, and the uniform cell size of the foamed 
sample was obtained [63]. Salerno et al. utilized a  CO2-ethyl 
lactate mixture to facilitate the foaming of both PCL and 
polylactic acid (PLA). The results revealed that incorporat-
ing ethyl lactate resulted in a decrease in the operational 
temperature and enhanced the morphological uniformity of 
the resulting foam [64]. The foaming behavior of polystyrene 
(PS) with supercritical  CO2-N2 as co-foaming agents was 
explored under elevated temperature and pressure through a 
visualization system [65]. A synergistic effect was achieved 

when  CO2 and  N2 were combined at 3:1, which expanded 
the processing temperature range to achieve a foamed mate-
rial with the highest cell density. Furthermore, supercritical 
 CO2 enhances the solubility of supercritical  N2 within PS, 
leading to an augmented nucleation rate of cells. Conse-
quently, co-foaming agents have the potential to enhance 
foam properties and hold great promise in the production of 
high-performance polymer foams [66].

3  Principle of foaming process

The process of polymer foaming typically encompasses 
the fundamental stages of the formation of a polymer/gas 
homogeneous system, cell nucleation, and cell growth and 
stabilization, as shown in Fig. 2.

Under specific temperature and pressure conditions, gas 
diffuses into the polymer matrix, eventually reaching a state 
of dissolution equilibrium to create a polymer/gas homoge-
neously saturated system. The plasticizing effect of gas on 
polymer can enhance the mobility of the polymer molecu-
lar chain, thereby reducing the free energy barrier for cell 
nucleation. The cell nucleation is driven by thermodynamic 
instability within the system [67–69]. This instability can be 
induced by adjusting pressure and temperature during foam-
ing, effectively altering gas solubility in the solution [70, 
71]. Once thermodynamic instability occurs, the polymer 
and gas undergo phase separation, fostering cell nucleation. 
However, only nuclei that reach a critical size can persist 
stably. Subsequently, the gas dissolved within the polymer 
matrix diffuses into the cell nucleus, causing an increase in 
its diameter. The process of cell growth involves continu-
ous gas consumption and reduction. After a certain period, 
insufficient gas remains in the system to sustain further cell 
expansion, leading to a decrease in the driving force for bub-
ble growth. Meanwhile, with decreasing temperature, the 
viscoelasticity of the polymer melt increases, leading to an 
increase in resistance to cell growth. Eventually, cell growth 
stopped and the cell structure and density remained stable. A 
comprehensive exploration of the foaming mechanism can 
optimize the processes of polymer foaming, thereby enhanc-
ing the performance of polymer foam.

Fig. 2  Schematic diagram of 
supercritical fluid foaming
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3.1  Formation of a polymer/gas homogeneous system

The inert gas (such as  CO2 or  N2) is diffused and dissolved 
within the polymer under specific temperature and pressure, 
resulting in the formation of a uniform polymer/gas satura-
tion system. During the saturation phase, the pressure gradi-
ent at the polymer matrix surface causes two phenomena: 
gas dissolution and diffusion within the polymer matrix. The 
primary foaming agent employed in supercritical foaming 
technology is supercritical  CO2. Therefore, the discussion 
was only focused on the dissolution and diffusion of  CO2 
within polymer matrix.

3.1.1  Dissolution and diffusion of  CO2 in polymer matrix

Achieving a homogeneous polymer/gas system is pivotal in 
the foaming process, and it represents a significant challenge 
in the development of microcellular foaming. Insufficient 
uniformity results in low cell density and a broader cell size 
distribution in the final product. To ensure the formation of 
a homogeneous system, an appropriate quantity of foam-
ing agent should be added to ensure complete dissolution 
within the polymer melt. Hence, determining gas solubility 
in polymer melts holds paramount importance.

Solubility measures the quantity of gas absorbed by a 
material. The concentration of dissolved gas (C) at a given 
temperature is determined by the pressure (P), as expressed 
in Eq. (1) [72]:

where S represents the gas solubility. The effect of pressure 
on the absorption of  CO2 was investigated in polyetherimide 
(PEl) plaques with a thickness of 1.5 mm [73]. An increase 
in pressure could potentially raise the maximum solubility 
of  CO2. Yu et al. studied the dissolution behaviors of  CO2 in 
PLA melt with the framework of dynamic density functional 
theory and found that the solubility increases with increasing 
pressure (see Fig. 3).

The solubility of gas (S) is also temperature-dependent, 
as outlined by previous studies [77, 78]:

 where S0 is the pre-exponential factor, ΔHs is activation 
energy for sorption(negative), T is temperature and R is gas 
constant. Since ΔHs is negative, the gas solubility decreases 
with increasing the temperature [79]. Raising the tempera-
ture from 40 °C to 150 °C led to a 50% reduction in  CO2 
absorption within poly(ethylene glycol), covering satura-
tion pressures ranging from 5 to 15 MPa [80]. Sato [81–83] 
investigated the solubility of  CO2 in a range of polymers 
(such as PP, polystyrene (PS), high-density polyethylene 

(1)C = S(C)P

(2)S = S0e
−ΔHs

RT

(HDPE), etc.) under elevated temperature and pressure con-
ditions. The study revealed that as the temperature increased, 
the solubility of  CO2 in polymers decreased.

In most cases, achieving fully saturated polymer/gas sys-
tems is imperative for the nano-cell formation process, making 
the absorption of  CO2 to be a pivotal parameter. Therefore, 
the adsorption time must be adequate to attain equilibrium 
between the polymer and gas, which depends on gas diffusion. 
The temporal progression of the gas concentration distribution 
is also elucidated using Fick’s classical law, as outlined below:

where D12 represents the mutual binary diffusion coefficient, 
reliant not only on the volume fraction of dissolved  CO2 but 
also on the average hole free volume within the polymer/
CO2 system [84, 85]. According to the free volume theory, 
temperature and local thermal expansions lead to fluctua-
tions in solvent diffusion within the polymer [86, 87]. The 
impact of pressure on gas diffusion within polymer materials 
was emphasized by the free volume theory [88]. Polymer 
chains have a tendency to constrict under high pressure, 
restraining free volume. Simultaneously, the gas concentra-
tion rises, resulting in an expansion of free volume. For a 
given temperature, it considers both of these effects, the fol-
lowing relation was proposed:

where D0 represents a pre-exponential factor, β signifies 
a negative term associated with the density increase of 
the polymer matrix, and α is a positive term linked to the 

(3)
�C

�t
= ∇ ⋅ D12∇C

(4)D(P,C) = D0e
�P+�C

Fig. 3  Solubilities of  CO2 in PLA at various temperatures and pres-
sures.  x1 is the mass fraction (wt%) of  CO2 in PLA melt. The scatter 
dots at different temperatures (463 k [74], 333 k [75], 308 k [76]) are 
the experimental data
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increase of the gas concentration within the polymer matrix. 
The increasing of free volume in the polymer/CO2 system 
enhances solvent diffusion [49]. Similarly, when a solvent 
is introduced, increasing the system's free volume, the glass 
transition occurs at a temperature below that of the polymer 
Tg [87].

3.1.2  Determination of solubility of carbon dioxide 
in polymers

Researchers have employed various methods to assess the 
solubility of gas in polymers. The pressure decay method 
is commonly employed to ascertain gas solubility in poly-
mers due to its simplicity and cost-effective equipment 
setup. However, the pressure decay method presents chal-
lenges when measuring gas solubility in molten polymers, 
as it necessitates a high-resolution pressure sensor capable 
of functioning at elevated temperatures. Moreover, this 
approach demands a sample with a larger size, inevitably 
extending the measurement duration.

An alternative approach involves employing an electronic 
balance to directly measure mass increments in adsorption 
experiments [89, 90]. This method offers rapid measure-
ments and high accuracy. Nonetheless, it is primarily 
applicable for assessing gas solubility in polymers at lower 
temperatures due to electronic balance operational con-
straints. In response, researchers have developed systems 
to independently control the temperature of the gas absorp-
tion chamber and electronic balance [91, 92]. A drawback 
of this approach is that the change in gas density caused 
by convection can affect measurement accuracy. Kleinrahm 
and Wanger introduced a magnetically suspended balance 
(MSB) to address this issue effectively [93]. In this device, 
the sample is positioned within a compartment separate from 
the gas adsorption chamber, allowing to avoid effectively the 
influence of convection on the mass determination. Conse-
quently, this apparatus can assess gas solubility and diffu-
sivity in polymers under elevated temperature and pressure. 
Some researchers have embraced this technique to ascertain 
gas solubility in polymers [83, 94, 95]. Nevertheless, the 
buoyancy effect of the swollen polymer causes the meas-
ured dissolved gas mass (referred to as apparent solubility) 
by the magnetic levitation balance to be lower than the true 
solubility.

When precise pressure–volume-temperature data for 
polymer-gas mixtures is unavailable, researchers commonly 
employ different equations of state (EOS) to estimate expan-
sion levels to reduce the effects of buoyancy [96, 97]. The 
Sanchez Lacombe equation of state [98] and Simha Sam-
cynsky equation of state [99] are two widely used equations 
of state.

3.1.3  Theory on polymer/CO2 interactions

In solute/solvent systems, solubility is contingent upon 
the interactions among the constituent components. The 
Flory–Huggins interaction parameter χ is commonly 
employed to assess the affinity between solute and solvent 
[100]. χ is directly proportional to (δ1 – δ2)2, where δ1 and 
δ2 represent the solubility parameters of components 1 and 
2, respectively. When δ1 and δ2 exhibit proximity, there 
is a commensurate increase in the solubility between the 
constituent components. Therefore, the miscibility can be 
evaluated through the calculation of solubility parameters δ. 
Hildebrand and Scott [101] introduced a model grounded in 
the calculation of cohesive energy density for solute/solvent 
systems, as indicated by the following equation:

where ΔE/V represents cohesive energy density, P is internal 
pressure and T signifies temperature. Williams and Colle 
[102] elucidated this principle in greater detail, demonstrat-
ing that supercritical  CO2 exhibits a higher solution param-
eter than gaseous  CO2, approaching that of hydrocarbon 
chains (approximately ~ 10  MPa1/2). Strauss [103] demon-
strated that in the context of a PS/CO2 system, achieving 
good gas solubility necessitates the fulfillment of the con-
dition δ1 − δ2 < 1, which mandates the pressure of 90 MPa 
at 80 °C. However, some studies have evidenced that  CO2 
molecules exhibit partial solubility within PS matrices, with 
solubilities exceeding 13 wt% at pressures below 20 MPa 
[104, 105]. The phenomenon arises due to the failure of the 
model to consider the specific chemical interactions.

Another model is grounded in the distribution of inter-
actions among three distinct contributions [106]. By this 
framework, δ can be deconstructed as follows:

where δd represents the dispersion component, δp denotes 
the polar component, and δh is the hydrogen-bonding 
component. They can be calculated theoretically based 
on the consideration of their chemical group contribu-
tions, as documented in the available literature [107]. 
Despite  CO2 lacking a permanent dipole, the substan-
tial influence of its quadrupole moment on interaction 
is noteworthy, resulting in positive values for δp and δh 
within the Hansen model [102]. The finding illustrates 
the model's constraints. Similar to the Hildebrand and 
Scott model, the model fails to consider chemical interac-
tions that increase the solubility of gas in polymers [108]. 
Hence, the gas adsorption behavior varies among differ-
ent polymers (such as PMMA and PS), contingent upon 

(5)� =
(
ΔE

V

)0.5

T
≈
(
�E

�V

)0.5

T
=
(
T
(
�P

�T

)

V
− P

)0.5

(6)�2 = �2
d
+ �2

p
+ �2

h
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their intrinsic properties, even when they share the same 
Tg. This suggests that distinct molecular compositions of 
polymers result in varying interactions with  CO2. Exten-
sive research has been conducted on the solubility of 
block copolymers and fluorinated polymers in  CO2 due 
to the noteworthy chemical interactions between fluo-
ropolymers and  CO2 [109, 110]. These chemical inter-
actions may exhibit characteristics of Lewis acid–base 
interactions. Specifically, the fluorine atom serves as a 
Lewis base alongside the electron-deficient carbon in 
 CO2. Simultaneously, the hydrogen atoms adjacent to 
the fluorine atom acquire an induced positive charge 
and engage with the gaseous oxygen atoms, forming a 
Lewis acid [111]. Cooper [45] postulated that fluoro-
polymers create weak complexes with  CO2, resulting in 
heightened gas solubility within fluoropolymers. Certain 
silicon-based polymers may be regarded as  CO2-philics 
polymers. This phenomenon appears to be attributed to 
the flexibility of the polymer chains [112, 113]. Accord-
ing to Kirby [114] and Nalawade [44], it has been 
observed that the solubility of  CO2 in poly(dimethyl-) 
and poly(phenylmethyl-) siloxane exceeds that observed 
in other polymers, primarily attributable to their notably 
greater free volume fraction.

Despite being less  CO2-philic than fluoro- or silicon-
based polymers, acetate and acrylate polymers are notewor-
thy due to the significant interaction between their carbonyl 
groups and  CO2. Especially, PMMA has been extensively 
investigated for its affinity toward  CO2 in contrast to poly-
olefins or PS. This affinity can be attributed to carbonyl/
gas interactions, similar to the Lewis acid/base interactions 
observed in fluoro-based polymers, which increase gas solu-
bility [103]. Fourier transform infrared spectroscopy (FT-IR) 
has been utilized for analyzing these interactions in PMMA, 
cellulose acetate, and vinyl acetate [115, 116]. Kazarian and 
colleagues [105] analyze the PMMA/CO2 interaction by 
studying the normal vibrational mode v2 (bending) of  CO2 
around 660  cm−1. The spectral band splits into two peaks at 
662 and 654  cm−1 in PMMA, a phenomenon attributed to 
interactions between carbonyl groups and gas [44], which 
is not observed in PS/CO2 systems [103, 116]. Reglero-
Ruiz and colleagues conducted a comparative analysis of 
 CO2 affinity between PMMA and PS [117]. Their findings 
demonstrated that PMMA exhibits over a 6 wt% higher gas 
uptake than PS at 40 °C and 30 MPa.

The affinity between the polymer and  CO2 is a critical 
factor to consider in the foaming process. Indeed,  CO2-philic 
polymers enable the attainment of substantial  CO2 absorp-
tion at lower saturation pressures and/or shorter durations. 
Moreover, it is worth noting that the  CO2 solubility can exert 
an influence on the processes of cell nucleation and growth 
during polymer foaming.

3.2  Cell nucleation

Nucleation is the phenomenon where molecules from a sec-
ond phase, previously dissolved in the initial phase, aggre-
gate to establish a stable second phase, driven by thermody-
namic instability. Once the supercritical fluid dissolves into 
the polymer, resulting in the formation of a homogeneous 
system, the system enters a supersaturated state due to either 
increased temperature or decreased pressure. The subsequent 
generation of the bubbles facilitates the attainment of a low-
energy stable state. The formation of bubbles in the foaming 
process can be described by the classical nucleation theory. 
Colton and Suh et al. [118–120] developed the classical 
nucleation theory of polymer foaming, widely regarded as 
the predominant empirical theory for describing the mecha-
nism of cell nucleation.

The assumptions and approximations in classical nuclea-
tion theory are as follows [121, 122]: (a) It postulates the 
nucleus to be a spherical droplet characterized by clearly 
defined boundaries. (b) All nuclei possess identical physi-
cal properties to the bulk material. (c) The theory consid-
ers the influence of pressure drop on cell nucleation while 
disregarding the pressure drop rate. (d) It further postulates 
that nucleation occurs instantaneously alongside an instan-
taneous pressure drop, which is unrealistic as pressure drop 
occurs gradually over time. (e) The bubble interface is simi-
larly described as an infinite, flat planar surface.

Classical nucleation theory has faced challenges due to 
its underlying assumptions and approximations, leading to 
significant deviations from experimental observations in 
some cases, and raising questions about its accuracy and 
validity [123]. Nonetheless, despite these limitations, classi-
cal nucleation theory offers valuable conceptual insights into 
the nucleation process. Therefore, it is utilized in this paper 
to elucidate the mechanisms governing bubble nucleation 
in polymer foams. Classical nucleation theory categorizes 
cell nucleation into two types: homogeneous nucleation and 
heterogeneous nucleation.

3.2.1  Homogeneous nucleation

Homogeneous nucleation refers to the spontaneous and 
stochastic creation of cells within a homogeneous system 
during the embryo formation stage, without the presence of 
foreign substances or two-phase incompatible media. It typi-
cally arises in reaction to random fluctuations or variations 
in temperature or pressure. Theoretically, every molecule 
can potentially serve as a nucleation site, resulting in the 
most ideal nucleation density and cell radius in homogene-
ous nucleation. However, due to the absence of induction by 
nucleating agents, the free energy required for nucleation 
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is high, which requires the system to have a large degree of 
supersaturation. During the foaming process, the supersatu-
rated polymer-gas homogeneous system exhibits thermody-
namically unstable due to fluctuations in the temperature or 
pressure, leading to the aggregation of gas molecules. The 
critical radius (rc) denotes the minimum size for an embryo 
to become a stable bubble. A maximum of free energy barrier 
reaches when the radius of the bubble (R) equals rc. When the 
embryo's size falls below rc, it collapses into the melt. Con-
versely, when it surpasses rc, a stable nucleus emerges, per-
sistently growing and causing a decrease in the free energy 
of the system (see Fig. 4a).

Additionally, bubble stability hinges on the pressure differ-
ence ΔP (the disparity between internal bubble pressure and 
the surrounding pressure) and the interfacial energy, both of 
which are considered when deriving an expression for Gibbs 
free energy, as illustrated [124]:

where R represents the bubble radius, ΔP is the pressure 
difference, γ denotes the interfacial tension. ΔVfree-vol is the 
change of free volume caused by the additives, which is dis-
regarded in the homogeneous nucleation.

The critical radius rc depends on the ratio of the inter-
facial tension γ to the pressure difference ΔP, as shown in 
the Eq. (8). Therefore, Gibb’s free energy barrier ΔGHom for 
homogeneous nucleation is expressed by Eq. (9).

(7)ΔG(R) = −
4

3
�R3ΔP + �R3� − ΔV f ree−vol

(8)rc =
2�

ΔP

The rate of homogeneous nucleation can be determined 
by Eq. (10).

 where f0 represents the frequency factor of the gas mol-
ecules attaching to the nucleus and varying with its surface 
area, C0 is the concentration of gas molecules, KB shows 
the Boltzmann constant; T donates the temperature, ΔGhom 
stands for the energy barrier associated with homogeneous 
nucleation.

3.2.2  Heterogeneous nucleation

Heterogeneous nucleation arises when a nucleus forms at 
the interface between the continuous polymer-gas phase 
and a third phase, initiated by nucleating agents acting as 
nucleation centers, rather than spontaneously (see Fig. 4b). 
Nucleating particles, including fillers [124–134] and crystals 
[135–140], are frequently employed in both conventional 
and microcellular foaming processes. They serve to increase 
nucleation density by offering heterogeneous surfaces that 
reduce the energy barrier for nucleation [141]. Yu et al. 
explored the foaming characteristics of the pure poly(L-
lactic acid) (PLLA) and PLLA/poly(D-lactic acid) (PDLA) 
using an environmentally friendly supercritical  CO2 [142]. 
The result indicates that the stereocomplex crystals can serve 

(9)ΔGhom =
16��3

3ΔP2

(10)Nhom = f0C0exp

(
−ΔGhom

KBT

)

Fig. 4  (a) Bubble nucleation and growth as a function of free energy, (b) contact angle and semi-conical angle for heterogeneous bubble nucleation
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as nucleation sites, effectively lowering the energy barrier 
for nucleation, resulting in a remarkable augmentation in 
cell density and a reduction in cell diameter in PLLA/PDLA 
foam samples (see Figs. 5, 6, and 7).

Furthermore, the Gibbs free energy maximum is influenced 
by the surface topography of the nucleating agent, quantified 
as the shape factor (S). Considering these factors, the expres-
sions of the shape factor were presented in Eqs. (11) and (12).

(11)ΔGhet = ΔGhomS(�)

Moreover, the determination of the shape factor (S) relies 
upon the contact angle (θ) established between the bub-
ble radius (R) and the additive surface. As θ increases, S 
decreases, resulting in further reduction of ΔGhet. Notably, 
some nucleating agents, like talc, do not have a plate-like 
structure but a particle-like one. For these agents, nuclea-
tion occurs within a conically shaped pit, characterized by 

(12)S(�) =
1

4

(
2 + 3cos(�) − cos2(�)

)

Fig. 5  Cellular morphology of PLLA foams prepared under different foaming temperatures: (a1, a2) 90 °C; (b1, b2) 100 °C; (c1, c2) 105 °C; 
(d1, d2) 110 °C; (e1, e2) 115 °C; (f1, f2) 120 °C

Fig. 6  Cellular morphology 
of D2.5 foams prepared under 
different foaming temperatures: 
(a1, a2) 90 °C; (b1, b2) 100 °C; 
(c1, c2) 105 °C; (d1, d2) 
110 °C; (e1, e2) 115 °C; (f1, f2) 
120 °C
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the semi-conical angle (β) (see Eq. (13)) [143], as illustrated 
in Fig. 4b.

Polymer-nucleating agent interactions are of paramount 
importance in assessing nucleation efficiency. Notably, 
smaller nucleating agents exhibit a propensity for higher 
nucleation densities [144, 145]. Besides nucleating agent 
size, the topography of their surfaces significantly impact 
nucleation. Compared to tubular nucleating agents, those 
with flat surfaces demonstrate improved nucleation rates 
owing to their curved edges [146]. In a study by Leung 
et al. [147], an exploration was conducted into the impact 
of both the wetting angle (θ) and the conical cavity angle 
(β) of nucleating agents. The findings indicated that the 
difference between these angles (θ − β) plays a pivotal role 
in dictating the growth state of the bubble. ΔGhet decreases 
with increasing θ. Additionally, it has been demonstrated 
that when θ = 90°, a smaller value of β promotes hetero-
geneous nucleation. Conversely, when θ and β are small, 
heterogeneous nucleation becomes unfavorable. Hence, 
an ideal nucleating agent should exhibit uniform size and 
shape, a large wetting angle, and facile dispersal within a 
polymer matrix.

(13)S(�, �) =
1

4

[
−2sin(� − �) +

cos�cos2(� − �)

sin�

]

3.2.3  Limitations of the classical nucleation theory

While classical nucleation theory delineates the primary 
parameters governing nucleation, its application to assess 
nucleation rate in polymer/gas systems frequently diverges 
from experimental outcomes. Surface tension, dependent 
on the critical nucleus size, remains inaccessible through 
experiments. In classical theory, γ is approximated by the 
surface tension γ∞ of a planar interface, but this approxima-
tion frequently leads to substantial errors. For instance, if the 
actual surface tension is merely 80% of the planar surface 
tension, the classical theory may underestimate the nuclea-
tion rate by an astonishing 20 orders of magnitude, given a 
typical free energy barrier of 50 kBT. In addition, the physi-
cal meaning of ΔP is often misunderstood in the literature. 
While it has been characterized as the pressure difference 
between the interior and exterior of a bubble, the definition 
holds only for sufficiently large bubbles [118–120]. Equally 
critical, internal pressure remains beyond direct measure-
ment. Some researchers have characterized ΔP as the pres-
sure drop required to initiate nucleation, resulting in poten-
tial overestimations of ΔP by as much as 30–40%. Such 
errors could inflate the nucleation rate by several orders of 
magnitude, reaching levels on the order of  109–1010.

In response to this error, new theories have been pro-
posed to improve the accuracy of prediction. One particularly 

Fig. 7  (a) Cell density; (b) aver-
age diameter of PLLA and D2.5 
foams under different foaming 
temperatures; (c) cell size distri-
bution of PLLA foams prepared 
at 115 °C; (d) cell size distribu-
tion of D2.5 foams prepared at 
115 °C (the insert figure shows 
the cell size distribution of 
mesh-like holes)
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promising theory is self-consistent field theory. An effective 
Hamiltonian is introduced in self-consistent field theory, for-
mulated as a straightforward function of a spatially varying 
field, such as the number density of polymer chain segments, 
and it incorporates adjustable parameters. By evaluating the 
associated partition function for this Hamiltonian, it becomes 
possible to calculate a range of thermodynamic properties. 
The self-consistent field theory has been effectively employed 
to model bubble nucleation in the hexadecane-CO2 system 
with reasonable accuracy [148]. For the hexadecane-CO2 
model system, Binder and his colleagues observed that clas-
sical nucleation theory closely matched self-consistent field 
theory results in the vicinity of the bimodal region. However, 
the accuracy of classical nucleation theory diminished for 
smaller nucleation barriers, which are more representative of 
experimental conditions.

Statistical-mechanical density functional theory, as 
described in references [149–154], initiates by construct-
ing a detailed molecular-level model of the system. The 
associated free energy of this model system is expressed 
as a function of the spatially varying density distribution of 
the particles. To minimize the free energy, an equilibrium 
density distribution was determined. Once the equilibrium 
distribution is established, the thermodynamic properties of 
the system can be derived from the function. The statistical-
mechanical density functional theory offers a more com-
prehensive system description compared to self-consistent 
field theory but demands significantly greater computational 
resources. Consequently, statistical-mechanical density func-
tional theory and self-consistent field theory complement 
each other in the study of nucleation and serve as potent 
tools for addressing the limitations of classical nucleation 
theory. However, it's important to note that both theories still 
rely on approximations to facilitate tractable calculations. 
As such, further experimental investigations are essential to 
validate and refine these theories.

3.3  Cell growth

The process of bubble growth is highly intricate, encompass-
ing mass, momentum, and heat transfer phenomena. This 
complexity is further compounded by the intricate rheologi-
cal behavior of the fluid, making an accurate description of 
bubble growth challenging. To elucidate the mechanisms 
governing bubble growth, prior researchers have conducted 
comprehensive experimental and theoretical investigations, 
yielding valuable insights.

3.3.1  The bubble radius calculated by the empirical formula

Epstein and Plesset [155] established the correlation between 
bubble growth and time through an investigation of bubble 
growth within polymer melts.

where R represents the bubble radius; D represents the gas 
diffusion coefficient; α is a coefficient related to the gas 
concentration and pressure.

Subsequently, Hobbs [156] investigated the inflation and 
growth kinetics of bubbles in thermoplastic structural foams. 
Their model assumes the initial existence of minuscule voids 
within polymer melt. It takes into account factors such as 
changes in external pressure, the presence of a range of bub-
ble sizes, and gas diffusion between adjacent bubbles. The 
research reveals that, under specific pressure conditions, 
the quantity of expanding bubbles in the molten material 
relies on the ratio between the critical radius and the aver-
age radius of the hypothetical microvoids within the melt. 
Additionally, it illustrates that the growth rate experiences a 
notable reduction due to gas diffusion between adjacent bub-
bles when the inter-bubble separation decreases to a micron 
or less.

Based on the theory of Epstein [155], an approximate 
equation for calculating the bubble radius is proposed as 
follows:

where R(t) is the radius of the bubble at time t, R0 is of 
the bubble initial radius, A and B are constants associated 
with the system. The equation takes into account bubble 
coalescence, providing a more accurate representation of 
how the bubble radius changes over time. Nevertheless, it is 
also derived from empirical data and experimental observa-
tions, making it challenging to establish a clear relationship 
between the bubble radius and the parameters influencing 
bubble expansion. As a result, its application is subject to 
certain limitations.

3.3.2  “Sea‑island” model

The process of bubble growth encompasses both ther-
modynamics and kinetics, often necessitating computer-
based numerical simulations to elucidate the influence of 
various parameters on bubble expansion [157]. To delve 
deeper into the mechanism of cell growth, Han and Yoo 
[158] introduced the sea-island model. This model deline-
ates the expansion of a single bubble within a rectangular 
cavity immersed in an infinite volume of polymer melt, as 
depicted in Fig. 8. The model operates under the following 
assumptions: (a) The bubble remains small during expan-
sion, assuming a spherical shape; (b) Due to the ample width 
of the cavity, bubble expansion is unrestricted by cavity 

(14)
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= �

[
1

R
+

1

(�Dt)
1

2

]

(15)R(t) = R0 + ABt
1

2 +
(1 − A)B2t

2R0 + Bt
1

2



 Advanced Composites and Hybrid Materials (2023) 6:207

1 3

207 Page 12 of 22

walls; (c) Polymer melts exhibit incompressibility; (d) The 
polymer melt viscosity is exceptionally large, rendering the 
buoyancy effects during bubble expansion negligible. This 
model elucidates the growth patterns of bubbles across the 
entire system by scrutinizing the growth dynamics of indi-
vidual bubbles. Building upon this concept, Papanstasiou 
and Scriven [159] employed numerical methods to investi-
gate the growth and rupture of individual spherical bubbles 
within an infinite volume of polymer melt, grounded in the 
island model.

In fact, in the real nucleation process, when thermody-
namic instability occurs, a large number of bubbles will be 
generated instantaneously. Given their close proximity, these 
bubbles experience hindered growth. Therefore, the cell 
growth process based on the island model will deviate from 
the actual growth situation, resulting in limited applicability.

3.3.3   Cell model

The growth process of the single bubble in the infinite melt 
represents the expansion law of bubbles in the entire system, 
which deviates from reality. Therefore, employing the sea-
island model for calculations inevitably introduces errors. To 
address this, Amon et al. [160] proposed a cell model, where 
a polymer melt containing numerous bubbles is divided into 
an equivalent number of blister units. Each cell comprises 
a spherical bubble core surrounded by a concentric melt 
shell. In this model, gas in a supersaturated state within the 
melt shell continuously diffuses into the bubbles, driving 
their growth, as depicted in Fig. 9. They conducted a study 
on the diffusion-controlled growth of bubbles enveloped by 
a Newtonian fluid film using the cell model, simulating the 

growth of a multitude of bubbles during the foaming process 
[161]. The cell model accurately reflects the conditions of 
cell growth and addresses interactions among adjacent bub-
bles during the growth process, making it widely accepted 
among researchers.

According to the cell model, the bubble growth kinet-
ics under isothermal conditions can be described by cou-
pled mass and momentum conservation equations. The 
gas mass conservation in the bubble is expressed as:

The gas mass conservation in the melt can be expressed as:

(16)
d

dt

(
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3
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RgT

)
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|r = R

Fig. 8  Island model [158]

Fig. 9  Schematic of cell model
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The momentum conservation equation is given by:

 where R is the bubble radius, R = dR∕dt is the bubble 
growth rate, PD is the pressure inside the bubble, PC is the 
pressure of ambient, D is the diffusion coefficient, γ is the 
interfacial tension, c is the gas concentration, Rg is the gas 
constant, η is the melt viscosity, and σ is the viscoelastic 
stress tensor. The viscoelasticity of a polymer is determined 
by the difference in normal stress σrr − σθθ.

The constitutive equation can choose the Oldroyd-B 
model [49, 162], Larson model [163], Phan-Thien/Tanner 
(PTT) model [164, 165], and Pom-Pom model [166]. These 
governing equations for bubble growth dynamics are com-
plex, involving highly coupled nonlinear equations with both 
partial differential and integral components. The associated 
boundary conditions are as follows:

Through simulating the bubble growth process, it 
becomes possible to identify the crucial factors that govern 
bubble expansion. By adjusting these parameters, the objec-
tive of controlling the bubble pore structure can be achieved. 
While these simulations offer valuable insights into bubble 
growth kinetics, it's important to note that factors like cell 
density and cell size distribution may require a comprehen-
sive examination that considers both cell growth kinetics and 
nucleation processes for accurate determination [167–171].
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4  Foam manufacturing techniques

Currently, the production of polymer foam materials can be 
categorized based on the level of continuous operation into 
batch foaming, extrusion foaming, and injection molding 
foaming [172].

4.1  Batch foaming

Batch foaming typically occurs within a high-pressure reac-
tor, creating a controlled, sealed environment with elevated 
temperature and pressure (see Fig. 10). In this setting,  CO2 
or  N2 gradually permeates and dissolves into the polymer 
matrix. Over time, the gas within the polymer saturates. Sub-
sequently, altering either temperature or pressure induces 
the gas within the polymer to enter a supersaturated state, 
resulting in overflow. A large number of bubble nuclei are 
produced during the overflow process, and the bubble nuclei 
gradually grow to form cells. Finally, the polymer is cooled, 
preserving the resulting cell structure within. Batch foam-
ing is typically classified into two categories: temperature-
induced and pressure-induced methods.

For the temperature-induced approach [173–176], the ini-
tial step involves placing the sample in a low-temperature 
environment (below Tg) saturated with gas. In this setting, 
the mobility of the polymer chain is constrained, prevent-
ing nucleation. Once saturation is achieved, the sample is 
removed from the autoclave. Subsequently, the saturated 
sample is immersed in a high-temperature oil bath for a 
specified duration, initiating cell nucleation and growth. 
Elevated temperature (ΔT) serves as the driving force for 
bubble nucleation. This approach segregates the creation 

Fig. 10  Schematic representa-
tion of batch foaming
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of the polymer/gas-saturated system from the subsequent 
cell nucleation and growth stages, allowing for independent 
adjustment of process parameters like pressure, temperature, 
and time. However, this method entails increased complexity 
and a longer production cycle.

In the temperature-induced process, Miller et al. [73] 
investigated the foaming behavior of polyetherimide (PEl) 
sheets saturated for 280 h at 21 °C and 5 MPa. These sam-
ples absorbed absorbing 40 wt%  CO2 and underwent foam-
ing in a heated silicone oil bath, resulting in foams with 
a cell size of 30 nm. Polycarbonate (PC) absorbs approxi-
mately 20.4 wt% of  CO2 after saturation at -30 °C for 72 h. 
Subsequently, it is heated to 70  °C to initiate foaming, 
resulting in foam with cell size of 21 nm and cell density of 
4.1 ×  1014 cells/cm3 [177].

The pressure-induced approach was initially introduced 
by Goel and Backman [68, 178]. The sample is placed under 
high-temperature and high-pressure conditions to achieve 
saturation of  CO2 or  N2 absorption within the polymer sam-
ple. Subsequently, the pressure is rapidly reduced, rendering 
the system thermodynamically unstable and prompting cell 
nucleation and growth. Costeux [179] utilized the pressure-
induced approach to foam PMMA-CO-EMA (a random 
copolymer of MMA with 50 wt% ethyl methacrylate) copol-
ymers at 30 MPa and 40 °C, resulting in nano-foams with 
the cell size of 95 nm and the cell density of 8.6 ×  1015 cells/
cm3. Yang et al. [180] investigated the foaming behavior 

of PS-OMS (PS filled with 5 wt% of spherical ordered 
mesoporous silica) samples through a pressure-induced pro-
cess. The results revealed that the sample achieved saturation 
under high pressure at 120 °C for 18 h, and then, the high 
pressure was swiftly released for 0.5 s, resulting in foam 
with the average cell size of 7.8 μm and the cell density of 
3.55 ×  109 cells/cm3.

Batch foaming techniques provide precise control and 
are extensively employed for the investigation of diverse 
process variables. Moreover, the equipment necessary for 
batch foaming is relatively uncomplicated, and the invest-
ment requirement is modest. Nevertheless, its commercial 
application is constrained due to the incapacity of continu-
ous production.

4.2  Extrusion foaming

Extrusion foaming shares the same operational principles 
as plastic extrusion, with the primary distinction being the 
introduction of a physical blowing agent at a specific point 
along the extrusion line (see Fig. 11). The majority of indus-
trial foam extrusion lines operate in tandem, but single lines 
are also utilized. Extrusion foaming offers advantages in 
terms of continuous operation and high output efficiency, 
making it widely prevalent in industrial production. Initially, 
polymer pellets or powders are loaded into the temperature-
controlled first barrel of the extruder through the hopper. 

Fig. 11  Schematic representation of foam extrusion on a tandem-line
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These pellets undergo melt-plasticization at elevated tem-
peratures and pressures. Subsequently, a physical blowing 
agent, such as supercritical  CO2, is injected into the melt 
using an injection unit situated on the barrel. The shear-
ing of the screw accelerates  CO2 diffusion into the polymer 
melt [181], leading to complete  CO2 dissolution within the 
polymer melt, resulting in the formation of a homogeneous 
polymer/CO2 system.

The homogeneous system is transported to the second 
barrel via the movement of the screw. The molten material 
gradually undergoes cooling to a temperature below that of 
the extruder's first barrel. However, even at this lower tem-
perature, sufficient mixing is still ensured. Cell nucleation 
is prevented as a result of the high pressure experienced in 
the barrel. Polymer melt flow rates are regulated by melt 
pumps, allowing for independent control of flow regardless 
of temperature and pressure fluctuations. Furthermore, a 
heat exchanger is employed to provide additional cooling 
for the homogeneous system. Ultimately, the homogeneous 
system is conveyed to the extruder head, where pressure is 
rapidly decreased via a dedicated nozzle. Within this pro-
cess,  CO2 within the system attains a supersaturated state, 
escapes from the melt, and initiates nucleation and growth of 
bubbles. These bubbles continue to expand until vitrification 
is achieved. Larson and Neldin [182] utilized a 2% epoxy-
functional chain extender in masterbatch form to foam PLA, 
achieving foams with a cell size of 22 μm. Zhang et al. [183] 
investigated the extrusion foaming of PS using  CO2-water as 
co-blowing agents. Their experiments employed a through-
put of 4 kg/h, a 0.4 mm slot die, and a die temperature of 

120 °C, resulting in foams with an average cell diameter of 
approximately 75 μm when 0.5% graphite (GR) was added 
as a nucleating agent. Okolieocha et al. [184] conducted a 
similar study on a tandem foam extrusion line, employing a 
mixture of carbon dioxide and ethanol as a physical blowing 
agent (PBA). Their experiments used a 0.5 mm slot die at 
126 °C and a throughput of 4.5 kg/h, which yielded foams 
with a cell size of 25 μm with just 1 wt% TRGO (thermally 
reduced graphite oxide). Jing Wang et al. [185] investigated 
the extrusion foaming behavior of PLA with varying molec-
ular weights and branched topologies. They observed that 
cell density and expansion rate all increased with molecular 
weight and branching density. For the branched PLA, crys-
tallization enabled stable production of high expansion ratio 
microcellular foams across a broad temperature range. By 
controlling crystallinity, it became feasible to produce foams 
with consistent cell morphology while achieving variations 
in mechanical properties and surface gloss.

4.3  Injection foaming

Foam injection molding essentially extends the conventional 
injection molding procedure by incorporating an additional 
gas injection unit (see Fig. 12). Initially, raw material is 
introduced into the barrel and directed to the front section 
of the extruder, where it undergoes melting facilitated by 
high temperature and screw-driven shearing. Subsequently, 
gas is introduced into the extruder through a gas injection 
device, diffusing and dissolving within the melt to estab-
lish a homogeneous system. This homogeneous system is 

Fig. 12  Schematic representation of foam injection
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then transported to a diffusion chamber. Due to the sudden 
increase in temperature, the solubility of gas in the melt 
rapidly decreases, inducing a state of supersaturation and 
initiating nucleation. During this process, the system main-
tains high pressure to deter premature cell expansion during 
mold filling. Bubbles commence growth during the depres-
surization process following mold filling.

Microcellular injection foaming technology stands as one 
of the prevalent techniques for producing microcellular foam 
materials, characterized by product cell sizes smaller than 
those found in traditional foam plastics. These microcells serve 
to passivate the pre-existing material defects and microcracks, 
subsequently enhancing plastic strength and, consequently, 
material mechanical properties. As a result, microcellular 
injection foaming technology has emerged as a prominent 
research focus within the field of polymer foam molding.

Li et al. [186] utilized supercritical  N2 to foam polyether-
imide with 1 wt% of multiwalled carbon nanotubes, achiev-
ing foams characterized by an average cell size of 16.7 μm 
through the uniform dispersion of multiwalled carbon nano-
tubes within the polymer matrix. Ming-Cheng Guo et al. 
[187] investigated the cell structure and mechanical prop-
erties of PP foamed samples. They observed that smaller, 
uniformly distributed cells were attainable with higher injec-
tion speeds and lower injection pressures. Tong Lisheng 
[188–193] employed microcellular injection foaming to 
prepare PA6-Clay nanocomposites, noting that uniform 
cell formation was favored by lower melting temperatures, 
higher gas content, and increased injection speed. Pilla. S 
and Hwang. S et al. [194–196] delved into the impact of nan-
oparticle additives on PLA foaming behavior in microcel-
lular injection molding. They reported that the inclusion of 
nanoparticles enabled the production of foaming materials 
featuring an average cell diameter ranging from 3 to 40 μm.

5  Conclusions

In the context of growing energy shortages, polymer foam 
products have garnered significant attention due to their 
material-saving and cost-effective attributes, coupled with 
their commendable mechanical and thermal stability, low 
thermal conductivity, and exceptional dielectric proper-
ties. As environmental concerns become increasingly pro-
nounced, green chemistry emerges as a pivotal approach to 
address environmental and energy challenges. Supercriti-
cal foaming technology, as a green technique, aligns more 
closely with contemporary demands, and consequently, it 
has found extensive utility in the fabrication of microcellular 
polymer foam products. Supercritical foaming technology, 
in comparison to chemical foaming, yields microcellular 
plastic foam with higher cell densities, smaller cell sizes, 
and superior comprehensive properties.

Common foaming agents employed in supercritical foam-
ing technology include supercritical  CO2 and supercritical 
 N2. Supercritical  CO2 exhibits superior solubility and diffu-
sion rates in polymers when compared to supercritical  N2, 
making it the predominant foaming agent in supercritical 
foaming technology. When supercritical  N2 is used as a 
blowing agent, it leads to foams characterized by smaller 
cell diameters, greater cell densities, and uniform cell sizes. 
However, in the context of supercritical foaming technol-
ogy, utilizing  N2 as a foaming agent presents limited success 
rates, leading to relatively high  N2 consumption. Incorpo-
rating co-foaming agents (additional reagents mixed with 
supercritical  CO2 or supercritical  N2) in supercritical foam-
ing technology can enhance both foaming capacity of sample 
and the performance of foamed products.

Polymer foaming constitutes a complex dynamic process. 
To attain foams with high cell density and small cell size, 
comprehending the gas dissolution and diffusion within the 
polymer, the mechanisms of cell nucleation and growth, and 
the requisite foaming conditions is essential. Gas dissolution 
and diffusion in polymers yield a plasticizing effect, enhanc-
ing the fluidity of the polymer matrix, consequently reduc-
ing the free energy barrier for cell nucleation and affecting 
nucleation and growth. The preferred nucleation rates are 
driven by high thermodynamic instability, stemming from 
pronounced temperature and pressure gradients, as well 
as substantial  CO2 absorption. An alternative strategy for 
controlling nucleation rates and cell growth is to combine 
various nucleating agents to manipulate the heterogeneous 
nucleation phenomenon. Additionally, cell growth mecha-
nisms can be elucidated through prior experiments and theo-
retical investigations.

Batch foaming technology affords precise control and 
is widely employed for studying the influence of various 
process parameters (e.g., time, temperature, pressure, and 
depressurization rate) on polymer foaming behavior. Batch 
foaming yields uniform cell sizes, enables controlled cell 
shapes, and results in relatively superior foam performance. 
However, its limited suitability for continuous production 
hinders its commercial application. Extrusion foaming offers 
advantages such as continuous production, high output, and 
minimal investment, with the additional advantage of unre-
stricted product length. Injection foam is well-suited for fab-
ricating small, intricate parts in the industrial sector. Nota-
bly, there are fewer studies on injection foaming compared 
to batch and extrusion foaming, possibly attributed to the 
higher mechanical costs associated with injection foaming.

Researchers have extensively investigated supercritical 
foaming technology and its mechanisms, achieving sig-
nificant advancements. Yet, certain topics remain underex-
plored, including (a) the industrial-scale production of poly-
mer foams; (b) the influence of thermal history on foaming 
behavior; (c) the effect of rheological properties such as 
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viscoelasticity and melt strength on foaming behavior; (d) 
the development of novel foaming agents; (e) the innova-
tion of new foaming techniques. As polymer supercritical 
foaming technology advances continuously, the overarching 
trend is to produce highly integrated, precise, and top-quality 
foam products. By regulating the aggregated structure and 
morphology of polymer products, foam performance can be 
elevated to meet evolving product requirements. Diverse, 
high-quality foam products are poised for broad applications 
and promising prospects.
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