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Abstract
An efficient way to alleviate the pollution imposed by petroleum-based supplies like synthetic fibres and plastics is to pre-
pare biocomposites from recyclable forestry waste with a continuous supply. Despite this, it remains a significant challenge 
in the field of wood-based panel manufacturing to produce high-performance yet environmentally friendly wood-based 
materials without the addition of chemical adhesives. Lignin can be used as a “natural adhesive” due to its superior bonding 
properties, but the dispersion of hemicellulose affects cross-linking at the interfacial interface negatively. This study used 
lignin/cellulose as a matrix and pretreated it with hydrogen peroxide, sodium hydroxide, sodium silicate solution and in situ 
bonding of wood fibres to create a high-performance biocomposite material for potential mass production. The findings 
revealed the tensile (106.63 MPa) and bending strengths (148.78 MPa) of the optimised samples were 125.37% and 91.40% 
higher than the performance before optimisation. Moreover, the biocomposite demonstrated remarkable hydrophobicity, as 
evidenced by a water contact angle of 99.96°, and exhibited high thermal stability, without any disintegration observed even 
when subjected to combustion at 1300 °C. These exceptional properties and advantages render it a highly desirable material 
for eco-friendly homes and construction applications.
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1 Introduction

Technological advancements and rapid economic develop-
ment have resulted in the depletion of global forest resources 
[1]. As a means of reducing the consumption of these natural 

resources, efforts have been made to grow small-diameter 
wood as a potential material for the preparation of biocom-
posites [2–4]. However, this type of wood is low in density 
and strength, and is particularly susceptible to cracking and 
deformation. Hence large amounts of adhesives (e.g., alde-
hyde-based adhesives) are often used to create biocompos-
ites with desirable physical properties [5, 6]. As a result, the 
material may have emitted unbound formaldehyde, which 
has negative effects on the atmosphere and well-being of 
the consumer [7].

In recent decades, the utilisation of green resources such 
as small-diameter to develop energy-efficient and envi-
ronmentally friendly biocomposites has gained increas-
ing recognition, with aldehyde-free or glue-free adhesive 
technology emerging as a promising approach in this field 
[8]. Notably, the commercial application of formaldehyde-
free adhesives in the wood products industry is unrealis-
tic because of the expensive and complicated manufactur-
ing [9]. Therefore, research in biocomposites is currently 
focused on adhesive-free technology. It is believed that the 
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emergence of formaldehyde-free binders represents the inev-
itable step that achieving a better product (i.e., biocomposite 
that has no formaldehyde emission) [10]. Nevertheless, the 
production of formaldehyde-free binders primarily relies on 
petrochemical resources, and its extensive use would result 
in the rapid depletion of petroleum reserves, thereby contra-
dicting the principles of sustainable development [11–13]. 
For this reason, concerted efforts have been invested in 
developing bio-based adhesives to avoid environmental pol-
lution and ecological damage [14–16]. Nevertheless, several 
technical constraints make the present methods for produc-
ing formaldehyde-free panels uncommercially viable due to 
their high cost and complexity [17–19].

Currently, there is a growing interest among scientists in 
the development of biocomposites using self-reinforced wood 
fibres [20]. They have taken advantage of the sustainabil-
ity and unique porous structure of wood biomaterials and, 
through microstructure optimisation and multi-component 
synthesis, have enabled wood composites to show great 
potential for applications in the fields of electromagnetic 
interference shielding, superhydrophobicity, high flame 
retardancy and environmental protection. Wood is mainly 
composed of lignin, hemicellulose and cellulose. Among 
these, lignin is one of the most abundant natural polymers in 
nature. Because of its adhesive properties and aromaticity, 
it can be used as a “natural adhesive” to replace synthetic 
polymers derived from petroleum resources. Therefore, in 
the field of adhesive research, lignin can provide more envi-
ronmentally friendly and sustainable solutions [21]. Unfortu-
nately, the proportion of cellulose and lignin in contact with 
each other is reduced due to the dispersion of hemicellulose 
between them [22, 23]. As hemicellulose contains multiple 
free and hydroxyl groups linked by 1,4-glycosidic bonds [24, 
25], removal of hemicellulose can promote close alignment 
of fibres and increase the density of the material to further 
improve its properties [26]. In this way, sustainable wood 
resources could be converted into high-quality biocompos-
ites once the hemicellulose content has been removed. The 
main treatment methods include biological, acid and alkaline 
solution methods. These methods have different degrees of 
degradation of lignin and hemicellulose, and although they 
can achieve glue-free bonding, the methods are more com-
plicated and cannot effectively produce cleaner biocompos-
ites, and some products also have low physical properties 
and poor flame retardancy. Among these, the alkali solution 
method requires milder experimental conditions and is used 
more to improve interfibre compatibility than other treatment 
methods [27]. Sodium silicate is the most common silica 
compound with the characteristics of safety and environ-
mental protection, high thermal stability and small particle 
size, which can effectively penetrate into the pore structure 
of wood and has now been proven to have a good flame-
retardant effect. Its flame retardancy is mainly achieved 

by forming a thermal barrier of inorganic silica slag on the 
surface of wood, but it cannot fully form a stable network 
structure when used alone, and the flame-retardant effect is 
not ideal [28, 29]. Based on this consideration, this study 
utilises the cross-linking effect of lignin, the skeletal effect 
of cellulose and the flame-retardant effect of sodium silicate 
to synergistically achieve green enhancement and efficient 
flame retardancy of wood.

The study aims to develop a clean method of preparing 
mass-producible high-performance green biocomposites 
using lignin/cellulose as a matrix to replace traditional 
petroleum-based materials. The process involves pretreat-
ment with several chemicals and in situ binding of wood 
fibres. After this, the biocomposite was subjected to exten-
sive analyses and characterisation to investigate the chemi-
cal mechanisms. The method is economical and environ-
mentally sustainable since it does not require adhesives for 
bonding, thus demonstrating the remarkable potential to sub-
stitute traditional biocomposites made using resin binders.

2  Materials and methods

2.1  Source of wood for biocomposite fabrication

The Buxus sinica that was utilised in this study was gath-
ered in Guizhou, China, with an original water percentage 
of about 20. The wood samples exhibited homogeneous 
construction and no visible surface flaws, like deterioration, 
discoloration or cracking.

2.2  Fabrication procedures of biocomposite 
from Buxus sinica

2.2.1  Preliminary processing of Buxus sinica

A crusher was used for crushing the Buxus sinica, which was 
then sieved 20–80 to yield sinica wood powder, moisture 
removing at 105 °C until dry, cooled and placed in a desic-
cator. Then, the wood powder and hydrogen peroxide (wt%: 
30%, Analytical Reagent), sodium hydroxide (Analytical 
Reagent) and sodium silicate solution (Analytical Reagent) 
were evenly mixed in the ratio of 1%: 0.5%: 0.2% and stirred 
under the condition of 150 °C treatment for 4 h and finally 
rinsed with deionised water to get pretreated powder.

2.2.2  Hot‑pressing moulding processing

The pretreated powders with 6% and 8% water content were 
put into moulds (50 × 50 × 5 mm) and then pressed at temper-
ature of 170 °C plus pressure of 75 MPa for 60 min, followed 
by a passive cooling to ambient temperature with the moulds 
to retrieve the test specimens densified wood (DW6% and 
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DW8%). Then, the control samples were prepared in the 
same experimental conditions with regular wood powder 
(RWP6% and RWP8%) as raw material (Fig. 1).

2.3  Characterisation tests

2.3.1  Multiple physical characterisation of biocomposite

A density measurement was computed based on the final 
weight and volume through the standard GB/T 17657–2013 
set by the government of China. Sample was put in a fixed 
chamber under relative humidity of 65 ± 5% and temperature 
of 20 ± 1 °C to achieve a consistent weight, and then, the 
volume and mass of the samples were quantified. The cross- 
section and surface of samples were reviewed adopting 
SU6600 SEM manufactured by the Hitachi High-Technologies  
Corporation in Tokyo, Japan. The tensile and bending 
strengths were obtained adopting a robust AGS-X univer-
sal material testing machine manufactured by Shimadzu 
in Japan following the standard GB/T 17657–2013 set by 
the Chinese Government. During the tests, the crosshead 
velocity was 5 mm/min, while a 25.13-mm span connected 
to three-point bending equipment was used for the bending 
tests. In the tensile test, the interval among the two gauges 
(upper and lower) was 17 mm. Five tests were conducted 
on each sample, the measurements were then averaged to 

guarantee the reliability of the evidence collected. The meas-
urable extent of the samples acquired were 2.5 × 8 × 50  mm3 
(thickness × width × length). A Quantachrome Autosorb-IQ 
surface porosity tester by Anton Paar GmbH, Austria, was 
implemented to ascertain the pore size variations and surface 
area. The assessment was performed in an inert environment 
mediated by nitrogen under the following degassing circum-
stances: approximately 15 h of period, around 102–105 °C, 
plus the relative pressure (P/P0) ranging 0.01 and 0.995 for 
adsorption–desorption mechanism [30].

2.3.2  Characterisation of water resistance

As per the standard GB/T 17657–2013 set by the Chinese 
Government, the water resistivity was scrutinised by sub-
merging the sample in 20–22 °C distilled water for 10 days. 
Measurements on thickness and weight variations had been 
gathered once every 24 h. The contact angle and shape 
of water droplets laying on the sample surface at various 
periods (0 and 10 s) had been compiled utilising recording 
device, and the results were used to ascertain and see if the 
sample was hydrophobic or hydrophilic in accordance with 
the ASTMD7334 standard [31]. A DSA100S drop shape 
analyser manufactured by A.KRÜSS Optronic GmbH in 
Hamburg, Germany, was deployed to assess the sample.

Fig. 1  Schematic of biocomposite preparation
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2.3.3  Characterisation of thermal properties

ATGA/DSC 3 + thermogravimetric analyser manufactured 
by Mettler Toledo in Columbus, USA, was deployed to 
assess the thermodynamic durability of samples. Prior for 
the assessment, approximately 10 mg of sample powder was 
quantified and placed in the sample holder of the analyser. 
The assessment was then carried out at an operating tempera-
ture ranging from 20 to 600 °C with a steady temperature 
increase of 10 °C per minute. The sample was exposed to 
the external fire of a butane pistol for half a minute to verify 
its flame retardancy, and a recording device was adopted to 
capture the flame pattern. The burning and final debris of the 
samples at different durations were studied and contrasted.

2.3.4  Characterisation of the chemical compositions

A Nicolet IS50 ATR-FTIR fabricated by Thermo Fisher 
Scientific in the USA was deployed to ascertain the altera-
tions of the chemical moieties. The sample was repeatedly 
scanned for 64 times at a consistent speed of 4  cm−1 within 
the range of 400–4000  cm−1. Determination of the propor-
tion of lignocellulosic components in all samples using the 
Van Soest washing method (fibre analyser ANKOM 220). 
A high-resolution nuclear magnetic resonance (NMR) spec-
troscopy fabricated by Bruker 400 M in Germany was used 
to characterise the 13C nuclei of the samples. The chemi-
cal constituents were assessed through K-alpha XPS using 

an Axis Ultradld X-ray photoelectron spectroscope manu-
factured by Shimadzu Enterprise Management Co., Ltd. in 
China, whereas Peakfit software was employed to assess 
C1s finding. The cellulose crystallinity was assessed through 
the use of an X-ray diffractor (XRD) made by Beijing Pur-
vey General Instrument Co. in China at a 2θ scanning angle 
within 10 to 50 degrees. The transmission pattern was ascer-
tained with a Perkin Lambda 950 UV–Vis spectrophotom-
eter fabricated by PerkinElmer in the USA.

3  Results and discussion

3.1  Density and physical characteristics 
of biocomposites

Figure 2a displays the physical characteristics of all bio-
composites to determine whether biocomposites are feasible 
for high-strength structural applications. The density of pre-
treated specimens DW6% (1.39 g/cm3) and DW8% (1.46 g/
cm3) was significantly higher than RWP6% (1.32 g/cm3) 
and RWP6% (1.36 g/cm3), implying the densities of bio-
composites can be enhanced via pretreatment followed by 
hot pressing [32, 33]. Figure 2b, c show the pore size varia-
tion and nitrogen adsorption isotherm of the biocomposites. 
Both materials demonstrate a type III adsorption isotherm 
and extremely low porosity, which is a consequence of the 
cell wall collapse under enclosed environments of escalated 

Fig. 2  a Density of the biocomposites. b–c Nitrogen isothermal adsorption curves and pore size distribution curves of the biocomposites. d–g 
Microscopic views of the surface cross-section of the biocomposites
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pressure and temperature. The adsorption capacity and pore 
size distribution of DW8% are lower than that of RWP8% 
owing to the deteriorating of the lignin and hemicellulose 
within the wood cell wall inside an alkaline environment. As 
a result, this renders adsorption arduous since the cell wall 
could possibly be more packed and condensed; the finding 
also concurs with the density analysis results [34].

Figure 2d–g show the microscopic images of the cross-
section and surface of the biocomposites. What may be seen 
is the RWP morphology is rough and cracked, while the 
fibre clusters were firmly wrapped together in a compact 
configuration on the flattened side of the biocomposites. 
The dense structure could be formed by lignin melting dur-
ing the high-temperature thermoforming process (in which 
the wood fibre cell walls and their depolymerisation also 
coincide), followed by pressure and cooling [35, 36].

Figure 3a–f show the mechanical property tests of the bio-
composites, in which DW8% showed higher performance in 
the three-point bending and tensile tests, and its static flex-
ural strength and tensile strength reached 141.98 MPa and 
106.63 MPa, respectively. Pretreatment samples with higher 
wood flour moisture content displayed improved mechanical 
properties. Given that, it is most likely because the higher 
wood flour water content in hot pressing can soften the wood 
fibres through heat transfer. As a result, the fibres become 
more plastic and have greater hydrogen and chemical bonds, 
resulting in greater mechanical properties. The specific and 
tensile strengths of DW8% were also evaluated by comparing 
against those of commonly used composites in this investiga-
tion (Fig. 3g). The results revealed that the specific strength of 
surface DW8% (73 kN∙m/kg significantly greater compared 
with commonly used composites like wood (6.69 kN∙m/kg), 
copper alloy (43.7 kN∙m/kg) and mild steel (57.5 kN∙m/kg) 
[37]. Thus, the biocomposite possesses a remarkable potential 
for utilisation in furniture and construction.

3.2  Water resistivity of biocomposites

As an effort to broaden the scope of biocomposites in other 
possibilities, the surface characteristics have been exam-
ined systematically. In Fig. 4a, b, it is noted that DW8% 
has the lowest water absorption (25%) and thickness swell-
ing (14%), which may be due to the formation of a water-
proof layer following the hot-pressing treatment on the 
biocomposites surface. The structure of the closely linked 
fibre network also prevents water penetration into the 
composites [38]. Compared to biocomposites made from 
unprocessed wood flour RWP8% (θ = 80.76°) and RW6% 
(θ = 77.78°), the preliminary contact angles of biocompos-
ites DW8% (θ = 105.97°) and DW6% (θ = 104.67°) were 
substantially superior (Fig. 4c–e), proving the pretreatment 

procedure can improve the hydrophobicity of the biocom-
posites. DW8% demonstrated the greatest water contact 
angle and the remarkable hydrophobic efficacy after 10 s 
(θ = 99.96°). The reason for this is that when the wood cell 
walls are pretreated, they become more compressible, the 
fibre components undergo repolymerization during ther-
moforming reducing the number of surface cracks and 
tubular pores, and the surface of the biocomposite is flat-
tened and dense, which subsequently reduces the uptake 
of foreign moisture and improves the water resistance of 
the biocomposite, which is consistent with previous SEM 
analysis [39]. The flow diagram of water droplets falling 
on the sample from high altitude is shown in Fig. 4f. When 
the biocomposite is placed in a rainy outdoor environment, 
water droplets in the air can roll on the hydrophobic sur-
face and prevent water penetration.

3.3  Heating efficacy and stability of biocomposites

Figure 5 displays the thermal stability variations of bio-
composites for comprehension on their thermal degradation 
[40, 41]. The thermal rate curves (DTG) derived from TGA 
and of the biocomposites before and after pretreatment are 
shown in Fig. 5a, b. The released of sample-bound water 
during heating induced the variations occurred within 
30–120 °C, followed by the first rapid decomposition and 
higher weight loss between 210 and 360 °C, conforming to 
the dehydration and breaking down of cellulose and hemi-
cellulose. The second large degradation rate in the interval 
360–370 °C corresponds to the formation of combustible 
volatiles and carbons from the decomposition of cellulose 
and hemicellulose [42, 43]. As may be seen, the sodium 
silicate treated biocomposites pretreated showed better 
thermal stability and lower maximum pyrolysis rates than 
those of the non-pretreated samples.

For the purpose of testing the flame retardancy of the 
samples, a butane gun burning test was performed in 
which the specimens were burned for 30 s (Fig. 5c). It can 
be seen that RWP began to burn at 15 s and intensified at 
30 s, whereas DW only began to burn at 30 s. As a result 
of the combustion, RWP was left with a greater amount 
of ash, while DW remained unchanged in terms of shape 
and size [44]. Figure 5d illustrates the flame retardancy 
progression of the biocomposites. By pretreating boxwood 
powder with sodium silicate, the carbon content of the 
material is increased, which results in the enhancement of 
charring and diminution in wood volatiles. Moreover, the 
silicate material attached to the interior of the boxwood 
powder reacts in situ to form a more stable cross-linked 
carbonised layer, subsequently increasing flame-retardant 
properties by reducing heat and oxygen diffusion [45, 46].
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3.4  Detailed examination of bonding interactions 
and chemical properties

The cellulose, hemicellulose and lignin contents of all bio-
composites are shown in Fig. 6a. Biocomposites pretreated 

with sodium silicate solution showed increased lignin con-
tent while a significant decrease in hemicellulose content. 
This could be explained by the loss of hemicellulose during 
solubilisation, followed by exfoliation reactions and alkali 
hydrolysis in an alkaline environment [47–49]. The total 

Fig. 3  a–f Mechanical properties of biocomposites. g The specific strength of biocomposites and conventional materials



Advanced Composites and Hybrid Materials (2023) 6:140 

1 3

Page 7 of 13 140

nitrocellulose content of the samples before and after pre-
treatment also differed significantly, with the total nitrocellu-
lose content being significantly higher for DW8% (93.71%) 
and DW6% (93.15%) compared to RWP8% (87.46%) and 
RWP6% (84.75%). As a result of the removal of waxes and 
oils during the pretreatment stage, the fibre contact area was 
further increased and a stronger bond formed after the hot-
pressing process.

The FTIR-ATR absorption peaks at 2900  cm−1, 1956  cm−1, 
1425  cm−1, 1268  cm−1 and 1030  cm−1 correspond to symmetric  
-CH2 stretching, aromatic ring skeleton vibrational C = O 
stretching, asymmetric bending of C-H in methoxy, C = O 
stretching of G-lignin and deformation of aromatic C-H 
planes, respectively (Fig. 6b). The corresponding hemicellu-
lose (1637  cm−1, 1456  cm−1, 1425  cm−1) lignin (1596  cm−1, 
1456  cm−1, 1425  cm−1, 1268  cm−1, 1030  cm−1) peaks were all 
reduced, indicating that alkali disrupts the lignin-carbohydrate 
polymer and causes degradation of lignin and hemicellulose 
at high temperature and pressure [50].

A comparison of the crystallinity of biocomposites before 
and after pretreatment can be seen in Fig. 6c. All samples 
exhibited diffraction peaks at 2θ = 17.53°, 22.06° and 34.82° 
that matched to the crystalline types (101), (002) and (004), 
respectively, where (002) was the main crystalline peak of 
cellulose I. Despite the hot pressing and pretreatment per-
formed on the Buxus sinica, its native crystalline integrity 
might still intact. Based on Segal’s empirical equation, the 
fibre crystallinity (CrI) of the biocomposites is 47.04%, 
47.19%, 46.33% and 46.55% for DW8%, DW6%, RWP6% 
and RWP8%, respectively. Due to the pretreatment with 
sodium silicate solution, some hemicellulose, lignin and 
non-fibrous materials in the cell wall have been removed 
from the amorphous structure. Under high temperatures and 
pressure, chemical bonds formed between fibres allowed 
the filaments in the non-crystalline region to be arranged 
in an orderly fashion, thereby expanding the crystalline 
region [51]. In addition, the crystalline regions of DW8% 
and DW6% were larger than those of RWP8% and RWP6%, 
which indicated that the water content contributed to the 
formation of crystalline regions and further affected the 
strength of the biocomposites.

The CP-MAS 13C-NMR spectrum of the biocomposite 
is depicted in Fig. 6d. Significant hemicellulose degradation 
can be observed at 172 ppm and 21 ppm due to the signals 
generated by the carbonyl group in hemicellulose and the 
methyl group in the acetyl group, respectively [52, 53]. The 
peaks at 152.6 ppm, 147.6 ppm, 133.2 ppm and 55 ppm 
represent lignin S3,5 (etherified), S3,5 (non-etherified), S1/4 
(non-etherified) and -OCH3, respectively. The intensity of 
these peaks was enhanced, suggesting the presence of strong 
vinyl ether bonds in lignin that promote the formation of 
stronger mechanical substructures [54]. The typical reso-
nance peaks detected at 60 to 110 ppm can be ascribed to 

cellulose, whereas 105 ppm and 65 ppm can be assigned to 
cellulose type I C1 and C6. The broad peak at 89–80 ppm 
is corresponded to C4, while 74–72 ppm is attributed to C2, 
C3 and C5. Compared with RW8%, the signal peak for the 
cellulose C4 of pretreated DW8% was enhanced, indicating 
a decrease in conformational dispersion of cellulose chains. 
This could probably due to the transformation of cellulose 
type I into cellulose type II, which agree with the C6 signal 
results [55, 56].

Figure 6e shows the UV absorption capacity of the bio-
composites. It can be seen that the biocomposites treated 
with sodium silicate exhibit lower UV absorption, which 
greatly reduces photo-ageing due to UV absorption. This 
is because the pretreatment process reduces the lignin con-
tent, while the photodegradation reaction in wood primarily 
occurs on lignin. When exposed to UV energy, the alcohol 
hydroxyl, aromatic and phenolic groups in lignin generate a 
large number of free radicals. By oxidising these free radi-
cals further with oxygen and water, these free radicals can 
reduce the mechanical properties of the wood [57, 58].

Figure 6f, j, h and g, display the XPS evaluation per-
formed on the biocomposites surface to ascertain the con-
centration of components, and four peaks (C1, C2, C3 and 
C4) were synthesized via the pearl program. Among them, 
C1 (C–C/C-H) corresponds to the chemical bond among 
the H and C atoms or only C atoms (C-O), while C2 (C-O), 
C3 (O-C-O/C = O) and C4 (O = C-O) can be assigned to the 
chemical bond among O and C (hydroxyl, carbonyl, carboxyl 
or ester). C1, which is connected to O via double bonds, 
decreased to a great extent in all the biocomposites prepared 
after sodium silicate pretreatment, whereas C2, C3 and C4 
content increased significantly [59]. Since sodium silicate 
pretreatment destroyed the lignin–hemicellulose polymer 
and removed the hemicellulose while wetting and swelling 
the fibre, more unbound -OH moities became available on 
the surface of the fibre. As a result of the high temperature 
and pressure conditions, the -OH moities on the cellulose 
surface reacted with each other to form more chemical 
crosslinks. The fibres with lower moisture content cannot 
form an effective connection, and they are still loose after 
hot forming. The higher moisture content promotes the 
formation of stronger chemical bonds inside the biological 
composites. The higher water content creates more hydroxyl 
groups during hot pressing, which in turn react with other 
groups to form more strong chemical bonds between the C 
and O atoms, resulting in a higher O/C ratio.

As shown from a macroscopic view, Fig. 6j depicts the 
structural modifications made to the biocomposites through-
out processing. First, the pretreatment hydrolysed most of 
the hemicellulose and increased the proportional amounts of 
lignin and cellulose. The mechanical strength of the material 
was significantly increased by closely interacting among the 
crystalline structures of the fibres through the formation of 
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a tightly bound fibre network with lignin as a fibre binder 
[60]. Secondly, a dense fibre entangled interfacial framework 
was created by the homogeneous bonding from each of the 

shattered fibre cell walls, reducing the inherent porosity and 
enhancing cellulose materials in biocomposites. During hot 
pressing, lignin structure fragments self-bond with cellulose 
fibres, thus strengthening the mechanical attributes of bio-
composites [61]. The interunit bonds of β-aryl ether (β-O-4) 
on lignin were cleaved during pretreatment with sodium sili-
cate solution, leading to a high concentration of phenolic -OH 
moieties in lignin [6]. As a result, the proportion of hydrogen 

Fig. 4  a–b Thickness expansion rate and intake of water absorption by 
biocomposites. c–e Contact angle analysis of biocomposites. f Sche-
matic diagram of the flow of water droplets falling from high altitude 
on a sample

◂

Fig. 5  a Heat loss mass of biocomposites. b The mass loss rate of biocomposites. c The flame resistance of biocomposites. d The mechanism of 
the flame-retardant process of biocomposites
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bonds linking lignin and cellulose was substantially increased 
and the self-bonding reaction of lignin fragments was also 
enhanced during hot pressing. Since hot pressing induced 

the creation of abundant reaction sites on the aromatic ring 
of lignin, the newly formed higher energy C–C bonds is more 
favourable than the original aryl ether bonds [62].

Fig. 6  a Various lignocellulosic constituents contained in biocompos-
ites. b FTIR spectrum and corresponding chemical moieties presence 
in the biocomposites. c Variations of XRD spectrum detected for bio-
composites. d CP-MAS 13C-NMR spectrum of biocomposites in the 

range of 20–180 ppm. e The ultraviolet absorption of biocomposites. 
f–i XPS curves of biocomposites. j Self-enhancement mechanism of 
the cell wall
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4  Conclusion

A clean process was developed using self-adhesive technol-
ogy to convert waste boxwood powder into biocomposites 
with excellent properties. The findings revealed the tensile 
(106.63 MPa) and bending strengths (148.78 MPa) of the 
optimized samples were 125.37% and 91.40% higher than 
the performance before optimization. Moreover, the bio-
composite demonstrated remarkable hydrophobicity, as 
evidenced by a water contact angle of 99.96°, and exhibited 
high thermal stability, without any disintegration observed 
even when subjected to combustion at 1300 °C. Through 
the pretreatment process of boxwood powder, hemicellulose 
and part of the amorphous cell wall structure were removed. 
This increased the relative content of lignin and cellulose. 
During further thermoforming, the fibre cell wall collapsed 
completely. In addition to lignin being used as a fibre binder, 
lignin was used to strengthen the dimensional stability of 
the fibre network by chemical bonding between fibre 
structures. Moreover, the in situ reaction between silicate 
substances and wood flour produces a more stable cross-
linked carbonised layer that is highly resistant to water. In 
short, biocomposites with excellent properties are produced, 
which prevent harmful volatiles from being released into the 
environment from chemical binders, thereby contributing 
to environmental protection and sustainable development. 
Therefore, this technology could be a promising approach to 
utilising green resources for large-scale furniture, decoration 
and construction applications.
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