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Abstract
The sensitivity, accuracy, and stability of terahertz biodetection functional devices still need to be improved. A metamaterial-
based terahertz biodetection sensor was to be designed and fabricated to meet this need. The sensor uses lithography and 
magnetron sputtering processes to prepare copper combination square ring microstructures. The sensor interacts with the 
incident terahertz wave to generate a magnetic dipole resonance, including a resonant peak with 98.9% absorption at the 
resonant frequency of 0.4696 THz. When the analyte’s refractive index increased from 1.0 to 2.0, the resonance peak of the 
sensor obviously redshifted, and the absorption of the resonance peak almost exceeded 99%. Meanwhile, the sensitivity of 
the sensor can reach 78.6 GHz/RIU (refractive index unit, RIU), Q (quality factor) is up to 55.3, and FOM (figure of merit, 
FOM) is up to 9.81. In addition, the quadruple rotation structure unit makes the sensor insensitive to wide incidence angles 
and polarization. The designed sensor has excellent resonance characteristics and can realize the detection and identifica-
tion of biomolecules with different refractive indices. It also provides new ideas for designing terahertz band bio-detection 
sensors and has critical applications in medical diagnosis and real-time monitoring.
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1  Introduction

Bio-sensors are essential in disease diagnosis and preven-
tion, food safety, and biomolecular research [1]. Labeling 
methods based on labeling sensors are widely used in 
gene and protein detection, including fluorescent labeling, 
enzyme labeling, and radionuclide labeling. However, that 
method requires pre-treatment of samples [2], significantly 
limiting the application scope and detection accuracy. It is 

important to develop biosensors with high accuracy, sensi-
tivity, stability, and labeling-free [3–5].

Metamaterials are a new material class that has emerged 
since the twenty-first century. It is a rationally designed 
composite material in which an array of microstructures 
designed artificially superimposed on a common material 
is made to exhibit extraordinary physical properties that 
natural materials do not possess [6–8]. For example, light 
and electromagnetic waves can change their usual properties, 
and such effects are impossible with conventional materials 
[9–11]. There is nothing special in the composition of meta-
materials; their peculiar properties arise from their precise 
geometric structure and size scale. The microstructure and 
size scale is smaller than the wavelength it acts on, so they 
can influence the wave. They can be used in different appli-
cations, including stealth, waveguides, and electromagnetic 
wave adsorption [12–14]. Someone said that metamaterial 
physics plays the same role as those fields that have been 
issued Nobel prizes in physics [15]. Terahertz band refers  
to electromagnetic waves ranging from 0.1 to 10 THz bands 
in the middle of microwave and infrared bands [16–18]. 
Due to the weak interactions between molecules, [19–21] 
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and some vibrations (e.g., skeletal vibrations of biologi-
cal macromolecules, rotational and vibrational jumps of 
dipoles [22], and low-frequency vibrational absorption of 
lattices) are in the terahertz band [23], terahertz electromag-
netic waves are very sensitive to detect small differences 
and changes in materials. Therefore, terahertz electromag-
netic waves can be used in biomedical research to detect and 
identify biological macromolecules such as proteins, RNA, 
and DNA [24–26]. Furthermore, terahertz metamaterial bio-
detection sensors based on microstructures [27, 28] can be 
used as a new detection tool to improve the sensor detection 
resolution and to achieve high quality [29, 30], rapid [31], 
and label-free detection [32], which has good development 
potential in bio-detection.

However, the terahertz metamaterial sensor still has 
some shortcomings: low Q value and low accuracy. Saadel-
din et al. proposed a metamaterial terahertz sensor with a 
sensitivity of 300 GHz/RIU for chlorine detection in crops, 
but the Q value was only 22.05 [33]. In 2020, Ma et al. pro-
posed a susceptible terahertz metamaterial sensor based on 
a center-symmetric double F-type metal structure [34]. With 
a sensitivity of up to 1800 GHz/RIU and a FOM of 15, this 
sensor can be used as a high-sensitivity biosensor. But its 
Q value is 49.6; a low Q value will affect the stability of 
the sensor. Wang et al. proposed a flexible metamaterial 
biosensor based on a flexible thin film (poly-phenylene-c, 
perylene-c) [35]. Simulation analysis showed that the sen-
sitivity and FOM values were 243 GHz/RIU and 3.3 GHz, 
respectively, but the Q value was 14.2, affecting the sen-
sor’s accuracy. Similar results were found by Li et al. that 
the Q value was only 6.913 for the terahertz metamaterial 
biosensor used for the diagnosis of cirrhosis and hepatocel-
lular carcinoma, and the accuracy and stability of the sensor 
were relatively poor [36]. The above research indicated that 
terahertz metamaterial biosensors have high sensitivity and 

application prospects, but the small Q value makes the test 
accuracy low, significantly limiting its wide application.

Another disadvantage of the terahertz metamaterial sen-
sor is that the sensitivity is insufficient for accurate detec-
tion. In 2020, Lin et al. proposed a terahertz metamaterial 
biosensor for detecting n carcinoembryonic antigen con-
centration, but its sensitivity was only 76.5 GHz/RIU [37]. 
A terahertz metamaterial biosensor is proposed for rapid 
and label-free identification of early cervical cancer tissue 
[38]. Although this method has the advantages of simplic-
ity, label-free, and rapidity, its sensitivity is only 29 GHz/
RIU, which significantly limits its wide application in the 
detection of tumor cells.

Given the above problems, a microstructure-based high-
Q terahertz metamaterial bio-detection sensor is designed 
in this paper. When a terahertz wave is an incident on the 
sensor surface, it resonates with the microstructure and 
produces a narrow absorption peak. A detection channel is 
left in the middle of the sensor, and the absorption peak is 
shifted when the analyte is injected into the channel, and the 
concentration of the analyte, biomolecule content, etc., can 
be characterized by the magnitude of the shift. The working 
principle is shown in Fig. 1. The sensor can be integrated 
with a microfluidic cell screening chip or used alone. The 
sensor forms a resonant peak with an absorption of 98.9% 
of the resonance frequency of 0.4696 THz. The sensor has 
a sensitivity of up to 78.6 GHz/RIU, a Q of up to 55.3, and 
a FOM of up to 9.81. The quadruple rotation structure unit 
makes the sensor insensitive to wide incidence angles and 
polarization. The designed sensor features high sensitivity 
and high Q and FOM values, enabling the identification of 
biomolecules with different refractive indices, and has sig-
nificant application prospects in medical diagnosis and real-
time monitoring. It also provides new ideas for the design of 
terahertz band bio-detection sensors.

Fig. 1   Working principle of 
microstructure-based high-Q 
terahertz metamaterial bio-
detection sensor
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2 � Structural design and simulation

The designed sensor structure is depicted in Fig. 2. It 
consists of four functional layers: a metal microstructure 
layer, an analyte channel layer, a metal reflection layer, 
and a basal layer. Figure 2a presents a schematic diagram 
showing the periodic matrix arrangement of the sensor; 
Fig. 2b shows the unit structure of the sensor, where the 
metal microstructure consists of four identical metal open 
square rings and a nested metal square ring of the same 
size; Fig. 2c presents a front elevation of the sensor unit 
structure; and Fig. 2d shows a side elevation of the sensor 
unit structure. The detailed parameters of the metal micro-
structure of the sensor structure unit and the thickness of 
the unit structure are shown in Table 1. The absorption 
spectra were simulated and optimized using CST Micro-
wave Studio 2020 based on the finite element method. In 
the simulation setting, the electric field E and magnetic 
field H are parallel to the incident plane, while the wave 
vector k is perpendicular to the incident plane. The struc-
tural elements were set as periodic boundaries along the x 
and y directions and the z direction as open space bounda-
ries to establish the element model. The adaptive mesh 
was used to improve the structure’s simulation accuracy. 
The frequency domain solver was used to simulate the 
numerical value of the electromagnetic wave absorbed by 
the absorber. During the simulation, the metal microstruc-
ture and metal reflection layer used copper (Cu) material; 

the conductivity is 5.8 × 107 S/m, and both thicknesses are 
0.5 μm. The channel layer of the analyte is between the 
metal microstructure layer and the metal reflection layer, 
the thickness d2 is 30 μm, and the refractive index range 
is set as 1 ~ 2. The material used in the substrate is quartz 
glass (lead glass), and its dielectric constant and perme-
ability are charged as 6 and 1.

3 � Results and discussion

The absorption rate of the metamaterial absorber can be 
expressed by Eq. (1):

Among them, R(ω) and T(ω) denote the reflectance and 
transmittance of the metamaterial absorber, respectively, and 
S11 and S21 represent the reflectance and transmittance coef-
ficients of the metamaterial absorber, respectively [39–41]. 
Since the reflective metal layer with a sensor thickness of 
0.5 μm can effectively block the propagation of terahertz 
waves, the transmittance of the sensor to terahertz electro-
magnetic waves T(ω) = 0.

Figure 3 shows the S11 and absorbance curves of the 
sensor in TE mode and TE mode with forwarding electro-
magnetic wave incidence. As can be seen from the graph, 
the sensor forms an absorption peak of up to 98.9% in the 

(1)
A(�) = 1 − R(�) − T(�) = 1 − ||S11||

2
− ||S21||

2
= 1 − ||S11||

2

Fig. 2   Terahertz metamaterial 
bio-detection sensor with (a) 
periodic array, (b) cell structure, 
(c) frontal structure view, and 
(d) side view

Table 1   Detailed parameters 
of the microstructure and the 
thickness of the unit structure

Parameters a b c d w l d1 d2 d3

Value/μm 12.5 40 65 195 5 200 100 30 100
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0.3–0.6 THz band, and the S11 and absorbance curves in both 
modes overlap perfectly.

3.1 � Analysis of the absorption mechanism

The physical mechanism of the peak absorption of the sen-
sor allows the analysis of the distribution of surface electric 
currents and energy losses at the resonant frequency point 
to be explored. From Fig. 3, the sensor forms 98.9% of the 
absorption peak over a resonant frequency of 0.4696 THz. 
The distribution of surface currents and energy loss in the 
X–Y plane of the sensor under the vertical incidence of tera-
hertz electromagnetic waves in TE and TM modes is shown 
in Fig. 4. As can be seen in Fig. 4a and e, the four open 
square rings of the metal structure of the sensor produce 
induced currents in the TE mode for a resonant frequency of 
0.4696 THz, with the left. Right open square rings produce 
induced currents in opposite directions, significantly more 
substantial than the top and bottom metal square rings. In 
TM mode, the induced currents generated by the upper and 
lower open square rings are in opposite directions, and the 

intensity is significantly stronger than that of the two open 
square rings. As can be seen from Fig. 4b and f, in TE mode 
and TM mode, the direction of the induced current on the 
front of the metal structure is opposite to that on the metal 
back plate, and the two opposite surface currents form a 
loop. The direction of the magnetic field excited by this cur-
rent ring coincides with that of the magnetic polarization of 
terahertz electromagnetic waves. The magnetic dipole effect 
between the two occurs, forming a magnetic resonance. 
When the induced current is generated on the sensor surface, 
it is known from the power loss equation Ploss = I2R (where 
Ploss shows the electromagnetic power loss, I is current at 
the surface, and R is the electrical resistance at the surface) 
that the induced current on the sensor surface will consume 
the electromagnetic wave in the form of thermal dissipation 
due to ohmic loss. From Fig. 4c and g, it can be seen that the 
electromagnetic wave loss in TE mode is mainly caused by 
the two open square rings on the right and left of the metal 
structural layer; the electromagnetic wave loss in TM mode 
is primarily caused by the two available square rings on the 
top and bottom of the metal structural layer.

Fig. 3   S11 and absorbance 
curves for (a) TE and (b) TM 
mode electromagnetic waves at 
the positive incidence.

Fig. 4   Plots of the front surface 
current of the metal structure, 
metal back surface current, and 
energy loss for (a)–(c) TE mode 
and (e)–(g) TM mode under the 
positive incidence of electro-
magnetic wave
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To further analyze the absorption mechanism for the 
transducers, the equivalent impedance of the transducers 
was analyzed utilizing the impedance matching principle. 
When a terahertz electromagnetic wave is projected onto 
the sensory sensor, part of the incident electromagnetic 
wave is reflected off the sensor’s surface, and another part 
is transmitted through. It follows that to achieve maximum 
absorption, the reflection and transmission coefficients must 
be minimized. In general, sensors use a full metal back-
ing plate of much greater thickness than the skin depth as 
their ground plane so that transmission is near zero. Thus, 
the absorptance of the sensor is determined mainly by the 
amount of reflectance [42–44].

The equivalent permittivity and equivalent permeability of 
the metamaterial absorber can be expressed as Eqs. (2) and (3):

Among them, ε′ and μ′ are the parameters describing the 
degree of polarization and magnetization, respectively, and 
ε″ and μ″ denote the electric and magnetic losses of the 
metamaterial absorber, respectively [45].

When the sensor’s resonant structural element dimensions 
are smaller than the wavelength at the corresponding opera-
tional frequency, the sensor as a whole can be considered 
an equivalent medium. Therefore, the equivalent impedance 
of the sensor can be derived from the equivalent capacitive 
weight μ (ω) and the equivalent magnetic permeability ε (ω) 
[46] can be expressed as Eq. (4):

The relationship between the reflection coefficient S11, 
transmission coefficient S21 [47], and the equivalent imped-
ance of the sensor can be expressed as Eq. (5):

When the electromagnetic wave is incident on the sen-
sor surface, the degree of matching between its equiva-
lent impedance and the free space impedance determines 
the magnitude of the reflection coefficient [46, 47], so the 
reflection coefficient R(ω) can be expressed as Eq. (6):

(2)�(�) = �� − j���

(3)�(�) = �� − ���

(4)Z(�) =
√
�(�)∕�(�)

(5)Z(�)=

√√√√
√

(
1+S

11

)2
− S2

21

(
1−S

11

)2
− S2

21

(6)

R(�) = ||S11
||
2
=

(
Z(�) − 1

Z(�) + 1

)2

=

[
(Re{Z(�)} − Z

0
cos �)

]2
+ [Im{Z(�)}]2

[
(Re{Z(�)} + Z

0
cos �)

]2
+ [Im{Z(�)}]2

where Z0 is the wave impedance of the incident wave in 
free space, Z0 ≈ 377 Ω, and θ is the angle of incidence of 
the electromagnetic wave. Thus, for a vertically incident 
electromagnetic wave with an incidence angle θ of 0, the 
reflectivity will be near zero as the normalized equivalent 
compound of the absorber impedance approaches 1 [48, 49].

The reflection coefficient R(ω) is obtained by rectifying 
the formula, as shown by Eq. (7):

Among them, ZL is the equivalent impedance of the sen-
sor. When ZL = Z0 to meet the impedance matching, the 
reflection coefficient R(ω) = 0 for the electromagnetic wave 
irradiated to the sensor in space. When the total impedance 
of a sensor is closer to the free-standing impedance of air, 
most of the electromagnetic energy is guaranteed to enter 
the sensor. The equivalent complex impedance frequency 
spectrum of the sensor is shown in Fig. 5. The equivalent 
complex impedance of the sensor at a resonant frequency 
of 0.4695 THz is ZL = 1.1 + i × 0.018, while the complex 
free-space impedance is Z0 = 1. As a result, a good match 
of impedance is formed at the resonant frequency between 
the sensor on the one hand and the free space on the other, 
resulting in a high absorption resonance peak.

3.2 � Incidence angle and polarization‑sensitive 
characteristics analysis

In practical applications, sensors with wide incidence 
angles and polarization-insensitive characteristics can 
improve detection accuracy and reduce experimental 

(7)R(�) =
ZL − Z

0

ZL + Z
0

Fig. 5   Equivalent complex impedance frequency spectrum of the sensor
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errors, thus improving detection efficiency. Designing 
the sensing unit into a quadruple rotationally symmetric 
structure can realize the polarization-insensitive character-
istics of the sensor. Figure 6a and b show the effect of the 
terahertz wave’s incident angle variation on the sensor’s 
absorption rate in the TM and TE modes, respectively. In 
TE mode, the absorptance of the sensor at the resonant fre-
quency 0.4695 THz is higher than 96% for all the terahertz 
wave incident angles in the range of 0–30°, and no sig-
nificant shift of the resonant frequency occurs. In the TM 
mode, the absorption rate at the resonant frequency 0.4695 
THz was higher than 90% for both terahertz wave incident 
angles in the 0–30°, and no significant shift in the resonant 
frequency occurred. In addition, the sensor produced addi-
tional resonant peaks with increasing resonance rates as 
the angle of incidence of terahertz waves increased in TE 
and TM modes. This is because the resonance generated 
at the sensor surface increases with the increasing incident 
angle, resulting in additional resonance peaks. Since the 
other resonance peak is far from the resonance frequency 
of 0.4695 THz, it does not interfere with the sensor detec-
tion. The results mentioned above showed that the sensor 
maintains a high absorption rate when terahertz waves are 
incident at angles from 0 to 30° and have wide incidence 
angle insensitivity. Figure 6c and d show the effect of the 
polarization angle variation on the sensor’s absorptance 

in TE and TM modes. The absorptance and resonant fre-
quency of the sensor remain unchanged under the vertical 
incidence of terahertz waves with a 0–90° polarization 
angle. So the sensor has good polarization insensitivity 
characteristics.

3.3 � Sensing performance analysis

The sensor works by injecting analytes with different 
refractive indices into the sensor. At this point, the dielec-
tric parameters of the sensor change, thus changing the 
resonance characteristics of the sensor (resonance fre-
quency, absorbance, resonance peak, etc.). The analytes 
refer to cancer cells, proteins, nucleic acids, polysaccha-
ride solutions, etc., ranging in size from a few nanometers 
to tens of nanometers, with refractive indices in the range 
of 1.0–2.0, enabling susceptible sensing detection in the 
terahertz frequency range.

Q, S, and FOM values represent the three indicators 
of sensor performance [50–52]. The Q value indicates a 
sensor’s resonance characteristics, the size of which is 
relevant to both resolutions and sensitivity. In general, 
the higher the Q value, the smaller the dielectric loss 
of the structure and the narrower and sharper the reso-
nance peak. The FOM value measures the sensor’s overall 

Fig. 6   Effect of variations of 
terahertz wave incidence angle 
and polarization angle on the 
absorbance of the sensor



Advanced Composites and Hybrid Materials (2023) 6:100	

1 3

Page 7 of 10  100

performance, and the higher the FOM value, the better 
the sensor’s performance. It is calculated by the following 
Eqs. (8), (9), and (10):

Here, f denotes the central resonant frequency, and 
FWHM (full-width half-height) denotes the half-peak width.

Here, Δn represents the amount of index of refraction 
change of the analyte, Δf represents the magnitude of the 
frequency shifts of the centroid frequency, and the sensitiv-
ity is in GHz/RIU (refractive index units).

The refractive indices of biomolecules usually range 
from 1.0 to 2.0, and for this purpose, the absorption char-
acteristics of analytes are simulated when their refractive 
indices change. The simulation results in a redshift with 
increasing refractive power of the analytical material, and 
the resonance peak of the sensor is almost always above 
99% absorption, as shown in Fig. 7a. Figure 7b shows the 
results of a linear fit to the resonant peak of the sensor 

(8)Q =
f

FWHM

(9)S =
Δf

Δn

(10)FOM =
S

FWHM

with a sensitivity of S = 78.6 GHz/RIU; Fig. 7c and d 
show the influence of the refractive index of the analyte 
upon the sensor’s Q and FOM values. It can be seen that 
as the refractive index increases, the Q of the resonant 
peak fluctuates slightly above and below 55. The FOM 
value fluctuates slightly above and below 9.6. When the 
refractive index of the analyte is 1.4, the Q value of the 
sensor is 55.32, and the maximum value of the FOM is 
9.81. The excellent resonance characteristics indicate that 
the designed sensor has excellent performance and can 
achieve the identification of biomolecules with different 
refractive indices.

The terahertz sensor can shorten the detection time and 
improve the detection accuracy when detecting analytes 
in solution, enabling fast and accurate detection of liquid-
phase analytes. The effect of the tangent to the analyte’s 
loss angle on the sensor’s absorptance when the real part 
of the analyte’s dielectric constant is 1 is shown in Fig. 8. 
It is seen that as the loss angle of the analyzed object 
increases tangentially, the resonant frequency of the sen-
sor has a small redshift, and the absorbance and resonant 
intensity decrease simultaneously. The FWHM and Q val-
ues of the absorption peak also decrease with the increase 
of the loss angle tangent. Therefore, the sensor can dis-
tinguish the change in the loss angle of the object to be 
measured based on the change in absorbance and Q value. 

Fig. 7   Influence of analytes 
with different refractive indices 
on the sensor sensing perfor-
mance
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Table 2 compares the sensitivity, Q value, and FOM val-
ues of the proposed and terahertz sensors designed in the 
literature. It can be seen that the designed sensor has high 
Q and FOM values for analytes with different refractive 
indices, which indicates that the sensor has good accuracy 
and stability and has good prospects for applications in 
bio-detection and medical prevention.

4 � Production process

After optimized design to confirm the optimal structural 
parameters, multiple cell samples were fabricated on 
100-μm-thick lead glass substrate by lithography. Figure 
S1(a) and (b) show the fabrication flow chart. The process 
of making the metal structure layer is as follows: first will 
be treated as substrate after washing, then washed clean sub-
strate with full positive photoresist, will be covered with the 
baseboard of photoresist after drying, use ultraviolet lithog-
raphy at the positive photoresist substrate coated printing out 

the structure of the high-resolution image, adopt the method 
of lithography printing machine can implement high preci-
sion lithography in micro/nano level, thus greatly improve 
the accuracy of the finished product. After the lithography 
substrate is developed and examined to determine the cor-
rect structure of the lithography, the next step of sputtering 
can be carried out. The sputtering process requires using 
the magnetron sputtering method to sputter the pattern 
structure. The working principle is that the charged parti-
cles in the electromagnetic field will sputter to the substrate 
surface under the action of the electric field force. In this 
process, the charged particles collide violently with argon 
atoms, leading to the massive ionization of argon atoms, 
after the ionization of argon ions in the strong electric field 
under the action of high speed of cathode Cu target material 
surface caused by bombardment. The Cu atomic absorp-
tion of bombardment energy on the surface of the target 
material escapes from the surface of the target and deposi-
tion in the dielectric substrate, thus in the thickness of the 
dielectric substrate, to form a certain Cu membrane. This 
completes the surface Cu magnetron sputtering technology 
of the membrane. The structure designed in this paper is to 
sputter 20-nm and 135-nm-thick Ito-PET resistance films 
on the substrate, respectively. Finally, acetone and ethanol 
were used to ultrasonic clean the sample, and finally, the 
metal structure layer sample was obtained. The process of 
the metal reflection layer is as follows: after the substrate 
is cleaned and dried, the substrate is sputtered to obtain the 
metal reflection layer sample. The physical picture of the 
prepared sample and the microstructure under the electron 
microscope is shown in Figure S1(c)—(g).

5 � Conclusion

To improve the accuracy and efficiency of the sensor in 
detecting and identifying biomolecules, we propose a high-Q 
terahertz metamaterial bio-detection sensor based on a com-
bined square ring microstructure. It can break through the 
resolution limit of traditional biosensors to achieve highly 
sensitive, label-free, and rapid detection of biomolecules. 
The resonance characteristics of the sensor are changed by 
simulating the interaction of the bioanalyte with terahertz 
waves to achieve accurate and efficient identification. The 
results show that the sensor has a sensitivity of 78.6 GHz/
RIU and maintains high Q and FOM values with high stabil-
ity and sensitivity when the analyte refractive index ranges 
from 1.0 to 2.0 variations. In addition, the sensor has wide 
incidence angle insensitivity and polarization insensitivity 
characteristics. The designed microstructure-based terahertz 
metamaterial bio-detection sensor has high sensitivity and 
has a promising application in label-free, trace, fast, and 
efficient detection of analytes.

Fig. 8   Effect of analyte loss angle tangent on sensor absorbance

Table 2   Comparison of sensor sensitivity, Q value, and FOM value 
between the sensor proposed in this paper and those in the references

References Operating 
band/THz

Sensitivity/
(GHz/RIU)

Quality factor Figure of merit

29 1 ~ 2.2 300 22.05 2.94
30 5 ~ 6.5 1800 5.92 15
31 0.8 ~ 1.8 243 14.2 3.3
32 0.2 ~ 1 124 6.913 Not given
33 0.4 ~ 1.2 76.5 Not given Not given
34 0.2 ~ 1 74 Not given Not given
Proposed 0.3 ~ 0.6 78.6 55.3 9.81
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