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Abstract
Aqueous rechargeable zinc ion batteries (ZIBs) are a promising next-generation energy storage device, which suffers from 
poor capacity and limited cycle life. In this work, a ZIB cathode material was reported, consisting of a composite of Co3O4 
doped with Mo and carboxylic carbon nanotubes (Mo-Co3O4-CNTc), with a hierarchical porous structure arising from 
ultrathin nanosheets. The composite was prepared via a sol-gel method in an emulsion system. The experimental electro-
chemical data and density-functional first-principles calculations showed that the as-prepared Mo-Co3O4-CNTc composites 
with 152.9 mAh g−1 showed superior electrochemical performance compared to pure Co3O4 (as 107.3 mAh g−1) and Mo-
Co3O4 (as 112.0 mAh g−1) electrode materials. Furthermore, the as-prepared MoCo-Zn batteries, with zinc metal foil anode 
and Mo-Co3O4-CNTc cathode, exhibited a specific capacity of 195.7 mAh g−1 at 0.5 A g−1, energy density of 237.6 Wh kg−1 
at 1692.4 W kg−1, and a remarkable ultralong cycling life of over 10,000 cycles with 85.1% capacity retention. The superior 
performance can be attributed to the hierarchical porous structures with open spaces acting as “ion-buffering reservoirs.” 
The summary of zinc ion storage mechanism in the MoCo-Zn batteries was investigated during the charge-discharge process. 
Therefore, this work promotes the development of innovative strategies to synthesize carbon-modified composites with 
hierarchical porous nanosheets as cathode materials, for the ultra-long cycle-life aqueous rechargeable ZIBs.

Keywords  Mo-Co3O4-CNTc composites · Zinc ion batteries · Ultralong life · Zinc ions storage mechanism · First-
principles calculations

1  Introduction

With the growing energy crisis and population explosion, 
clean alternative energy storage systems remain a significant 
challenge to attaining carbon neutrality and environmental 
protection [1–5]. Next-generation energy storage devices, 
such as aqueous rechargeable batteries [6], lithium ion bat-
teries [7–9], lithium-oxygen batteries [10, 11], and superca-
pacitors [12–17], have attracted significant research interest. 
Aqueous rechargeable zinc ion batteries (ZIBs) are a prom-
ising technology due to their environmental friendliness, 
intrinsic safety, low cost, high specific capacity, and high 
energy density [18]; however, they show restricted capacity 
and limited cycle life [19, 20]. Currently, ZIB performance 
is mainly limited by cathode materials, which need to be 
further developed to achieve stable cycle life and suitable 
crystalline structures [21].

Among cathode materials, Co3O4 displays low cost, 
excellent stability, high theoretical capacity, and excellent 
electrochemical performance; however, it suffers from low 
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practical capacity due to its intrinsic electronic conduc-
tivity [7, 22–29]. The electronic transport in Co3O4 has 
been improved by two strategies, i.e., by doping ions and 
by incorporating carbon-based materials as “express chan-
nels” [30–38]. Compared with monometallic oxides, binary 
metal oxides possess a more complicated chemical com-
position and show a decreased band gap; all these factors 
act synergistically and improve electronic conductivity and 
electrochemical performance [39, 40]. For instance, Mo-
doped Co3O4 electrodes exhibit superior electrochemical 
performance due to the synergy between the Co2+/Co3+/
Co4+ and Mo6+/Mo4+ redox couples during the electro-
chemical processes [41]. Hence, designing promising Mo-
doped Co3O4 cathode materials with high electrochemical 
performance can help achieve high specific capacity and 
long cycling performance of MoCo-Zn batteries.

Herein, we report the fabrication of hierarchical porous 
Mo-Co3O4-CNTc composites as cathode materials for aque-
ous rechargeable ZIBs. The construction process of Mo-
Co3O4-CNTc composites involves the oil-in-water (O/W) 
emulsion system, which is a facile method and involves 
industrial manufacturing equipment. A series of intercon-
nected CNTs act as “express channels” and are connected 
to the Mo-Co3O4 nanosheets by a sol-gel method, leading 
to 3D conductive networks with improved electronic con-
ductivity. The obtained Mo-Co3O4-CNTc cathode mate-
rial exhibited a specific capacity of 152.9 mAh g−1 at 0.5 
A g−1, and showed excellent cycling performance, with a 
80.3% capacity retention even after 4000 charge-discharge 
cycles at 25 A g−1. Notably, the assembled MoCo-Zn bat-
teries also exhibited excellent electrochemical performance. 
Additionally, the Zn2+ ion storage mechanism of the Mo-
Co3O4-CNTc cathode was further investigated via ex situ 
XRD patterns, Raman spectra, and XPS measurements to 
characterize structural evolution at certain voltages to fur-
ther investigate MoCo-Zn batteries.

2 � Experimental section

2.1 � Materials

All reagents used in this work are of analytical grade. 
Co(NO3)2·6H2O (> 98.5%), Na2MoO4·2H2O (> 99.0%), 
CH2Cl2, polyethylene glycol (PEG, molecular weight 6000), 
ammonia water (25~28%), KOH (> 85.0%), acetylene black, 
polyvinylidene difluoride (PVDF), and N-methyl-2-pyr-
rolidone (NMP, 99.5%) were purchased from Sinopharm 
Chemical Reagent Co., Ltd. The carboxylic CNT (CNTc) 
was bought from Nanjing/Jiangsu XFNANO Materials Tech 
Co., Ltd.

2.2 � Preparation of hierarchical porous 
Mo‑Co3O4‑CNTc composites

The hierarchical porous Mo-Co3O4-CNTc composites were 
synthesized in an O/W emulsion system by a sol-gel method. 
The polyethylene glycol (PEG, 6 g, molecular weight 6000) 
was dissolved in dichloromethane (CH2Cl2, 30 mL), and the 
CNTc (acid-modified CNT, 0.12 g) was dispersed in water 
(130 mL) under sonication. Then, PEG/CH2Cl2 was added 
to CNTc/water under high magnetic stirring. Co(NO3)2·6H2O 
(0.582 g, 2 mmol) and Na2MoO4·2H2O (0.0484 g, 0.2 mmol) 
were dissolved in water (20 mL), and then added to the mix-
ture dropwise. With the volatilization atmosphere of 8 mL of 
ammonia water, the system of the emulsion was covered in a 
beaker and further reacted for 12 h to obtain the Mo-Co(OH)x-
CNTc composites as precursors. Then, the precipitates were 
ultrasonically washed and dried at 60 °C in a vacuum oven. 
Finally, the Mo-Co3O4-CNTc composites were obtained by 
an annealing process at 250 °C in a muffle furnace for 2 h. 
Moreover, a series of Mo-Co3O4 electrode materials were fur-
ther prepared with different Mo-Co molar ratios of 1:10, 5:10, 
and 10:10 for comparison with pure Co3O4 and Mo-Co3O4-
CNTc composites.

2.3 � Material characterization

The Mo-Co3O4-CNTc composites were characterized by 
X-ray diffraction (XRD, Bruker, Germany), thermogravimet-
ric analysis (TGA, SDT-Q600), X-ray photoelectron spectros-
copy (XPS, ESCALAB-250), scanning electron microscopy 
(SEM, HITACHI S-4800), transmission electron microscopy 
(TEM, Philips Tecnai-12), high-resolution TEM (HRTEM), 
and Raman spectroscopy (LabRAM HR Evolution). The 
surface areas and pore volume were confirmed by the 
Brunauer–Emmett–Teller (BET) and Barrett–Joyner–Halenda 
(BJH) methods (BSD-660 equipment), respectively.

2.4 � Assembly of zinc ion batteries

The MoCo-Zn ZIBs were fabricated with a Zn metal foil as 
anode and 1 mg of hierarchically porous Mo-Co3O4-CNTc 
composite as cathode, deposited on a Ni foam current col-
lector (1 × 1 cm2), and 6 M KOH with 0.2 M zinc acetate as 
electrolyte. The MoCo-Zn batteries were prepared based on 
a nickel foam (4 × 4 cm2) current collector, with a loading of 
16 mg of Mo-Co3O4-CNTc and Zn metal foil in a soft package 
of polyethylene (PE).

2.5 � Electrochemical characterization

The electrochemical properties of Mo-Co3O4-CNTc (with 
Hg/HgO as reference electrode) and MoCo-Zn batteries were 
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characterized by cyclic voltammetry (CV), galvanostatic 
charge-discharge (GCD), and electrochemical impedance 
spectroscopy (EIS), with an electrochemical workstation 
(CHI660e and SLAN-CT2001A). The specific capacities 
of the Mo-Co3O4-CNTc electrodes and MoCo-Zn batteries 
were obtained according to the following equation:

wherein C*, I, t, and m refer to the capacity (mAh g−1), 
discharge current (A), discharging time (s), and the mass of 
active mass on working electrode (g), respectively. Further-
more, the energy density (E, W h kg−1) and power density 
(P, W kg−1) were calculated according to equations:

wherein V is the discharging voltage (V).

2.6 � Computational methods

All first-principles calculations were conducted using den-
sity functional theory (DFT) as implemented in the Vienna 
ab initio simulation package (VASP) [42, 43] code inter-
faced with the MedeA software. The frozen-core projec-
tor augmented wave (PAW) [44] technique of Blöchl was 
employed to represent the inner core potentials. The gen-
eralized gradient approximation, as described by Perdew-
Burke-Ernzerhof (GGA-PBE) [45], was adopted to treat 
the exchange-correlation energy. The kinetic energy cut-
off of 400 eV and Gaussian smearing [46] of 0.1 eV were 
set for all calculations. The sampling of the Brillouin zone 
was obtained from the Monkhorst-Pack [47] k-point grid, 
with a resolution of 0.2 Å−1. A vacuum layer of about 15 
Å was used to avoid interactions between the adjacent lay-
ers. Spurious slab-to-slab dipole interactions were also cor-
rected (IDIPOL = 3). The van der Waals (vdW) effects were 
described using a dispersion-corrected DFT-D3 scheme [48] 
with Becke-Johnson damping. Hubbard correction [49], with 
Ueff = 4 eV for Co and Ueff = 1 eV for Mo, was selected to 
describe the strong correlation effect. Geometries were fully 
optimized until the energy converged to 1.0 × 10−6 and the 
force converged to 0.005 eV/Å.

3 � Results and discussion

The synthesis process to obtain hierarchical porous Mo-
Co3O4-CNTc composites is schematically depicted in 
Fig. 1a. The Mo-Co(OH)x-CNTc composites, as precur-
sors, were prepared in the O/W emulsion. Remarkably, the 

(1)C
∗ = It∕3.6m

(2)E = ∫ IVdt∕m

(3)P = E∕t

Mo-Co3O4-CNTc composites can be obtained in the anneal-
ing process, in which the CNTc content was confirmed to be 
about 21.8% from TGA curves (Fig. S1). The crystal struc-
ture of the Mo-Co3O4-CNTc composites was confirmed to 
be the cubic phase (JCPDS no. 42-1467) by the XRD pat-
terns (Fig. 1b), which shows diffraction peaks for the (111), 
(220), (311), (222), (400), (422), (511), and (440) planes. 
Furthermore, the chemical composition and state were deter-
mined via XPS (Fig. S2a). The Co 2p spectra (with shake-
up satellites (“Sat.”) at 787.6 and 804.2 eV) were detected 
for Co3+ and Co2+ (Fig. 1c), thus indicating that the fitting 
peaks at band energy of 780.5 and 795.5 eV can be assigned 
to Co3+, and the fitting peaks at 782.0 and 797.0 eV can be 
ascribed to Co2+ [50, 51]. The Mo 3d spectrum (Fig. 1d) can 
be assigned to Mo 3d3/2 at 235.3 eV and Mo 3d5/2 at 232.2 eV, 
thus indicating the existence of Mo6+ with a width of 3.1 eV 
in the Mo-Co3O4-CNTc composites [32, 52]. Furthermore, 
the spectrum of O1s can be resolved as the lattice oxide ions 
O2− at 530.3 eV, defective oxide ions Ox− at 531.5 eV, and 
adsorbed surface water at 533.5 eV in Fig. 1e. The two peaks 
at 284.8 and 286.2 eV can be attributed to C–C/C = C and 
C–O–C, respectively (Fig. S2b), thus confirming the success-
ful preparation of the Mo-Co3O4-CNTc composites.

The detailed morphologies of the obtained Mo-Co3O4-
CNTc composites can be observed from the SEM images 
(Fig.  2a-b). Compared with the Mo-Co3O4 electrode 
materials (Fig. S3), the Mo-Co3O4-CNTc composites are 
composed of intertwisted and crinkly nanosheets to form 
hierarchically porous structures. Meanwhile, the CNTs 
were uniformly entangled and inserted into the Mo-Co3O4 
nanosheets as express electron transport channels (Fig. S4). 
The detailed morphology of the hierarchically porous 
structures can be identified by TEM (Fig. 2c-f). The cross-
linked and doped CNTs were combined with the Mo-Co3O4 
nanosheets to form an interconnected electric network to 
facilitate the transfer of electrons. Notably, the interlaced 
ultrathin nanosheets reveal a thickness of 2–4 nm and sub-
stantial mesoporous scale holes, as shown in Fig. 2d. Mean-
while, the hierarchical mesoporous structures of Mo-Co3O4 
nanosheets, combined with CNTs as an electric network, 
are beneficial for the rapid electrolyte ion diffusion and fast 
electrons transport with low resistance. Moreover, the nitro-
gen adsorption–desorption analysis (as Langmuir type IV, 
Fig. S5) [26, 53] indicated a BET surface area of 168.73 m2 
g−1, BJH pore size distribution of ~3.9 nm, and pore vol-
ume 0.55 mL g−1, respectively. Accordingly, the HRTEM 
image shown in Fig. 2f (inset) presents lattice spaces of 0.28, 
0.23, and 0.20 nm, corresponding to the (220), (222), and 
(400) planes of Mo-Co3O4, indicating high crystallinity and 
the polycrystalline nature of the Mo-Co3O4 nanoparticles. 
Meanwhile, a lattice space of 0.34 nm was detected from the 
(002) plane of the CNTs in the Mo-Co3O4-CNTc compos-
ites. Additionally, the EDS pattern (inset Fig. 2d) shows the 
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presence of Co, Mo, O, and C, thus further indicating the 
successful preparation of Mo-Co3O4-CNTc composites. The 
elemental mapping shows that these elements are distrib-
uted homogeneously on the entire Mo-Co3O4 nanosheets, as 
shown in Fig. 2g-k, which is consistent with the XPS results.

The electrochemical performance of the as-prepared 
Mo-Co3O4-CNTc composites was systematically evaluated 
in the three-electrode configuration. Compared with the 
pure Mo-Co3O4 electrode materials, the Mo-Co3O4-CNTc 
composites exhibited superior electrochemical properties, as 
demonstrated by the CV curves at 50 mV s−1 (Fig. 3a), GCD 
curves at 0.5 A g−1 (Fig. 3b), and average capacity (four 
samples) at various current densities (Fig. 3c). Moreover, the 
pure Co3O4 (as 107.3 mAh g−1 at 0.5 A g−1) and a series of 
Mo-Co3O4 electrode materials with different Mo-Co molar 
ratios of 1:10, 5:10, and 10:10 were evaluated for compari-
son (Fig. 3d), indicating the superior electrochemical prop-
erties obtained at 1:10 as 112.0 mAh g−1 at 0.5 A g−1. The 
CV curves of the Mo-Co3O4-CNTc cathode materials are 
exhibited in Fig. 3e with obvious battery-type features at 
multiple scan rates from 0.5 to 50 mV s−1. The oxidative 
peaks shift toward more positive values and reductive peaks 
shift toward more negative values with the increase in scan 
rates due to the polarization effect and more reversible redox 
reactions. Furthermore, Fig. 3f shows the log i and log v 
plots at peak current values, and the b-values were deter-
mined to be 0.775 and 0.845 (in the range of 0.5–1.0) by the 
Dunn method [54], according to Eq. (4). Consequently, the 

as-prepared Mo-Co3O4-CNTc cathode materials represent 
both battery-type and pseudocapacitive-type characteristics.

The capacitive contribution for the total current at 1 mV s−1 
is shown in Fig. 3g. The contribution ratio of the capacitive and 
diffusion-controlled capacity at various scan rates (Fig. 3h) can 
be calculated by the following equations [55, 56]:

wherein Icap and Idiff are the surface capacitance-led and 
diffusion-controlled current densities, respectively. The 
capacitive-controlled processes are 46.7%, 49.9%, 53.3%, 
55.8%, 59.5%, 65.5%, 72.2%, 79.3%, and 91.3% at 0.5, 1, 2, 
3, 5, 10, 20, 30, and 50 mV s−1, respectively. Additionally, 
the typical GCD profiles at various current densities deliver 
a remarkable specific capacity of 152.9 mAh g−1 at 0.5 A 
g−1 and 82.7 mAh g−1 at 40 A g−1, reaching 54.1% capacity 
retention, as shown in Fig. 3i. Compared with pure Co3O4 
and Mo-Co3O4 electrode materials, the rate performance of 
Mo-Co3O4-CNTc showed enhanced specific capacity at the 
lower current density of 0.5 A g−1 in the initial 5 cycles. 
Thus, the last 15 cycles indicate good structural stability, 
as shown in Fig. 3j. Furthermore, Fig. 3k shows that excel-
lent cycling performance was obtained, with 80.3% capac-
ity retention after over 4000 GCD cycles at 25 A g−1 and 
a high Coulombic efficiency of 99.6%. Additionally, the 

(4)logi = blogv + loga

(5)I = Icap + Idif f = avb

Fig. 1   a The schematic illustration of hierarchical porous Mo-Co3O4-CNTc composites. b XRD patterns. c–e The Co 2p, Mo 3d, and O 1 s spec-
tra of Mo-Co3O4-CNTc
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Nyquist plots (Fig. 3l) of Mo-Co3O4-CNTc show a lower 
electrochemical resistance (Rs) of around 0.43 Ω and a lower 
charge transfer resistance (Rct) of 0.53 Ω, compared to both 
pure Co3O4 and Mo-Co3O4 electrode materials (Fig. S6). 
The superior properties of the Mo-Co3O4-CNTc compos-
ites can be attributed to the following factors: (i) the Mo-
Co3O4, as a binary metal oxide, possesses higher electrical 
conductivity and electrochemical reactivity during the elec-
trochemical processes due to the synergistic effect between 
the Co2+/Co3+/Co4+ and Mo6+/Mo4+ redox couples; (ii) 
the hierarchical porous structures provide open spaces for 
ion-buffering reservoirs, filled with electrolyte ions during 
the charge-discharge process, and substantial mesoporous 
structures in the ultrathin nanosheets exhibited short ion- 
diffusion channels from the external electrolyte to the 
interior of the Mo-Co3O4 nanosheets, thus leading to long 
cycling life and low internal resistance, respectively; and 

(iii) the Mo-Co3O4-CNTc composites with interpenetrating 
CNTs forming 3D conductive networks led to “express chan-
nels” through the hierarchical porous Mo-Co3O4 electrode 
materials to further synergistically improve the electron 
transport and electrochemical performance.

As illustrated in Fig. 4a, the MoCo-Zn batteries were 
assembled with the hierarchically porous Mo-Co3O4-CNTc 
composites as the advanced cathode materials and zinc metal 
as the anode, in the 6 M KOH aqueous electrolyte with 0.2 
M zinc acetate. The CV curves of the MoCo-Zn batteries 
exhibited similar shapes and redox peaks, with the increas-
ing scan rate from 0.5 to 50 mV s−1 (Fig. 4b). The b val-
ues of the MoCo-Zn batteries were calculated as 0.786 and 
0.746 by the Dunn methods [54], as shown in Fig. 4c, thus 
revealing the coexistence of battery-type and pseudocapac-
itive-type characteristics. Moreover, the contribution ratio 
of capacitive and diffusion-controlled reactions is exhibited 

Fig. 2   The characterization of Mo-Co3O4-CNTc composites. a, b Different magnification SEM images. c–f Low- and high-magnification TEM 
images, EDS pattern, and HRTEM image (inset). g–k Co-K, Mo-K, O-K, and Cl-K
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in Fig. 4d as 48.0%, 51.5%, 53.8%, 55.3%, 56.6%, 57.6%, 
59.4%, 61.1%, 65.3%, 69.0%, 75.1%, 81.6%, and 86.8% at 
various scan rates of 1, 2, 3, 4, 5, 6, 8, 10, 15, 20, 30, 40, 
and 50 mV s−1, respectively. Furthermore, the GCD curves 
with an average discharge platform of around 1.68 V rep-
resent the voltage window of 1.93 V from 1 to 30 A g−1, as 

shown in Fig. 4e, and deliver the specific capacity of 195.7 
mAh g−1 at 0.5 A g−1 and 97.6 mAh g−1 at 30 A g−1 (with 
capacity utilization of 49.9%), respectively. The MoCo-Zn 
batteries display outstanding rate performance and Coulom-
bic efficiency, as shown in Fig. 4f, thus demonstrating good 
structural stability. Meanwhile, the energy density and power 

Fig. 3   The electrochemical properties of Co3O4, Mo-Co3O4, and Mo-
Co3O4-CNTc for comparison: a CV curves, b GCD curves, c rate per-
formance, and d rate performance with different Mo-Co molar ratios. 
The electrochemical properties of Mo-Co3O4-CNTc composites (with 
the Mo-Co molar ratio of 1:10): e CV curves, f b value, g capacitive 

contribution for the total current at 1 mV s−1, h capacitive and diffu-
sion-controlled proportions at various scan rates, i GCD curves, j rate 
performance, k cycling performance, and l Nyquist plots and equiva-
lent circuit (inset)
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density can be evaluated from the Ragone plots (Fig. 4g) 
as 237.6 Wh kg−1 at 1692.4 W kg−1 and 162.7 Wh kg−1 at 
50,032.0 W kg−1, respectively. Compared with the Mo-Co-
based supercapacitors and other aqueous rechargeable ZIBs, 
the as-prepared MoCo-Zn batteries exhibited a superior 
energy density, such as CoMoO4–x//AC 62.3 Wh kg−1 at 800 
W kg−1 [57], ZnCo2O4@CoMoO4//AC 29.24 Wh kg−1 at 
884.57 W kg−1 [58], CoMoO4@Ni(OH)2//AC 62.5 Wh kg−1 
at 776 W kg−1 [59], NiMoO4/CoMoO4//AC 33.1 Wh kg−1 
at 199.6 W kg−1 [60], Zn//Co3O4 241 Wh kg−1 at 1487.7 
W kg−1 [61], Zn//NiCo 210.1 Wh kg−1 at 11600 W kg−1 
[62], Zn//core-shell Co3O4@δ-MnO2/CC 212.8 Wh kg−1 at 
313.3 W kg−1 [63], Zn//MnO2 254 Wh kg−1 at 197 W kg−1 
[64], Zn//P-MoO3–x@Al2O3 240 Wh kg−1 at 931.3 W kg−1 
[65], and Zn//LiVPO4F-CNTs@PPy 235.6 Wh kg−1 at 320.8 
W kg−1 [66]. The MoCo-Zn batteries exhibited excellent 

cycling performance, with 85.1% capacity retention over 
10,000 cycles at 25 A g−1, and there was no decay at the ini-
tial 2000 cycles (Fig. 4h). Meanwhile, the Mo-Co3O4-CNTc 
composites also possessed hierarchical porous structures 
with opened space functioning as “ion-buffering reservoirs” 
[67–69], which outperformed most aqueous rechargeable 
ZIBs. Furthermore, the Coulombic efficiency of the MoCo-
Zn batteries was nearly 100%. The inset (Fig. 4h) displays 
GCD curves at different cycles from 1st to 10,000th, thus 
indicating the changes in the GCD curves during long-term 
cycling life, including capacity decay, electrode polarization, 
stabilization of Coulombic efficiency, and displacement of 
the discharge platform. Finally, the LEDs (2.2 V, 0.06 W) 
could be lit up by a series of MoCo-Zn devices, as demon-
strated in Fig. 4h (inset image), verifying their potential for 
practical applications.

Fig. 4   a Schematic illustration of the MoCo-Zn batteries. Electro-
chemical performance of the batteries: b CV curves, c b value in CV 
curves, d capacitive and diffusion-controlled proportions at various 
scan rates, e GCD curves, f rate performance, g Ragone plots, and h 

cycling performance, the inset shows GCD curves at different cycles 
and the photographs of red-light emitting diodes (LEDs) lighted by 
MoCo-Zn batteries in series
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To further investigate the MoCo-Zn batteries, the sum-
mary of Zn2+ ion storage mechanism of Mo-Co3O4-CNTc 
was explored via ex situ XRD patterns, Raman spectra, and 
XPS measurements to characterize the structural evolution 
at certain voltages. Figure 5a represents the schematic illus-
tration of the charge-discharge process with Zn2+ interca-
lation/de-intercalation. Figure 5b represents the different 
states in the charge-discharge process, labeled C0, C1, C2, 
C3, C4, D2, D1, and D0 (where C and D represent charge 
and discharge, respectively). As shown in ex situ XRD pat-
terns (Fig. 5c), the diffraction peaks shift at around 2θ = 
20°, corresponding to the (111) planes of Co3O4 after the 
intercalation/de-intercalation of Zn2+ during the charge- 
discharge process. Simultaneously, the new diffraction peaks 
appeared in the range of 11–13°, thus signifying a new layer 
of α-Co(OH)2 on the surface of the C3, C4, D2, and D1 
states. Moreover, the ex situ Raman spectra (Fig. 5d) show 

that the peaks shifted to a higher value at around 666 cm−1 in 
the states labeled C2, C3, C4, D2, and D1, according to the 
Zn2+ ingress/egress. Additionally, more detailed information 
of the chemical composition and states can be further inves-
tigated by ex-XPS measurements (Fig. S7). Compared with 
the state of C0 without the Zn 2p region, the Zn 2p spectrum 
(Fig. 5e) can be detected as the absorbed Zn2+ at Zn 2p3/2 at 
1022.0 eV and Zn 2p1/2 at 1045.1 eV, and the intercalated 
Zn2+ at Zn 2p3/2 at 1021.4 eV and Zn 2p1/2 at 1044.5 eV  
[70]. Thus, during the discharge/charge process, the Zn2+ 
intercalation/de-intercalation can be further demonstrated, 
with the intensity of intercalated Zn2+ peaks increasing in the 
C1, C2, C3, and C4 states and decreasing of intercalated Zn2+ 
peaks in the D2, D1, and D0 states. Furthermore, the Mo 3d 
spectrum (Fig. 5f) of the Mo-Co3O4-CNTc cathode materi-
als could be deconvoluted as Mo 3d5/2 and Mo 3d3/2, cor-
responding to Mo6+ at 232.2 eV, Mo4+ at 231.7 eV, Mo6+ at 

Fig. 5   a The schematic illustration of charge-discharge process of 
Mo-Co3O4-CNTc cathode materials. The characterization of different 
labeled states from C0 to D0 during the charge-discharge process: b 

GCD curve, c ex situ XRD patterns, d ex situ Raman spectra, e–g Zn 
2p, Mo 3d, and Co 2p XPS spectra
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235.3 eV, and Mo4+ at 234.9 eV, respectively, thus indicating 
the electrochemical reaction between the redox couple Mo6+/
Mo4+ during the charge-discharge processes. Similarly, the Co 
2p spectra can be identified as the fitting peaks at 780.5 and 
795.5 eV for Co3+, and 782.0 and 797.0 eV for Co2+ [71, 72], 
respectively. Remarkably, the peaks of C3, C4, and D2 shift to 
lower binding energy due to more electrochemical oxidation 
of Co3+, as shown in Fig. 5g. Furthermore, the C4 charge state 
of the Mo-Co3O4-CNTc composites maintained the hierar-
chically porous structures with nanosheets and the interpen-
etrating conductive networks of CNTc in the TEM images 
(Fig. 6a-c). Moreover, the EDS elemental pattern of the C4 
charge state (Fig. 6d) indicates a homogeneous distribution 
of Zn, O, Co, Mo, and C, thus further indicating the Zn2+ 
intercalation/de-intercalation in the entire Mo-Co3O4-CNTc 
composite and a good agreement with XPS measurements.

To gain deep insight into the interaction between CNT 
and Mo-Co3O4, the structural and electronic properties of the 

Mo-Co3O4-CNT system were investigated by first-principles  
DFT calculations [73–75]. The optimized structures and cor-
responding plane-averaged electrostatic potentials of Co3O4, 
Mo-Co3O4, and Mo-Co3O4-CNT were calculated, as shown 
in Fig. 7a-c. No chemical bonds were formed at the inter-
face, indicating a typical Van der Waals (vdW) interaction 
between CNT and Mo-Co3O4. Owing to the potential dif-
ference, an internal electric field formed at the interface, 
which is beneficial to charge transfer [76, 77]. In addition, 
the calculated work function of the Mo-Co3O4-CNT (4.6 eV) 
was lower than that of the Co3O4 surface (6.1 eV) and Mo-
Co3O4 surface (5.4 eV). The smaller work function means 
less loss when electrons escape to the surface for electron 
emission. This suggests that the Mo-Co3O4-CNT composite 
is beneficial for achieving high electronic conductivity. The 
differences in charge density and plane-averaged charge den-
sity of Co3O4, Mo-Co3O4, and Mo-Co3O4-CNT are plotted 
in Fig. 7d-f. The positive (yellow region) and negative (cyan 

Fig. 6   The morphology of C4 charge state: a–c low- and high-magnification TEM images and d the EDS elemental mapping analysis of Zn, O, 
Mo, Co, and C
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region) values indicate charge accumulation and depletion, 
respectively. The Bader charge analysis shows that 0.06 
e− per supercell was transferred from CNT to Mo-Co3O4. 
This indicates that Mo-Co3O4-CNT interfaces improve elec-
tron transport at the Mo-Co3O4 surface. To further study 
the interfacial contact properties, the atom-projected den-
sity of states (DOS) were analyzed, as shown in Fig. 7g-i. 
The increase in the density of states around the Fermi level 
resulted in increased conduction at elevated energies. CNT 
could alter the density of states and, therefore, alter the con-
ductivity at the interface without damaging the significant 
characteristics of the Mo-Co3O4 surface [78]. This result is 
in good agreement with the EIS measurements.

4 � Conclusions

In summary, we report the synthesis and investigation of 
hierarchical porous Mo-Co3O4-CNTc composites as cath-
ode materials for aqueous rechargeable ZIBs. The inter-
penetrating CNTs act as “express channels,” leading to 3D 
conductive networks that improve electronic conductivity. 
Experimental electrochemical data and first-principles DFT 
calculations demonstrated that hierarchical porous Mo-
Co3O4-CNTc composites showed superior electrochemical 
properties compared to pure Mo-Co3O4 electrode materials. 
Furthermore, the assembled MoCo-Zn batteries exhibited 
a specific capacity of 195.7 mAh g−1 at 0.5 A g−1, 237.6 

Fig. 7   Density-functional first-principles calculations of Co3O4, Mo-
Co3O4, and Mo-Co3O4-CNT composites for comparison: a–c opti-
mized structure and plane-averaged electrostatic potential, d–f cal-
culated charge density difference, and plane-averaged charge density 
difference, g–i atom-projected density of states (DOS). Color scheme: 

Co, blue; Mo, purple; O, red; C, brown. TOC: The cathode materi-
als of Mo-doped in hierarchical porous Mo-Co3O4-CNTc compos-
ites were fabricated for aqueous rechargeable zinc ions batteries with 
ultra-long cycle life
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Wh kg−1 at 1692.4 W kg−1, and ultralong cycling perfor-
mance, with a 85.1% capacity retention over 10,000 cycles. 
The Zn2+ ion storage mechanism in the Mo-Co3O4-CNTc 
cathode was further investigated to study the structural evo-
lution at certain voltages. Therefore, in this study, we pro-
vide an innovative strategy for constructing the M’-doped 
metal oxide composites modified with carbon materials (M’-
MOx/carbon), by a typical sol-gel emulsion method to help 
develop next-generation aqueous rechargeable batteries for 
energy storage and conversion.
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