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Abstract
Neutron shielding material with high shielding efficiency, small density, and flexibility is urgently needed in nuclear plants, 
aerospace, and healthcare field. In this study, neutron shielding composite of ultrahigh molecular weight polyethylene fiber 
(UPEF)/boron nitride (BN)/polyurethane (PU) is fabricated by spraying BN/PU dispersion on UPEF, where UPEF and BN 
are used to slow and absorb the neutrons, respectively, and PU was used as adhesive matrix, due to that polyethylene (PE) 
with high content of hydrogen can effectively slow the high-energy neutrons to thermal neutrons through multiple collisions 
with hydrogen atoms while boron has large capture cross-section for thermal neutrons. The result shows that the neutron 
transmission factor (I/I0) of the 3.2-mm-thick UPEF/BN/PU composite decreases to 0.28% at a BN content of 20 wt%. In 
addition, the composite shows excellent mechanical performance with tensile stress of 550–750 MPa. The UPEF/BN/PU 
composite is proved effective in neutrons shielding, making it excellent candidate in neutron radiation-related field, both as 
functional and structural material.
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1  Introduction

The unwanted neutron radiation is frequently encountered 
in nuclear plants, aerospace, and healthcare-related field. 
Neutron radiation is a type of ionizing radiation comprising 
uncharged particles; therefore, it passes through the electron 
cloud more efficiently than charged particles and interacts 
directly with the nucleus of the atom and emits harmful 
radiation, simultaneously [1–6]. Long-term exposure to 
neutrons will cause severe damage to the nucleus of human 
tissues, resulting in diseases, like cancer, cardiovascular 
diseases, leukemia, cataracts, and neurological diseases 
[7–9]. The most common materials used for the attenuation 
of neutron radiation are concrete and metal materials like 
aluminum because of their low cost and user-friendliness 
[10, 11]. However, their high density and large volume 
severely restrict their application in aerospace area, particu-
larly as wearable protection devices, which will limit the 
movement of astronauts’ limbs and lead to their movement 
burden [12]. Most importantly, numerous investigations 
have demonstrated that the collision of neutrons with metal 
materials will produce abundant heavy isotope impurities 
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and target fragments, which are sources of secondary radia-
tion [13–15]. Therefore, these traditional shielding mate-
rials cannot meet the key requirements for application in 
specific applications such as deep space missions and port-
able devices, so new efficient neutron shielding materials 
with properties of flexibility, low density, and low secondary 
emissions are in urgent needed [16].

The shielding of neutrons includes the scattering and 
deceleration of fast neutrons and the absorption of thermal 
neutrons [17–19]. According to the law of conservation of 
momentum and energy, when the mass of a neutron is equal 
to that of the target nucleus, the energy of the neutrons can 
be transferred more effectively through neutron scattering 
of the target nucleus [20, 21]. In this case, hydrogen with 
one neutron in its nucleus may have the highest efficiency 
to slow down the neutrons [19]. Zeitlin et al. have dem-
onstrated that hydrogen is by far the most effective mate-
rial in slowing high-energy neutrons [22]. Polyethylene 
(PE), which only comprises atoms with low atomic number 
(carbon and hydrogen) and contains the highest content of 
hydrogen among solid state materials, is frequently used as 
a polymer matrix for neutron shielding [23, 24]. A special 
class of PE materials, ultrahigh molecular weight polyethyl-
ene fiber (UPEF) produced via gel-spinning technology, has 
extraordinary mechanical properties (high specific modulus 
and strength, high cut, and abrasion tolerance), low density 
(0.97 g/cm3), excellent chemical resistance, low dielectric 
constant, and moisture absorption, which makes UPEF a 
candidate spacesuit material [25–29]. Zhong et al. fabricated 
UPEF/nanoepoxy composites that showed high radiation 
shielding effectiveness [30]. In addition, boron-containing 
fillers are excellent for thermal neutron absorption because 
boron can absorb neutrons with a wide energy range. Boron 
has a significantly high neutron capture cross-section for 
thermal neutrons of approximately 3840 barns (10−24 cm2) 
[31, 32]. The fabrication of composite is a very conveni-
ent way to endow materials with more functions [33, 34]. 
Moreover, the main products of boron and neutron reac-
tions (alpha particles) show a large mass, short range, and 
weak penetration ability, which can be shielded easily [35]. 
Boron-containing materials such as boron nitride (BN) and 
boron carbide (B4C) have been added to polymers, such as 
PE, polypropylene (PP), and epoxy to fabricate radiation-
shielding composites [36, 37]. Shang et al. prepared multi-
layer PE/BN composite films with alternating high-density 
polyethylene (HDPE)/BN layers and low-density polyethyl-
ene (LDPE) layers for high-efficiency neutron shielding [38]. 
PE/BN composite achieves high neutron shielding efficiency 
as it combines the deceleration effect of PE and the absorp-
tion effect of BN on neutrons.

Based on the above analysis, composites with UPEF and 
BN may be a good strategy for neutron radiation shielding. 
In this work, an UPEF/BN/PU composite was fabricated, 

where the continuous UPEF was used as neutron modera-
tor and mechanical reinforcement, BN as neutron absorber 
fillers. In addition, polyurethane (PU) was used as polymer 
matrix [39–43]. Considering that the dispersion of fillers in 
the matrix is crucial for the neutron shielding materials, as 
the improvement of the dispersion of the fillers in the matrix 
will lead to increase of the probability of collision between 
the fillers and neutrons; thereby, the homogenously disper-
sion of BN in the composites is necessary [44–47]. Because 
PE and BN showed poor interfacial adhesion, the modifica-
tion of BN is an effective method to improve its dispersion 
[48–55]. Thus, we firstly modified the BN with tannic acid 
(TA) to prepare BN/PU dispersion, and then sprayed BN/PE 
dispersion on UPEF fabrics. As a result, the neutron shield-
ing measurement on the composite with thickness of 3.2 mm 
and BN content of 20 wt% showed that the neutron transmis-
sion factor (I/I0) decreased to 0.28%. Notably, the composite 
shows outstanding high tensile stress of 550–750 MPa, indi-
cating that the composite can be used as structural material, 
which demonstrates impressive potential in applications, 
such as deep-space aerospace, healthcare, nuclear reactors, 
and other related fields.

2 � Experimental process

2.1 � Material

BN platelets with sizes of 1 μm were obtained from Shang-
hai Naiou Nanotechnology Co., Ltd. Solid TA (C76H52O46, 
98%, 2.12 g/cm3) and tris(hydroxymethyl) amino-methane 
(Tris) were purchased from Shanghai McLean Biochemi-
cal Technology Co., Ltd., Shanghai, China. The UPEF 
(Dyneema 75*), with density of 0.97 g/cm3, was obtained 
from Royal DSM Co., Ltd. The tensile strength and elonga-
tion were in ranges of 3.3–3.9 GPa and 3–4%, respectively. 
Waterborne PU solution (AH-1650F) was obtained from 
Anhui Anda Huatai New Material Co., Ltd.

2.2 � Modification of BN

As shown in Fig. 1, original BN powder (5.0 g) was dis-
persed in deionized water (500 mL) with ultrasound for 
2 h and stirred for 2 h at room temperature. Thereafter, tris 
(1.5 g) was mixed with the aforementioned BN dispersion 
with ultrasound for 0.5 h and stirred for 2 h at room tem-
perature. Then, TA (1.5 g) was added and stirred at room 
temperature for 12 h. Afterwards, the solution was washed 
with deionized water until the pH of the solution was close 
to 7. Finally, the sample was dyed in an oven at 60 °C for 
24 h to obtain the modified BN, which is denoted hereafter 
as m-BN.
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2.3 � Preparation of UPEF/BN/PU composite

BN/PU dispersion was prepared by adding 0.2, 0.4, 0.9, 1.6, 
and 2.5 g m-BN to PU solution (8.0 g). The mass fraction 
of m-BN in the total m-BN and dried PU was 5%, 10%, 
20%, 30%, and 40%, respectively. As shown in Fig. 1, then 
the BN/PU dispersion was sprayed on the UPEF fabrics 
(2.7 g). Finally, the samples were dried in an oven at 60 °C 
for 12 h and hot-pressed at 80 °C under a pressure of 2 MPa 
for 5 min. The obtained samples were labeled as UPEF/
BN/PU-x, where x represents the weight fraction of BN 
in BN/PU, which are UPEF/BN/PU-5, UPEF/BN/PU-10, 
UPEF/BN/PU-20, UPEF/BN/PU-30, and UPEF/BN/PU-40, 
respectively.

2.4 � Characterization

Fourier transform infrared (FTIR) spectra were recorded 
using an FTIR spectrometer (Nicolet iS50) in the attenu-
ated total reflection (ATR) mode. The morphologies were 
investigated by scanning electron microscopy (SEM, 
JEOLJSM-7500F) under an acceleration voltage of 10 kV. 
Thermogravimetric analysis (TGA Netzsch STA 209F3) 
was conducted to analyze the weight fraction of BN in 
the composite at a heating rate of 20 °C min−1 under air 
flow. Neutron shielding measurements were performed at 
China Mianyang Research Reactor (CMRR) [56, 57]. The 
neutron wavelength of SANS was 0.53 nm, and the sam-
ple to detector distance was 10.45 m. The samples for the 
neutron shielding measurements were cut into squares of 
30 × 30 mm.

Wide angle X-ray diffraction (WAXD) and small angle 
X-ray scattering (SAXS) measurements were performed 
with a Bruker D8 Discovery X-ray device with a Cu Kα 

X-ray source. The X-ray wavelength was 0.154 nm. For 
WAXD measurement, the exposure time and sample to 
detector distance were 60 s and 84.99 mm, respectively. 
The WAXD patterns were captured by a vantec-500 two-
dimensional (2D) detector. For SAXS measurement, the 
exposure time and the sample to detector distance were 90 s 
and 1085 mm, respectively, and the SAXS patterns were 
recorded with a vantec-2000 2D detector. Fit2D software 
was used to analyze the WAXD and SAXS patterns to obtain 
one-dimensional (1D) curves and azimuthal angle distribu-
tion plots.

Mechanical testing was performed on an electromechani-
cal universal testing machine (Shenzhen Labsans Testing 
Machine Co., ltd) at a cross head speed of 10 mm/min at 
room temperature. The size of specimens for the tensile 
property’s measurement was 200 × 20 × 0.8 mm.

3 � Results and discussion

3.1 � Characterization of m‑BN

In order to prepare homogenously BN/PU dispersion, BN 
was modified with TA to improve its dispersity in aque-
ous PU solution. As shown in Fig. 2a, TA contains a large 
amount of catechol and pyrogallol, which can be adsorbed 
on the surface of BN sheets through π–π interactions. FTIR 
spectra measurement was carried out to see whether the 
modification of BN was successful or not. Figure 2b shows 
the FTIR spectra of BN prior to and after modification; 
these two characteristic absorption peaks at approximately 
1382 cm−1 and 809 cm−1 are attributed to the stretching 
vibration of the B–N band and the bending vibration of the 
B-N-B band, respectively. Notably, the FTIR spectrum of 

Fig. 1   Schematic illustration of 
the fabrication of UPEF/BN/PU
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m-BN shows a peak at approximately 3421 cm−1, indicated 
by the black arrow, which corresponds to the stretching 
vibration of –OH. The appearance of this peak indicates the 
successful grafting of TA on the surface of BN. The inset of 
Fig. 2b shows the image of 10 mg/mL m-BN and BN dis-
persions in deionized water after the m-BN and BN disper-
sions were left 24 h. Compared with BN, m-BN was evenly 
dispersed in deionized water without stratification. The well 
dispersion of m-BN in water will benefit the preparation of 
uniform and stable BN/PU dispersion.

3.2 � Morphology and structure of UPEF/BN/PU 
composites

The morphologies and microstructures of the BN, UPEF, and 
UPEF/BN/PU composites were characterized by SEM, as 
shown in Fig. 3. The lateral size and thickness of BN are about 
1–3 μm and 50–100 nm, respectively. The diameters of UPEF 
are 15–25 μm. The surface of UPEF shows a tightly packed 
fibrillar structure, as shown in the continuous large axial corru-
gations in Fig. 3b. The specific morphology is attributed to that 
UPEF comprises a complex hierarchy of fibril diameters, rang-
ing from nanometer, micrometer, up to millimeter scales that 

form under high draw ratios during processing [58]. Figure 3c 
shows the image of a UPEF that was tightly wrapped by PU, 
indicating a good adhesion between PU and UPEF. Figure 3d–e 
shows the cross-sections of the UPEF/BN/PU composite. It 
can be found that UPEF distributed homogeneously in BN/
PU matrix. In this composite, the UPEF works as continuously 
filler while BN/PU works as matrix, which is illustrated by the 
schematic representation in Fig. 3f. It can be seen that when 
UPEF fibers were pulled out from the matrix, many holes and 
a network formed by BN/PU matrix can be seen on the cross-
section of the composite, indicating that BN/PU uniformly 
wrapped the UPEF in the composite. This structure ensured 
that the BN/PU can transmit force to UPEF when UPEF/BN/
PU composite bears the load, thereby improving the overall 
mechanical properties of the composites.

In order to investigate the structure of the composite, 
especially the structure of UPEF, WAXD and SAXS meas-
urements were conducted on the composite. Figure 4a and 
b presents the 2D WAXD and SAXS scattering patterns of 
UPEF/BN/PU composites. The WAXD diffraction shows 
diffraction spots; meanwhile, an intense streak signal on 
SAXS is observed, indicating that the crystal is highly 
orientated along the axial direction of fiber. The azimuthal 

Fig. 2   a Schematic diagram of 
the modification of BN with 
TA. b FTIR spectra of BN and 
m-BN

Fig. 3   a–c SEM images of BN 
powders, UPEF, and UPEF 
wrapped with PU. d–f SEM 
images of cross-sections of 
the UPEF/BN/PU composite. 
f Schematic representation of 
the structure of UPEF/BN/PU 
composite
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angle distribution of (002) plane is presented in Fig. 4c. It 
can be seen that the azimuthal angle distribution shows a 
sharp peak at 90° and 270°, indicating that the crystal is 
highly oriented along the axis direction of the fiber. The 
2D SAXS diffraction patterns were integrated to obtain 1D 
SAXS curves, as shown in Fig. 4d. According to Bragg’s 
law, the long period (L) can be calculated with the follow-
ing equation [59]:

where qmax is the peak position of the corresponding 1D 
SAXS curves in Fig. 4d. The calculated L of polyethylene 
crystal in UPEF is 60.9 nm. The large L is attributed to the 
shish crystal, which may endow the fiber with high mechani-
cal performance. The structure of the composite is schemati-
cally represented in Fig. 4e.

(1)L = 2
�∕qmax

The content of BN in UPEF/BN/PU composite is an 
important factor that influences the neutron shielding per-
formance. TGA measurement was conducted to determine 
the weight fraction of BN in the composite. As shown in 
Fig. 5a, for UPEF and PU, the weight decreased rapidly 
in the temperature range of approximately 350–500 °C, 
300–450 °C, and 500–550 °C, which are corresponding 
to the thermal decomposition of the UPEF, soft segment 
of PU, and hard segment PU, respectively. Finally, UPEF 
and PU were completely decomposed in the test tempera-
ture range. For UPEF/BN/PU, the weight also decreases 
rapidly during heating due to the thermal decomposition 
of UPEF and PU; however, the residual weight of UPEF/
BN/PU is higher than 0% at the end heating; the residual 
mass is attributed to BN. The residual mass of UPEF, PU, 
and UPEF/BN/PU-x composites is summarized in Fig. 5b. 
The weight fractions of BN in UPEF/BN/PU-5, UPEF/BN/

Fig. 4   a–b 2D WAXD pat-
terns and SAXS patterns. c 1D 
WAXD azimuth integral curves, 
d 1D SAXS curves, and e the 
schematics representation of the 
structure of the composite

Fig. 5   a TGA curves of PU, 
UPEF, and UPEF/BN/PU 
composite with various fraction 
of BN. b The weight fraction of 
BN content in the UPEF/BN/PU 
composite
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PU-10, UPEF/BN/PU-20, UPEF/BN/PU-30, and UPEF/
BN/PU-40 are 1.91%, 2.45%, 6.93%, 14.69%, 19.96%, 
respectively. It should also be noted that with the increase 
of BN fraction, the decomposition temperature of the 
UPEF/BN/PU composites gradually increases. This may 
be due to that physical and chemical crosslinking points 
formed between BN and PU, resulting in stronger inter-
molecular forces in the BN–PU system [60].

3.3 � The neutron shielding and mechanical 
properties of UPEF/BN/PU composite

As illustrated in Fig. 6a, the neutron transmission factor, I/
I0, is used to evaluate the neutron shielding capability of the 
UPEF/BN/PU composite with different contents of BN, where 
I and I0 are the numbers of transmitted neutron fluxes with 
and without the shielding composite, respectively. According 
to the Beer–Lambert law, the attenuation of neutrons through 
the materials can be obtained based on the following equation 
[19, 38, 61]:

where χ is the thickness of the UPEF/BN/PU composite and 
μ is the linear attenuation coefficient. The mass attenuation 
coefficient (μ/ρ) was obtained using the following equation:

where ρ is the density of the sample.

(2)I∕I
0
= exp(−��)

(3)�∕� =
1

��

ln(I
0
∕I)

As shown in Fig. 6b, the intensity of neutron radiation can 
be attenuated by about 25%, 63%, and 85%, when passing 
UPEF/BN/PU-0 with thicknesses of 0.8, 1.6, and 3.2 mm, 
respectively. As no BN was added in the composite, the neu-
tron was mainly prevented by UPEF with high hydrogen 
content. The result demonstrated the theoretical prediction 
that high content of hydrogen can shield the neutrons effec-
tively. When the fraction of BN increased to 7 wt%, the 
neutron shielding performance of UPEF/BN/PU is remark-
ably improved, indicated by the decreasing I/I0 value, which 
is attributed that boron can absorb neutron through nuclear 
reaction between neutrons and the nucleus of boron ele-
ment in BN. The neutrons are moderated by hydrogen and 
absorbed by boron successively. When the fraction of BN 
is higher than 7 wt%, I/I0 decreased gradually when further 
increasing the content of BN. The result showed that it is 
not realizable to improve the neutron shielding efficiency by 
ceaselessly adding BN fillers. Generally speaking, increased 
content of fillers may result in mechanical degradation of 
the composites; thus, the mass fraction of 7% is an optimal 
proportion in fabrication neutron shielding composites. In 
addition, the thickness of the UPEF/BN/PU composite had 
a significant impact on the neutron shielding performance. 
When the BN content is below 7 wt%, I/I0 for UPEF/BN/PU 
with thickness of 1.6 mm is approximately 25–30% lower 
than that of UPEF/BN/PU with thickness of 0.8 mm. With 
the increase of BN content, the difference in the I/I0 value 
between the UPEF/BN/PU composites with different thick-
ness decreased. Figure 6c shows that μ and μ/ρ for UPEF/
BN/PU composites increase as the BN content increases.

Fig. 6   a Schematic illustration 
of the setup used for neutron 
radiation shielding measure-
ments. b Neutron transmission 
factor (I/I0) versus BN content 
for UPEF/BN/PU composites 
with thickness of 0.8 mm, 
1.6 mm, and 3.2 mm; c linear 
attenuation coefficient (μ), and 
mass attenuation coefficient 
(μ/ρ) versus BN content for 
UPEF/BN/PU composites of 
1.6 mm. Note that the fraction 
of BN content in the x-axis is 
measured by TGA​
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The mechanical strength of the composites is measured 
with special clamps to avoid the slip during deformation. 
The engineering stress–strain curves of the UPEF/BN/PU 
composites in Fig. 7; the breakage of the composite is a 
gradually process, as the UPEF in the composite may not 
break together; thus, the engineering stress–strain shows a 
step-down decline trend when breaking. The images of the 
composite during deformation and after break are shown 
in the inset. As shown in Fig. 7b, the composites exhibit a 
tensile strength in the range of 550–750 MPa. It can also be 
found that BN content in the sample had little adverse effect 
on the tensile strength. This is because the strength of the 
composites mainly depends on the strength of UPEF. The 
high orientation degree of polyethylene in UPEF endows the 
fiber with extremely high mechanical performance. The BN/
PU acts as matrix that transfer force among UPEF. The result 
demonstrated that the addition of BN has no obvious nega-
tive effects on the strength of the composite as the m-BN has 
a good interfacial bonding strength with PU.

4 � Conclusion

In the present work, UPEF/BN/PU composites were fab-
ricated by spraying BN/PU dispersion on the UPEF and 
subsequent hot-pressing method. The fabricated UPEF/
BN/PU composites exhibit effective neutron shielding per-
formance. For the composite with BN content of 20 wt% 
and thickness of 3.2 mm, the I/I0 value was 0.28%, which 
means that approximately 99.72% of the neutrons were 
shielded. Meanwhile, the UPEF/BN/PU composites exhibit 
excellent mechanical properties; the tensile strength is in a 
range of 550–750 MPa. This ensures that the UPEF/BN/PU 
composites can be applied in areas with certain mechanical 
performance requirements. The UPEF/BN/PU composites 
have great potential application in aerospace, healthcare, 
and nuclear reactors area as efficient radiation shielding 
materials.
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