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Abstract
The double ion-buffering reservoirs of asymmetric supercapacitors (ASC) have drawn enormous interest due to their excellent 
electrochemical performance. Herein, we have prepared the hierarchical porous sandwich-like Co3O4-rGO-CNT > N-PEGm 
(Co3O4-RGOC, in which rGO was short for reduced graphene oxide and CNT > N-PEGm was modified with methoxypolyeth-
ylene glycol by nitrene chemistry) ternary composites via a solvothermal method. Remarkably, the Co3O4-RGOC composites 
exhibited unique structural features of the opened honeycomb-like structures as “ion-buffering reservoirs.” Moreover, in 
Co3O4-RGOC composites, both the intermediate sandwich layers of rGO sheets and the interpenetrating CNT > N-PEGms 
can form double conductive networks as express electron transport channels to improve the electronic conductivity by syn-
ergistic effect. The promising Co3O4-RGOC composites can be summarized as capacity of 138.5 mAh g−1 (capacitance of 
1420.5 F g−1) at 0.5 A g−1. Furthermore, the 3D rGO-PANI (PANI, polyaniline) aerogels as negative electrode materials also 
have been prepared by facile in situ polymerization and chemical reduction process. The 3D rGO-PANI presented excellent 
electrochemical performance of 218.8 F g−1 (capacity of 60.8 mAh g−1) at 0.5 A g−1 due to the hierarchical interconnected 
porous network structures. Finally, the corresponding asymmetric supercapacitors of Co3O4-RGOC//3D rGO-PANI devices 
exhibited a high energy density of 41.3 Wh kg−1 at power densities of 775 Wk g−1 with excellent electrochemical performance 
and long cycle performance. Our work can present a new concept to design the innovative asymmetric supercapacitors with 
double ion-buffering reservoirs as a combinatorial strategy for useful energy storage and conversion.
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1  Introduction

Owing to the global energy crisis and environmental pro-
tection requirements, the new generation of clean and low 
cost energy resources has been urgent demand in the energy 
storage-conversion field, such as supercapacitors [1–7], 
lithium-ion batteries [8–10], lithium–oxygen batteries [11], 
and other aqueous rechargeable batteries [12]. Among other 
developing alternative energy storage devices, the asymmet-
ric supercapacitors (ASC) of double ion-buffering reservoirs 
have attracted significant attention because of their better 
safety, quick charge/discharge ability, and ultra-long cycling 
performance, and high energy/power density [13–17]. 
Recently, the asymmetric supercapacitors, built with double 
“ion-buffering reservoirs,” have been designed by the metal 
oxides/hydroxide and carbon aerogels both with the hierar-
chical opened honeycomb-like porous structures to boost 
the electrochemical performance. In this ASC structure, the 
typical electrode materials are composed of ultrathin paper-
like nanosheets with interconnected porous networks and 
opened hierarchically honeycomb-like structures, which are 
fully utilized as ion-buffering reservoirs [18, 19]. During 
the typical electrochemical charge–discharge process, the 
electrolyte ions can be filled in the structured ion-buffering 
reservoirs and easily transported into the interior surfaces of 
the electrode materials with a shortened diffusion distance 
to ensure sufficiently reversible redox reaction even at high 
current densities (or high scan rates) [20]. Meanwhile, to 
obtain a wider operating voltage window, the ASC devices 
can be assembled with both the battery-type positive elec-
trode materials as energy sources associated with reversible 
Faradaic redox reactions and the negative electrode materials 
as power sources based on surface/near-surface capacitive 
behaviors in a single device to further enhance the energy 
density [21–23]. Among the transition metal oxide (TMOs) 
[24–28], the typical battery-type electrode materials of 
Co3O4 have stimulated extensive interest due to high natural 
abundance, low cost, environmental friendliness, theoretical 
capacitance (3560 F g−1), and high electrochemical perfor-
mance [29–31]. Especially, the hierarchical porous Co3O4 
structures have exhibited remarkable characteristics of inter-
connected porous networks, short ion diffusion channels, and 
enlarged surface area to ensure high electrochemical perfor-
mance [32, 33]. However, the Co3O4 also suffers from low 
electric conductivity and limited capacitance. Interestingly, 
two elegant strategies, both surface areas and doping carbon 
materials, can be employed to enhance the electrochemi-
cal performance by improving the reversible redox-active 
sites and electron transport [15], respectively. In this context, 
there remain challenges in designing new hierarchical porous 
sandwich-like structures of Co3O4 composites for promising 
electrochemical performance.

Various types of carbon materials have been widely applied in 
many fields [34–36]. Recently, it has been demonstrated that gra-
phene aerogels (GAs) [37–39] as electrical double-layer capaci-
tors (EDLCs) [40, 41] exhibit interconnected porous networks 
with opened honeycomb-like porous structures as ion-buffering 
reservoirs [13−15]. In this structured arrangement, the walls of 
porous graphene networks can be filled with the substantial elec-
trolyte ions in graphene pore walls during the charge–discharge 
processes, which are composed of randomly oriented and crin-
kly graphene nanosheets. However, the GAs still suffer from the 
restacking and agglomeration in the 3D foam-structured process 
due to the van der Waals forces and π–π stacking interaction, 
thus triggering the deteriorated surface and decreased specific 
capacitance [42]. On the other hand, the conductive polymers 
(e.g., PANI) present low cost, environmental friendliness, revers-
ible redox reaction, and excellent chemical stability [43, 44]. 
Hence, by introducing PANI, the graphene-PANI composites 
can achieve a large surface area, hydrophilicity, extraordinary 
mechanical, and excellent electronic conductivity [45]. Accord-
ingly, the advanced rGO-PANI composites can be prepared as 
hopeful EDLC electrode materials.

Herein, we developed the hierarchically porous sand-
wich-like Co3O4-RGOC ternary composites with ultrathin 
nanosheets by a solvothermal method, in which the interpen-
etrating rGO and CNTs can act as double conductive networks 
in the interior; meanwhile, the opened honeycomb-like struc-
tures as typical “ion-buffering reservoirs” can be filled with 
electrolyte on the exterior. Simultaneously, the promising 
3D rGO-PANI aerogels have been prepared via facile in situ 
polymerization and hydrothermal reduction. Additionally, the 
typical novel asymmetric supercapacitor Co3O4-RGOC//3D 
rGO-PANI with double ion-buffering reservoirs present excel-
lent electrochemical properties with specific capacitance, high 
rate performance, and long cycle life.

2 � Experimental

2.1 � Materials

All reagents used in this work are analytical grade. 
Co(NO3)2·6H2O (> 98.5%), methanol (> 99.7%), N-methyl-
2-pyrrolidone (NMP, 99.5%), acetylene black, polyvinylidene 
difluoride (PVDF), poly(vinyl alcohol) 1799 (PVA) (> 98.0%), 
and KOH (> 85.0%) were purchased from Sinopharm Chemical 
Reagent Co., Ltd. And aniline (99.5%), ammonium persulfate 
(APS, 98%), L-ascorbic acid (99%), and methoxypolyethylene 
glycol (mPEG, Mw = 5000) were bought from Aladdin Chemical 
Reagent Co., Ltd. The flake graphite and CNT were purchased 
from Nanjing/Jiangsu XFNANO Materials Tech Co., Ltd. The 
graphene oxides (GO) were synthesized by a modified Hum-
mers’ method [15].
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2.2 � Synthesis of Co3O4‑RGOC ternary composites

The Co3O4-RGOC composites were synthesized with 1.5 g of 
Co(NO3)2·6H2O and 100 mg of GO/CNT > N-PEGm powder as 
previously reported [13, 14], in which the GO/CNT > N-PEGm 
(RGO/C) were prepared with different mass ratio of 4:1, 
2:1, 1:1, 1:2, and 1:4 (denoted as Co3O4-RGOC-(4–1), 
Co3O4-RGOC-(2–1), Co3O4-RGOC-(1–1), Co3O4-RGOC-(1–2), 
Co3O4-RGOC-(1–4)), respectively.

2.3 � Synthesis of 3D rGO‑PANI

The 3D rGO-PANI aerogels were prepared as previously 
reported [16, 17] by two steps: polymerization and hydro-
thermal reduction. The GO aqueous dispersion (50  mL, 
2 mg mL−1), 1 M HCl (50 mL), and aniline monomer (25 mg) 
were mixed uniformly and sonicated for 0.5 h. Subsequently, 
the initiator of ammonium persulfate (APS, 0.5 mg) dissolved 
in water (20 mL) was added by dropwise. After polymeriza-
tion for 10 h, the GO-PANI composites were reduced with 
L-ascorbic acid (80 mg) at 120 °C for 4 h by hydrothermal 
method. Finally, the as-prepared rGO-PANI were soaked and 
dried by freeze-drying to form 3D rGO-PANI aerogels.

2.4 � Characterizations

The  as -prepared  Co(OH) 2-RGOC precursors , 
Co3O4-RGOC composites, and 3D rGO-PANI aerogels 
were characterized by Raman spectroscopy (Labram 
HR800 Raman Microprobe), transmission electron 
microscopy (TEM, Philips Tecnai-12), TGA (SDT-Q600), 
X-ray diffraction (XRD) (Bruker, D8-Discover Ger-
many), X-ray photoelectron spectroscopy (XPS) spectra 
(ESCALAB-250), scanning electron microscopy (SEM, 
HITACHI S-4800), and the nitrogen adsorption/desorption 
isotherms (3H-2000PS1) with Brunaure − Emmert − Teller 
(BET) and Barrett − Joyner − Halenda (BJH) methods, 
respectively.

2.5 � Electrochemical characterization

The electrode materials of both Co3O4-RGOC composites and 
3D rGO-PANI aerogels were systematically evaluated in three-
electrode configuration such as cyclic voltammograms (CV), 
galvanostatic charge–discharge (GCD), and electrochemical 
impedance spectroscopy (EIS) measurements in 6 M KOH 
aqueous solution with reference electrode of Ag/AgCl and 
electrochemical workstation (CHI660E). The specific capaci-
ties and capacitance were calculated by the following equation:

(1)C∗ =
It

3.6m
and C =

It

mV

wherein C*, C, I, t, V, and m were the specific capacity (mAh 
g−1), capacitance (F g−1), discharge current (A), discharg-
ing time (s), discharge voltage window (V), and the load 
mass of actives materials on the electrode (g), respectively. 
Similarly, in the two-electrode system (in 6 M KOH), the 
Co3O4-RGOC//3D rGO-PANI asymmetric supercapacitor 
devices were assembled with Co3O4-RGOC (0.8 mg) and 
3D rGO-PANI (1.8 mg). Owing to charge balanced equation 
( Q+ = Q− ), the optimal electrode mass ratio positive/nega-
tive (as m+ / m−) was calculated as the following equation:

The power density (P, W kg−1) of the obtained device and 
energy density (E, Wh kg−1) were calculated by following 
equations:

3 � Results and discussion

The synthetic procedure of the hierarchical porous sand-
wich-like Co3O4-rGO-CNT > N-PEGm (Co3O4-RGOC) 
ternary composites has been presented in Scheme 1. In 
this typical preparation process, the carbon materials, such 
as graphene oxide (GO) and CNT > N-PEGm (modified 
with the methoxypolyethylene glycol (mPEG) by nitrene 
chemistry, in which “ > ” represents the aziridine ring) 
[18], were introduced via a facile solvothermal method 
to obtain the Co(OH)2-rGO-CNT > N-PEGm (Co(OH)2-
RGOC) composites as precursors. Subsequently, the pre-
cursors can be further sintered to give rise to the sand-
wich-like Co3O4-RGOC ternary composites with the 
keeping morphology and structures of double conductive 
networks. Notably, the precursors of Co(OH)2-RGOC 
composites exhibited hierarchical porous sandwich-like 
structure surface morphology (Fig. 1a-c). A part of the 
CNT > N-PEGms anchored on the 2D surface of heavily 
reduced graphene oxide (rGO) sheets (i.e., intermediate 
sandwich layers) to effectively prevent the GO sheets from 
restacking during the building process of sandwich-like 
structures (Fig. 1c, e). On the other hand, the other part 
also can be uniformly inserted into the hierarchical porous 
opened honeycomb-like structures to form the interpen-
etrating rGO/CNTs networks as the express electron 
transport channels. Remarkably, the ultrathin nanosheets 
of Co(OH)2 only present 2 − 4 nm (Fig. 1d), indicating 

(2)
m+

m−

=
C− ⋅ ΔV−

C+⋅ΔV+

(3)E =
C ⋅ (ΔV)2

2 × 3600

(4)P =
3600 ⋅ E

Δt
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the specific surface area of 134.14 m2 g−1, in which the 
BJH pore size distribution was found to be ~ 3.9 nm. Here, 
the lattice space of 0.34 nm might be attributed to the 
(002) planes of CNTs as appeared in the HRTEM images 
(Fig. 1f).

In the typical solvothermal preparation, the α-type poly-
morph (i.e., hydrotalcite-like structure) of the Co(OH)2-RGOC 
was produced with dodecylbenzene sulfate (DBS)-intercalated 
structures in the (003) plane as shown in Fig. 2a. This result 

can be further determined S element at the peak of 2.3 keV in 
the EDS spectrum (Fig. 2b) [46]. Besides, in Fig. 2i, the EDS 
elemental mapping analysis further demonstrates the typical 
DBS-intercalated structures, where a series of elements Co, 
O, C, S, and Cl are distributed uniformly in the hierarchical 
porous sandwich-like structures, as presented in Fig. 2c-j. 
These results imply that the expected sandwich-like structures 
with ultrathin nanosheets are successfully synthesized by our 
optimized solvothermal process.

Scheme  1   Schematic illustration of the preparation processes of the hierarchical porous sandwich-like Co3O4-rGO-CNT > N-PEGm ternary 
composites
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In Fig. 3a, the TGA–DSC curves of Co(OH)2-RGOC 
composites were carried out (in air) to further confirm 
the chemical composition (Fig. S1 and Table S1), accord-
ing to seven stages as (S-I) evaporation of the adsorbed 
surface water, (S-II) removal of the intercalated water in 
(003) plane, (S-III) thermal oxidative decomposition of 
Co(OH)2 to Co3O4 at ~ 273 °C and the side chains mPEG 
of CNT > N-PEGm both with weight loss of 22.2%, (S-IV) 
combustion of other organic matter and part carbon atoms 
by oxygen etching, (S-V) thermal oxidation of DBS− ions, 
(S-VI) combustion of the incorporating graphene nanosheets 
and CNTs at around 548 °C, and (S-VII) oxidation of CoSO4 
to Co3O4 at around 726 °C (according to the transforma-
tion of CoSO4 into Co3O4) [15], respectively. Directly 
compared to the α-type polymorph of Co(OH)2-RGOC 
(JCPDS 51–1731, the (003) planes of Co(OH)2 moved to 
2θ = 11.6° due to the typical DBS-intercalated structures), 
the Co3O4-RGOC ternary composites were evidenced in the 
cubic phase based on the (111), (220), (311), (222), (400), 
(422), (511), and (440) planes (JCPDS 42–1467), as shown 
in the XRD patterns (Fig. 3b). The peak at 2θ = 25.8° is 
attributed to both the (002) planes of CNTs and rGO 
nanosheets. Moreover, the Raman spectroscopy was used 

to evaluate the essential components of Co3O4-RGOC 
(Fig. 3c), which displayed the peaks at 185 (F2g), 463 (Eg), 
511 (F2g), and 670 (A1g) cm−1, corresponding to the Co3O4 
features. Furthermore, the CNTs and rGO nanosheets were 
found separately in the peaks at 1345 (D), 1576 (G), and 
2689 (2D) cm−1 [18, 19], respectively.

For more detailed chemical information, the XPS measure-
ment displays the as-synthesized samples Co(OH)2-RGOC, 
Co3O4-RGOC-250, and Co3O4-RGOC-350 (sintering at 250 
and 350 °C) in Fig. 3d-f. Importantly, the XPS analysis fur-
ther verified the coordination bonds in the Co3O4-RGOC 
ternary composites between the ether–oxygen groups of 
CNT > N-PEGms and cobalt ions (Fig. S2). As presented in 
Fig. 3d, the high-resolution Co 2p spectroscopy of Co(OH)2-
RGOC displays two peaks of 782.3 (Co 2p3/2) and 798.3 eV 
(2p1/2) with 787.1 and 804.3 eV as two shake-up satellite peaks 
(denoted as “Sat.”), thus suggesting the Co(OH)2 formation with 
spin–orbit splitting of 16.0 eV [47], respectively. Moreover, the 
Co 2p spectrum of Co3O4-RGOC-250 and Co3O4-RGOC-350 
exhibited the Co 2p3/2 (at 781.3 eV) and Co 2p1/2 (at 796.3 eV) 
peaks, which can be fitted to Co2+ (at 782.4 and 798.1 eV) and 
Co3+ (at 781.1 and 796.2 eV) [48, 49], respectively. To verify 
the formation of coordination bonds, we also surveyed the O 

Fig. 1   a–e Low- and high-magnification TEM images and SAED pattern (inset), and f HRTEM images of Co(OH)2-RGOC ternary composites

2561Advanced Composites and Hybrid Materials (2022) 5:2557–2574



1 3

1 s spectra (Fig. 3e) of Co(OH)2-RGOC, Co3O4-RGOC-250, 
and Co3O4-RGOC-350 composites. The O 1  s spectra of 
Co(OH)2-RGOC can be represented by two mainly deconvo-
luted peaks at 531.4 eV (Co − OH) and 532.6 eV (S − O, as 
intercalated DBS− ions), respectively. During the annealing 
process, the transformations of Co(OH)2 to Co3O4, the O 1 s 
spectra of Co3O4-RGOC-250 and Co3O4-RGOC-350 can be 
attributed to the lattice oxide ions “O2−” (530.3 eV), defec-
tive oxide ions “Ox−” (531.8 eV), S − O (532.6 eV as doping 
DBS− ions), C − O − C (533.2 eV), and H2O (534.2 eV, the 
surface adsorbed water) [18, 19], respectively. It is worth to 
note that the peak at 531.2 eV for Co3O4-RGOC-250 can be 
obviously assigned to the coordination bonds of Co ← :O − C, 
indicating that the defective oxide “Oy−” ions under-coordi-
nated (as C − O: → Co − Oy−) bear higher electron density than 
the bare defective oxide “Ox−” ions (as Co − Ox−) (y > x) [18, 
19]. Further, to confirm the coordination bonds, the defective 

oxygen peak of Co3O4-RGOC-350 occurs at 531.8 eV, while 
that of Co3O4-RGOC-250 occurs at 531.6 eV (at lower binding 
energy), thus differing by 0.2 eV for the relevant band posi-
tions due to the coordination effect. In addition, the S 2p XPS 
spectra in Fig. 3f for Co(OH)2-RGOC, Co3O4-RGOC-250, 
and Co3O4-RGOC-350 displayed the peaks at 168.5 eV (sul-
fate to Co2+ in tetrahedral sites) and 169.6 eV (sulfate to Co3+ 
in octahedral sites), indicating that the sulfate to Co3+ bears 
lower electron density due to the polarization by electron-with-
drawing from S to O) [13]. Hence, the XPS analysis clearly 
confirmed the DBS-intercalated structure of Co(OH)2-RGOC 
precursors and the DBS− ion-doped structure of Co3O4-RGOC 
composites.

The surface morphologies of the hierarchical porous 
sandwich-like Co3O4-RGOC were observed by SEM 
(Fig. 4a, b). From this measurement, we found that the 
opened honeycomb-like hierarchically porous structures 

Fig. 2   a Schematic illustration of the DBS-intercalated Co(OH)2-RGOC composites. b EDS spectrum, c STEM image, and d–j the EDS elemen-
tal mapping analysis of Co-K, Co-L, O-K, C-K, S-K, and Cl-K of Co(OH)2-RGOC
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are composed of the randomly and crinkly ultrathin Co3O4 
nanosheets as pore walls to form the ion-buffering res-
ervoir structures, which can be filled with aqueous elec-
trolyte solution in the interconnected network spaces 
to reduce the contact resistance between the electrolyte 
and Co3O4-RGOC composites at the interface (Fig. S3). 
Moreover, the intermediate sandwich layers of rGO sheets 
and the interpenetrating CNT > N-PEGms were formed as 
double conductive networks for express electron transport 
channels, which are highly beneficial for the electron trans-
port by synergistic effect in sandwich-like Co3O4-RGOC 
ternary composites. In addition, as shown in Fig. 4c-h, 
the elements (i.e., Co, O, C, S, and Cl) are distributed 
uniformly in Co3O4-RGOC composites, indicating that the 
DBS-intercalated structures in α-type polymorph Co(OH)2 
translate into the DBS− ion-doped structures in the cobalt 
spinel oxide (Fig. S4).

As presented in Fig. 5a-e, the hierarchical porous sand-
wich-like structures of Co3O4-RGOC composites were 
revealed by the TEM measurement (Fig. S5), represent-
ing the results of the interlinked and intercrossed rGO/
CNTs by the formation of the double conductive networks 
(Fig. S6). More interestingly, ultrathin Co3O4 nanosheets 
(i.e., ~ 2 − 4 nm) exhibited abundant hierarchical mesoporous 
structures by the Kirkendall effect [50, 51]; these are benefi-
cial for electrolyte ions due to the short ion diffusion chan-
nels in the charge–discharge process. Moreover, the HRTEM 

image (Fig. 5f) displays the lattice spacings of 0.34, 0.46, 
and 0.28 nm, corresponding to the (002) planes of CNTs, 
(111), and (220) planes in the cubic Co3O4 crystal struc-
ture. In addition, the SAED patterns (inset) represented a 
polycrystalline feature of the Co3O4 particles by the primary 
rings. Compared to the previously reported Co3O4-based 
electrode materials, the Co3O4-RGOC composites with 
abundant mesoporous scale pores represent the Langmuir 
type IV (Fig. S7 and Table S2) [11, 52], the BET surface 
area of 167.99 m2 g−1, the BJH pore size distribution range 
of 1.9–3.7 and 13–30 nm, and pore volume of 1.07 mL g−1, 
respectively. Based on the excellent attributes of the typical 
structures, several advantageous outcomes can be summa-
rized as follows: (i) the specific surface area provides abun-
dant reversible Faradaic redox sites; (ii) the interconnected 
porous hierarchically opened honeycomb-like structures can 
ensure the external electrolyte ions complete infiltration; (iii) 
the numerous nanoscale pores in the Co3O4 nanosheets can 
further confirm the OH− ions transporting with shortened 
ion diffusion channels; and (iv) a series of CNTs and inter-
mediate sandwich rGO sheets may act as “express channels” 
to improve the electronic conductivity and electrochemi-
cal stability. Consequently, the battery-type Co3O4-RGOC 
composites can be deemed as promising rechargeable elec-
trode materials for excellent electrochemical performance.

The electrochemical properties of Co3O4-RGOC com-
posites were systematically evaluated in a three-electrode 

Fig. 3   a TGA–DSC curve of Co(OH)2-RGOC in air. b XRD patterns 
of Co(OH)2-RGOC and Co3O4-RGOC composites. c Raman spectra 
of CNT > N-PEGm, rGO, and Co3O4-RGOC composites. The XPS 

characterization of Co(OH)2-RGOC and Co3O4-RGOC (sintering at 
250 and 350 °C) composites: d Co 2p, e O 1 s, and f S 2p spectra
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configuration with 6 M KOH aqueous solution. Compared 
with Co(OH)2-RGOC and Co3O4-RGOC-350, the electrode 
materials of Co3O4-RGOC-250 showed a larger CV curve 
area at 100 mV s−1 and superior electrochemical perfor-
mance in Fig. 6a. Moreover, from the GCD curves (Fig. 6b) 
at 0.5 A g−1, it was found that Co3O4-RGOC-250 possesses 
a higher specific capacity. The graphs in Fig. 6c exhibit the 
average (at least four samples) specific capacity of Co(OH)2-
RGOC, Co3O4-RGOC-250, and Co3O4-RGOC-350 at vari-
ous current densities for comparison, and Co3O4-RGOC-250 
reveals the highest capacity value of 138.5 mAh g−1 (cor-
responding to the capacitance of 1420.5 F g−1) at 0.5 A g−1 
(Fig. S8). To further investigate the specific capacity value 
of Co3O4-RGOC-250 in Fig. 6d, the rGO/CNT mass ratio 
was adjusted as 4:1, 2:1, 1:1, 1:2, and 1:4, respectively. In 
an optimized condition, the Co3O4-RGOC-(4–1) markedly 

represented superior capacity to other samples. Accord-
ingly, the CV curves deliver good reversibility of the obvious 
reversible Faradaic redox reactions and fast charge–discharge 
response at various increased scan rates, ranging from 2 to 
100 mV s−1, as exhibited in Fig. 6e, exhibiting typical bat-
tery-type behavior based on the Co2+/Co3+/Co4+ at different 
cobalt oxidation states as follows [53]:

Owing to Dunn method [54], the charge storage kinetics 
were investigated by the log(i) versus log(v) as follows:

(5)Co
3
O

4
+ OH− + H

2
O ↔ 3CoOOH + e−

(6)CoOOH + OH−
↔ CoO

2
+ H

2
O + e−

(7)logi = blogv + loga

Fig. 4   The SEM characterization of Co3O4-RGOC composites: a low- and b high-magnification SEM images, c–h the EDS elemental mapping 
analysis of Co-K, O-K, C-K, S-K, and Cl-K
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where a and b are adjustable parameters and so i current den-
sity (A g−1) and v scan rate (mV s−1), respectively. Remark-
ably, the b values can be determined as 0.746 and 0.833 (in 
range of 0.5–1.0) in Fig. 6f, indicating the pseudocapacitive- 
and battery-type characteristics simultaneously occurred in 
the Co3O4-RGOC electrodes (Fig. S9). Moreover, the capac-
itive and diffusion-controlled ratio can be confirmed by the 
surface capacitance-led (Icap) and diffusion-controlled (Idiff) 
processes as the following equations [55, 56]:

Consequently, the capacitive-controlled processes are 54.4%, 
62.2%, 67.3%, 72.1%, 75.1%, 79.7%, and 90.3% at various scan 
rates of 2, 5, 10, 20, 30, 50, and 100 mV s−1, respectively, as 
presented in Fig. 6g. Moreover, Fig. 6h shows the GCD curves 
with the voltage plateaus versus typical battery-type behavior at 
different current densities (0.5 to 40 A g−1), corresponding to 
the obvious redox peaks in the CV curves (Fig. S10a). In Fig. 6i, 
the rate capacity at various current densities was found to be a 
value of 138.5 mAh g−1, mainly due to stable chemical structures 
and electrochemical properties (Fig. S10b). As shown in Fig. 6j, 

(8)I = Icap + Idiff = avb

from the additional measurements for comparison, the Nyquist 
plots with equivalent circuit (inset) for the Co(OH)2-RGOC, 
Co3O4-RGOC-250, and Co3O4-RGOC-350 indicated that the 
Co3O4-RGOC-250 has superior ion diffusion, lower electrochemi-
cal resistance (Rs) of 0.38 Ω, and charge transfer resistance (Rct) 
of 0.45 Ω due to the double conductive networks (Fig. S11). As 
typical structures of “ion-buffering reservoirs,” Fig. 6k schemati-
cally illustrates the charge–discharge process of the Co3O4-RGOC 
composites in KOH electrolyte. The excellent cooperative contri-
butions can be summarized as follows: (i) in the horizontal plane 
direction, the rGO nanosheets act as intermediate layer form-
work to form sandwich-like structures and further improve the 
electron transport; (ii) in the perpendicular direction, a series of 
CNTs can effectively prevent rGO nanosheets from restacking 
in the solvothermal synthesis process, meanwhile increase the 
electronic conductivity of the as-prepared composites; (iii) in the 
interior of sandwich-like Co3O4-rGO, the 2D transversal rGO 
nanosheets and 1D longitudinal CNTs can form double conduc-
tive networks to enhance the electrochemical properties of not 
only electron transport but also double-layer capacitance with 
synergistic effect; and (iv) on the exterior of hierarchical porous 

Fig. 5   The TEM characterization of Co3O4-RGOC composites: a–e Low- and high-magnification TEM images and SAED pattern (inset), f 
HRTEM image
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sandwich-like Co3O4-rGO composites, the electrolyte ions can fill 
in the opened honeycomb-like structures as “ion-buffering reser-
voirs” to ensure the sufficient reversible Faradaic redox reactions 
even at high current densities. Additionally, Fig. 6l describes the 

good rate performance and excellent cycling performance at 8 
A g−1, indicating the capacitance retention of 82.4% after 2500 
cycles with Coulombic efficiency of 99.4% for promising elec-
trode materials.

Fig. 6   Electrochemical performance comparison of Co(OH)2-RGOC, 
Co3O4-RGOC-250, and Co3O4-RGOC-350 (all these three kinds of 
electrode materials with rGO/CNTs mass ratio of 4:1): a CV curves 
at 100 mV  s−1, b GCD curves at 0.5 A g−1, c The average (at least 
four samples) specific capacity at various current densities. d The 
specific capacity of Co3O4-RGOC-250 with different rGO/CNTs 
mass ratio of 4:1, 2:1, 1:1, 1:2, and 1:4. The electrochemical prop-

erties of the Co3O4-RGOC (sintering at 250  °C, rGO/CNTs mass 
ratio of 4:1): e CV curves, f b value, g capacitive and diffusion- 
controlled ratio at various scan rates, h GCD curves, i rate performance,  
j Nyquist plots (inset equivalent circuit) of the Co(OH)2-RGOC, 
Co3O4-RGOC-250, and Co3O4-RGOC-350 for comparison, k Sche-
matic illustration of charge–discharge process, l Cycling performance
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Due to the superiority of the interconnected porous net-
work structures, excellent electrical conductivity, and large 
specific surface area, GAs as negative EDLCs of the asym-
metric supercapacitors have attracted tremendous attention. 
However, the GAs also suffers from restacking because of 
van der Waals and π–π interactions. Consequently, to fur-
ther improve the electron transport, hydrophilicity, and ion 
diffusion rate, the promising conductive polymer polyani-
line (PANI) can be introduced into the 3D porous structures 
by in situ polymerization, as presented in the schematic 
preparation processes (Fig. 7a), in which the 3D rGO-PANI 
aerogels were prepared based on GO dispersion and aniline 
monomer and sequentially dealt by chemical reduction and 
freeze-drying process, respectively. In this structure, the 
PANI polymers may effectively prevent the restacking and 
agglomeration of rGO sheets during the reduction process. 
Besides, the in situ polymerized PANI polymers are clearly 
beneficial for the electrochemical properties to enhance the 
hydrophilicity and electronic conductivity by synergistic 

effects, such as specific capacitance, high rate performance, 
and excellent cycling life. Compared with the pure PANI 
powders (the peak of 25.5°), the XRD pattern exhibited a 
broad peak at 24.8° (with a lower 2θ angle) corresponding 
to the (002) plane of rGO-PANI as shown in Fig. 7b, con-
firming the components of 3D rGO-PANI aerogels. Mean-
while, the characteristic contrast at 1345 and 1587 cm−1 can 
be attributed to the D- and G-band in the Raman spectra 
(Fig. 7c), respectively. Furthermore, the fully scanned XPS 
spectrum delivers the main elements of C, O, and N as pre-
sented in Fig. 7d. Moreover, the C/O ratio was calculated 
as 6.73:1, and the atomic ratio of N element was found to 
be 2.6% (Table S3), respectively. For the O 1 s spectrum 
(Fig. 7e), four peaks can be indexed as the C = O (531.3 eV), 
O − C − O (532.2 eV), O = C − O (533.4 eV), and physically 
adsorbed water (534.5 eV), respectively. Furthermore, the 
abundant oxygen containing groups are beneficial for the 
hydrophilicity of aqueous electrolyte on the surface of the 
3D rGO-PANI composites. The C 1 s XPS spectrum in 

Fig. 7   a Procedure for the preparation of 3D rGO-PANI aerogels (the inset shows the photograph). b–c XRD patterns, Raman spectra of PANI 
powders, and 3D rGO-PANI aerogels. d–g The fully scanned XPS spectrum, O 1 s, C 1 s, and N 1 s XPS spectra of 3D rGO-PANI
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Fig. 7f indicates C − C/C = C (284.8 eV), C = O (286.8 eV), 
O = C − O (288.5 eV), and especially C − N (285.8 eV) [57]. 
Subsequently, the N 1 s XPS spectrum (Fig. 7g) assigned to  
399.1 eV (= N −, di-imine nitrogen), 400.1 eV (− NH −, 
benzenoid diamine nitrogen), and 401.6 eV (− NH+ −, nitro-
gen with a positive charge) [57, 58], respectively.

The surface morphology of 3D rGO-PANI aerogels was 
observed by the SEM and TEM measurements as shown 
in Fig. 8a-e. Notably, the interconnected porous network 
structures with opened honeycomb-like space appeared 
with the wrinkled graphene sheets as pore walls, which 
can be filled with the ample electrolyte ions based on typi-
cal “ion-buffering reservoirs” in the charge–discharge pro-
cess to ensure the enhanced electrochemical performance, 
as demonstrated in Fig. S12. In Fig. 8f, the HRTEM image 
reveals the (002) planes of CNTs, thus corresponding to 
the 0.34 nm lattice spaces. Moreover, the C, N, and O 

elements were evenly distributed in the rGO-PANI aerogel 
structures (Fig. 8g-j).

To deeply investigate the electrochemical performance, 
the CV tests were performed for 3D rGO-PANI aerogels, 
as presented in Fig. 9a. 3D rGO aerogels and pure PANI at 
100 mV s−1 were set for comparison in 6 M KOH aqueous 
electrolyte, in which the 3D rGO-PANI electrode materials 
displayed obviously larger CV area by the area integration 
according to the higher specific capacity. Notably, the nearly 
rectangular CV curve of 3D rGO aerogels exhibited ideal 
EDLC behaviors as shown in Fig. 9b. Meanwhile, the 3D 
rGO-PANI aerogels represent a larger area of CV curve with 
obvious redox peaks due to PANI polymers. Based on the 
Dunn methods [54], the calculated b values are 0.970 and 
0.961 (closer to 1) as shown in Fig. 9c, demonstrating the 
capacitive process according to pseudocapacitive or EDLC. 
Furthermore, Fig. 9d represents the capacitive contribution 

Fig. 8   a–c Low- and high-magnification SEM images of 3D rGO-PANI aerogels. d–e Low- and high-magnification TEM images, f HRTEM 
image, g–j the EDS elemental mapping analysis of C-K, N-K, and O-K
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ratio of 80.7%, 84.7%, 86.0%, 88.6%, 90.1%, 92.5%, and 
97.0% from 2 to 100 mV s−1, respectively. Figure 9e-f rep-
resents the GCD curves and specific capacitance/capacity, 
which describes high specific capacitance of 218.8 F g−1 
(capacity of 60.8 mAh g−1) at 0.5 A g−1 and 134.0 F g−1 
(37.2 mAh g−1) at 40 A g−1 (with capacitance retention of 
61.2%), respectively. Additionally, the Nyquist impedance 
spectra indicate Rs of 0.48 Ω and Rct of 0.85 Ω as shown in 
Fig. 9g, corresponding to the reasonable electrical conduc-
tivity of graphene nanosheets and PANI polymers. Figure 9h 
represents the cycling performance of the 3D rGO-PANI at 
30 A g−1, and the specific capacitance only decreases 9.2% 
after 10,000 cycles, clearly indicating excellent chemical 
and structural stability. Accordingly, the CV curves of the 
initial cycle and after 10,000 charge–discharge cycles for 
comparison can keep nearly the same shapes and scan areas 

(Fig. 9i), which further indicates a good agreement with 
the good cycling performance (Fig. S13). Impressively, the 
inset in Fig. 9h shows a schematic illustration of 3D rGO-
PANI aerogel charge–discharge process in KOH solution. 
More importantly, 3D rGO-PANI aerogels exhibited the 
hierarchically interconnected porous structures with opened 
honeycomb-like space, which are composed of the randomly 
and crinkly oriented graphene nanosheets as “ion-buffering 
reservoirs.” In this intriguing structure, the electrolyte ions 
can freely be transported into the whole interspace of the 
interconnected porous structures from the external electro-
lyte with a shortened diffusion distance. Accordingly, the 
typically structured “ion-buffering reservoirs” can ensure 
excellent electrochemical properties, such as low contact 
resistance, good cycling performance, and high rate capaci-
tance even at high current density.

Fig. 9   a The comparison of CV curves at 100  mV  s−1 of 3D rGO-
PANI aerogels, 3D rGO aerogels, and pure PANI. The electrochemi-
cal properties of 3D rGO-PANI aerogels: b CV curves at different 
scan rates, c b value, and d capacitive and diffusion-controlled ratio 
at various scan rates, e GCD curves, f the specific capacitance/capac-

ity at various current densities, g Nyquist plots (the inset shows the 
equivalent circuit), and h cycling performance at a current density of  
30 A g−1, and the inset shows schematic illustration for charge– 
discharge process in KOH solution. i CV curves of the initial cycle and  
after 10,000 cycles for comparison
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As presented in Fig. 10a, the newly developed double ion-
buffering reservoirs of Co3O4-RGOC//3D rGO-PANI ASCs 
were assembled with Co3O4-RGOC composites and 3D rGO-
PANI aerogels. Figure 10b exhibits CV curves at different scan 

rates with the combination of both electrical double-layer and 
battery-type capacitance, according to the electrochemical 
features of 3D rGO-PANI (− 1.0 − 0 V) and Co3O4-RGOC 
(− 0.1 − 0.45 V) at 100 mV s−1 for comparison (in separated 

Fig. 10   a Schematic illustration of the double ion-buffering reser-
voirs of asymmetric supercapacitors configuration Co3O4-RGOC//3D 
rGO-PANI. The electrochemical properties of Co3O4-RGOC//3D 
rGO-PANI: b CV curves at different scan rates. c CV curves meas-
ured at different potential windows (at 100 mV  s−1). d GCD curves 
with the increase of the potential window (at 1 A g−1). e Capacitive 
and diffusion-controlled ratio at various scan rates. f GCD curves 

at different current densities. g The specific capacity/capacitance at 
various current densities. h Ragone plots (compared with various 
energy storage devices and previously reported Co3O4 asymmetric 
systems). i Nyquist plots of asymmetric supercapacitors devices (the 
inset shows the equivalent circuit). j Cycling performance at a current 
density of 10 A g−1, the inset shows the comparison of CV curves (at 
100 mV s−1) of the initial cycle and after 10,000 GCD cycles
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potential windows, Fig. S14). From the combinatorial con-
figuration of the Co3O4-RGOC//3D rGO-PANI, the optional 
voltage window is expected up to 1.55 V. As presented in 
Fig. 10c, a series of CV curves was collected from 0 − 0.6 to 
0 − 1.55 V at 100 mV s−1 in different potential windows, indi-
cating that more redox reactions occurred for the larger cur-
rent response with the operating potential window increasing 
to 1.55 V. Furthermore, Fig. 10d represents the GCD curves 
at 1 A g−1 with the increase of the potential window in the 
range of 0 − 0.6 to 0 − 1.55 V, corresponding to the CV curves 
with different potential windows. Meanwhile, Fig. 10e shows 
the percentage contribution of the capacitive and diffusion 
contributions at various scan rates, indicating the capacitive 
contribution ratio of 67.1%, 71.1%, 76.2%, 79.7%, 85.5%, and 
89.2% at 5, 10, 20, 30, 50, and 100 mV s−1, respectively. In 
addition, GCD curves of asymmetric supercapacitors device 

were evaluated from 1 to 40 A g−1 in Fig. 10f. Subsequently, 
the specific capacity/capacitance values were calculated at 
different current densities as exhibited in Fig. 10g. A rela-
tively high rate performance was yielded as 53.3 mAh g−1 at 
1 A g−1 (corresponding to the specific capacitance of 123.8 F 
g−1) and 26.2 mAh g−1 at 40 A g−1 (corresponding to 60.9 F 
g−1) with the capacitance retention of 49.2% (Fig. S15a − c), 
respectively. Accordingly, the Ragone plots were evidenced as 
41.3 Wh kg−1 at power densities of 775 W kg−1 and 20.3 Wh 
kg−1 at 31,000 W kg−1 as represented in Fig. 10h. Compared 
to the previously reported energy storage devices and other 
Co3O4 ASCs, the work represented higher energy density in 
the Ragone chart (Table S4), such as Co3O4-GC//3D HRGC 
(42.6 Wh kg−1, 775 W kg−1) [13], DBS-Co3O4//3D rGO (25.5 
Wh kg−1, 400 W kg−1) [14], Co3O4-G > N-PEGm//3D GCA 
(34.4 Wh kg−1, 400 W kg−1) [15], Co3O4/NiO//AC (35 Wh 

Fig. 11   The electrochemical properties of the double devices 
Co3O4-RGOC//3D rGO-PANI connected in series: a CV curves of 
the single and the double devices for comparison. b CV curves at 
different potential windows (at 100 mV  s−1). c CV curves at differ-
ent scan rates. d GCD curves of the single and the double devices for 
comparison. e GCD curves with the increase of the potential window  

(at 1 A g−1). f GCD curves at different current densities. g The spe-
cific capacity/capacitance at various current densities. h Cycling per-
formance at a current density of 4 A g−1, the inset shows the initial 10  
times GCD curves and that of the last 10 cycles. i Ragone plots, 
the inset shows the photograph of blue-light emitting diode (LED) 
lighted by the as-prepared double devices in series
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kg−1, 540 W kg−1) [21], Co3O4@Co9S8//AC (26.1 Wh kg−1, 
871.6 W kg−1) [23], Co3O4@NiMn-LDHm/NF//AC (38.4 
Wh kg−1, 800 W kg−1) [59], Co3O4@CC//ACF (26.6 Wh 
kg−1, 137 W kg−1) [60], Al2O3/Co3O4/G//AC (40.1 Wh kg−1, 
410.9 W kg−1) [61], rGO-Co3O4/NF//AC/NF (20 Wh kg−1, 
1200 W kg−1) [62], Co3O4/Fe2O3//Co3O4/Fe2O3 (35.15 Wh 
kg−1, 1125 W kg−1) [63], Co3O4/CoVxOy//AC (26.1 Wh kg−1, 
400 W kg−1) [64], Co3O4/NF//N-rGO/NF (22.2 Wh kg−1, 
800 W kg−1) [65], Co3O4-MXene@NF//PANIC@CFP (26.06 
Wh kg−1, 700 W kg−1) [66], and Co3O4@CoNiS//AC (46.95 
Wh kg−1, 400 W kg−1) [67]. Furthermore, the Rs and Rct of 
the as-assembled Co3O4-RGOC//3D rGO-PANI can be deter-
mined as 0.72 Ω and 1.24 Ω in the Nyquist plots (Fig. 10i), 
respectively. More importantly, the cycling performance of 
the asymmetric supercapacitor devices was determined in 
Fig. 10j, and the specific capacitance only decreased by 19.0% 
with high Coulombic efficiency of 99.5% at 10 A g−1 even 
after 10,000 cycles (Fig. S15d). Moreover, the CV curves of 
the initial cycle and after 10,000 charge–discharge cycles at 
100 mV s−1 for comparison (inset Fig. 10j) exhibited excellent 
cycling performance.

To further demonstrate the electrochemical properties 
of Co3O4-RGOC//3D rGO-PANI asymmetric superca-
pacitors for practical applications, the double devices of 
Co3O4-RGOC//3D rGO-PANI were connected serially and 
systematically evaluated. Compared with the single device, 
the serially integrated devices exhibited similar shapes of 
CV at 100 mV s−1 (Fig. 11a) curves GCD curves at 1 A 
g−1 (Fig. 11d) with the increased potential window 3.1 V. 
Moreover, a series of CV curves (Fig. 11b) and GCD curves 
(Fig. 11e) in the increasing potential windows from 0 − 1.1 
to 0 − 3.1 V have indicated a larger current response accord-
ing to more redox reactions occurred in the electrochemi-
cal processes. Similarly, the doubled devices were evaluated 
by CV curves (Fig. 11c) at various scan rates from 10 to 
200 mV s−1 and GCD curves (Fig. 11f) at discharge cur-
rent densities range of 0.5 to 20 A g−1, corresponding to 
the voltage plateaus versus the redox peaks compared with 
the electrochemical characteristics of the single device, 
respectively. Accordingly, the specific capacity of the dou-
ble devices can be calculated as 24.8 mAh g−1 at 0.5 A g−1 
based on the total mass of the active materials, correspond-
ing to the capacitance of 28.8 F g−1 as shown in Fig. 11g. 
Moreover, Fig. 11h exhibits the cycling performance with 
80.1% capacitance retention with high Coulombic efficiency 
of 98.6% at 4 A g−1 after 3000 cycles (worse than the single 
device) (Fig. S16). The inset displays the GCD curves for  
the initial 10 times and the last 10 cycles for compari- 
son. Furthermore, the Ragone plots can estimate the energy  
density of 38.5 Wh kg−1 at power densities of 775 W kg−1 
as exhibited in Fig. 11i, and the inset shows the photograph 
of blue-light LED (3.0 V, 0.06 W) lit up by the series double 
devices for potential applications.

4 � Conclusions

In summary, we developed the promising hierarchical 
porous sandwich-like Co3O4-RGOC ternary composites 
as typical battery-type positive electrode materials via a 
facile solvothermal method, in which a series of Co3O4 
nanosheets presented typical “ion-buffering reservoirs” 
opened porous honeycomb-like structures with filled elec-
trolyte on the exterior, and the interpenetrating rGO (in the 
horizontal plane direction) and CNTs (in the perpendicular 
direction) can act as double conductive networks in the 
interior. In addition, the 3D rGO-PANI aerogels as negative 
electrode materials were also prepared by in situ polymeri-
zation to improve the surface area coverage, hydrophilicity, 
and electronic conductivity. Besides, the fabricated double 
ion-buffering reservoirs of Co3O4-RGOC//3D rGO-PANI 
asymmetric supercapacitors devices present high energy 
density of 41.3 Wh kg−1 at a power density of 775 W kg−1 
with excellent electrochemical performance and ultra-long 
cycle performance for energy storage and conversion. Our 
present work provides an innovative strategy and new con-
cepts to design the novel double ion-buffering reservoirs 
of asymmetric supercapacitors based on the metal oxides 
with opened honeycomb-like structures as positive elec-
trode materials and the 3D graphene aerogels as negative 
electrode materials.
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