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Abstract
Currently, the energy densities of commercial lithium-ion batteries (LIBs) are getting closer and closer to their fundamental 
limit, and novel anode materials are urgent to be explored to meet the increasing requirements.  CoSe2 has a high theoretical 
specific capacity of 494.4 mAh  g−1 and is expected to be a viable anode material for high-power LIBs. However, its actual 
specific capacity degrades rapidly during the cycling process, while the MXene  Ti3C2Tx possesses excellent cycle stability 
but low specific capacity (about 110 mAh  g−1). In this study, novel  CoSe2/Ti3C2Tx composites with high specific capacity 
and good stability were successfully prepared by growing  CoSe2 particles in situ on  Ti3C2Tx via hydrothermal method. The 
results showed that after 1000 charge–discharge cycles at a current density of 0.3 A  g−1,  CoSe2/Ti3C2Tx (with a molar ratio 
of 1:2) composite still has a high reversible capacity of 210.8 mAh  g−1. Excellent rate capability and electrochemical kinetic 
behavior are also achieved. This study indicates that  CoSe2/Ti3C2Tx composites have a promising application prospect in 
LIBs as an anode material.
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1 Introduction

Today, with the exhaustion of fossil energy represented by 
petroleum and the increasing serious environmental pol-
lution, there is an urgent demand for sustainable renew-
able energies [1–7]. Moreover, the advances in technology 
also require smaller and lighter devices with high power 
[8] such as supercapacitors (SC) and lithium-ion batter-
ies (LIBs) [9–13]. LIBs play important roles in electronic 
devices because of their high energy density, long cycle 
life, and environmental friendliness. But the performances 
of LIBs such as theoretical capacity, charge–discharge volt-
age, and cycle stability are affected by the inherent charac-
teristics of electrode materials dramatically [3, 14, 15]. At 
present, some materials including carbon-based materials 
[16], silicon-based materials [17], niobium-based materials 

 (Mo3Nb14O44 and  V3Nb17O50) [18, 19], and vanadium-based 
materials  (Na2Ca(VO3)4 and  VPO5) [20, 21] are popularly 
used as anode materials for LIBs. Graphite, the commonly 
used commercial anode material, only has a theoreti-
cal capacity of 372 mAh  g−1 [22, 23]. Therefore, seeking 
novel anode materials with higher specific capacity, higher 
charge–discharge rate, and cycle stability is necessary to 
meet future market demands [24].

Transition metal selenides are attracting more and more 
attentions because of their conversion reaction mechanism 
[25–29] and relatively high storage capacity of lithium. 
Among them,  CoSe2 has been paid special attention due to 
the rich content of Co and its low price, high specific capac-
ity, and safety [30–33]. However,  CoSe2 suffers from a large 
volume change during the charge–discharge process that leads 
to the rapid decay of specific capacity and poor cycle stability. 
Therefore, researchers developed several strategies to over-
come the poor cycle stability problem of  CoxSey by preparing 
 CoxSey microspheres or nanosheets, or coating  CoxSey with 
carbon material and introducing carbon base [34–41]. How-
ever, their cycle stabilities are still not satisfactory.

It is reported that the design of multilayer templates for 
anode materials could provide more active sites, which is 
conducive to the higher specific capacity [42, 43]. Therefore, 
two-dimensional (2D) materials have been widely explored 
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and used in many fields [44–49]. MXenes, discovered in 2011 
[50], are a relatively new member of 2D material family, 
including a class of transition metal carbonitrides. The 2D 
layer-structured MXenes are of great interest and are consid-
ered as the most promising energy storage material because 
of their unique physical and chemical properties, such as 
metal conductivity, hydrophilic surface, large and adjustable 
layer spacing, and excellent mechanical properties [51–53]. 
MXenes have a general formula  Mn+1XnTx, where M is tran-
sition metal (e.g. Ti, Mo, V, Nb, and Ta), X represents C 
or N, and T is surface functional group (e.g. OH, F, Cl, or 
O) that are formed by violent reactions of transition metals 
with water or fluoride ions [54–56]. Up to now, more than 40 
MXenes have been synthesized successfully [57], which are 
applied in the fields of energy storage [58], electromagnetic 
shielding [59, 60], catalysis [61], and sensors [62]. Among 
them,  Ti3C2Tx is one of the most studied MXene, exhibiting 
excellent cycle stability and higher theoretical lithium ion 
storage capacity (up to 447.8 mAh  g−1) [63–66].

Therefore, novel  CoSe2/Ti3C2Tx composite with high spe-
cific capacity and excellent cycle stability can be expected if 
the advantages of both  CoSe2 and  Ti3C2Tx are combined. In 
this study,  Ti3C2Tx was firstly prepared by hydrofluoric acid 
corrosion method, and then  CoSe2 particles were grown on 
 Ti3C2Tx via hydrothermal method.  Ti3C2Tx, as a buffer layer 
of volume change, could effectively alleviate the volume 
change and aggregation of  CoSe2 particles by the formation 
of strong Ti-Se-Co bonds. Meanwhile,  Ti3C2Tx could pro-
vide more relevant electronic channels in the composite. The 
fabricated  CoSe2/Ti3C2Tx composites were found to possess 
excellent electrochemical performances.

2  Experimental

2.1  Material synthesis

Firstly, 2 g of  Ti3AlC2 (98%, Shanghai Macklin Biochemical 
Co., Ltd.) was slowly added to 20 ml of 40% HF acid solu-
tion, which was stirred at room temperature for 24 h. After 
centrifugation of the above solution at 5000 rpm for 10 min, 
the supernatant was poured out. Deionized water was added 

to the precipitation left in the centrifuge tube, which was 
shaken by hand to mix the precipitation and deionized 
water evenly, followed by centrifugation for several times 
to remove the HF solution. Then, the liquid was pumped, 
filtered, and vacuum dried to get  Ti3C2Tx powder. After 
that, suitable amount of  Ti3C2Tx powder, Co(NO3)2·6H2O 
(98.5%, Xilong Scientific Co., Ltd.), Se powder (analyti-
cally pure, Tianjin Kemiou Chemical Reagent Co., Ltd.) 
were mixed in an ethanol aqueous solution and stirred for 
1 h. The molar ratios of  CoSe2/Ti3C2Tx were designed to be 
1:2.5, 1:2, 1:1.5, and the resulted  CoSe2/Ti3C2Tx composites 
were denoted by sample CT1, CT2, and CT3, respectively. 
The solution was then poured into a hydrothermal autoclave 
that was held at 200 °C for 16 h. After being cooled to room 
temperature naturally, the solution was taken out, filtered 
with suction, and vacuum dried for 2 h. The  CoSe2/Ti3C2Tx 
composites were finally prepared. Figure 1 illustrates the 
typical preparation process of  CoSe2/Ti3C2Tx composite.

2.2  Material characterization

The raw materials used and prepared composites were charac-
terized by X-ray powder diffractometer (XRD, D8-Advance, 
Germany), scanning electron microscopy (SEM, S4800, 
Japan), Brunauer-Emmet-Teller method (BET, ASAP 2460, 
USA), transmission electron microscopy (TEM, FEI Talos 
F200X, USA) equipped with energy-dispersive X-ray spec-
trometer (EDS), and X-ray photoelectron spectroscopy (XPS, 
Thermo Escalab 250Xi, USA).

2.3  Half‑cell measurement

The electrochemical properties of  CoSe2/Ti3C2Tx com-
posites (CT1-CT3) were tested by assembling them into 
2016 coin cells. Firstly, 80 wt%  CoSe2/Ti3C2Tx compos-
ite (acting as active material), 10 wt% conductive car-
bon black, and 10 wt% polyvinylidene fluoride (PVDF, 
adhesive) were mixed. N-Methylpyrrolidone (NMP) was 
then added and stirred for 12 h to form a slurry. The 
slurry was coated onto a copper foil, which was dried 
in a vacuum drying oven at 120 °C for 12 h. After that, 
the copper foil loaded with active material was cut into 

Fig. 1  The sketch diagram for 
the typical preparation process 
of  CoSe2/Ti3C2Tx composite
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circular electrodes with a diameter of 10 mm. Argon 
(99.99%)-filled glove box  (O2 < 0.1 ppm,  H2O < 0.1 ppm) 
was employed to assemble the coin cells. Lithium sheets 
were used as reference electrodes, and polyethylene/poly-
propylene film (PE/PP, Celgard 2325) was applied as the 
separator. A commercial electrolyte with 1 M  LiPF6 dis-
solved in a mixture of ethyl carbonate, diethyl carbon-
ate, and dimethyl carbonate (1:1:1 by volume) was used. 
Constant current charge–discharge test was performed on 
a battery performance tester (Neware CT-4000, China). 
Cyclic voltammetry (CV) and electrochemical impedance 
spectroscopy (EIS) measurements were conducted by an 
electrochemical workstation (Zahner Zronach, Germany). 
All electrochemical tests were performed at a constant 
temperature of 25 °C.

3  Results and discussion

Figure 2 shows the XRD patterns of the raw material of 
 Ti3AlC2 powder, synthesized  Ti3C2Tx powder, and  CoSe2/
Ti3C2Tx composite (CT2). It can be seen that after etching, 

(104) diffraction peak of  Ti3AlC2 phase (JCPDS # 52–0875) 
disappears, indicating that  Ti3AlC2 phase is successfully 
changed into  Ti3C2Tx phase [67, 68]. Moreover, the (002) 
peak shifts from 9.7 to 7.1°, hinting that the layer spacing 
increases in  Ti3C2Tx phase. From the XRD patterns of CT2, 
it can be seen that  CoSe2 phase (JCPDS # 53–0449) appears 
obviously in addition to the original  Ti3C2Tx phase, which 
reveals the formation of  CoSe2/Ti3C2Tx composite.

Figure 3 demonstrates the SEM images of  Ti3C2Tx, CT1, 
CT2, and CT3. It can be seen that  Ti3C2Tx exhibits an accor-
dion-like structure (Fig. 3a), indicating that the Al layer in 
 Ti3AlC2 has been removed. Figure 3b–d illustrate that  CoSe2 
particles are successfully grown on the surface of  Ti3C2Tx 
after hydrothermal reaction. But only in CT2 there are an 
appropriate amount of  CoSe2 particles in the  Ti3C2Tx sub-
strate (Fig. 3c), while few  CoSe2 particles are formed in CT1 
(Fig. 3b) and too much  CoSe2 particles with an accumulation 
nature are formed in CT3 (Fig. 3d).

Figure 4 shows the  N2 adsorption/desorption isotherms 
of CT1-CT3. The BET-specific areas of CT1-CT3 are cal-
culated to be 19.13, 23.04, and 29.15  m2  g−1, respectively. It 
can be seen that the specific surface area increases with the 

Fig. 2  XRD patterns of 
 Ti3AlC2,  Ti3C2Tx, and CT2
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rise of  CoSe2 content added. Large specific surface area of 
the  CoSe2/Ti3C2Tx composite is believed to favor the provi-
sion of more active sites that facilitates the storage of lithium 
ions [69, 70].

In order to further study the structural characteristics of 
 CoSe2/Ti3C2Tx composite, TEM characterization was car-
ried out on sample CT2 and the results are shown in Fig. 5. 
 CoSe2 particles grown evenly on the surface of  Ti3C2Tx sub-
strate can also be observed (Fig. 5a), and the average size 
of  CoSe2 particles is about 240 nm (Fig. 5b). As shown in 
the corresponding high-resolution TEM (HRTEM) image 
(Fig.  5c), the lattice spacing between two neighboring 
fringes is estimated to be 0.928 nm, which corresponds to 
the (002) planes of  Ti3C2Tx. The lattice spacing between two 
neighboring fringes of a  CoSe2 particle are measured to be 
0.190, 0.249, and 0.259 nm, which correspond to the (211), 
(120), and (111) planes of  CoSe2, respectively (Fig. 5d). The 
elemental mapping images shown in Fig. 5e–i demonstrate 
the uniform distribution of C, Ti, Co, and Se elements, fur-
ther revealing the successful preparation of  CoSe2/Ti3C2Tx 
composite.

The interaction between  CoSe2 particles and  Ti3C2Tx 
was studied by XPS. Figure 6a shows the Ti 2P spectra of 
 Ti3C2Tx (top) and CT2 (bottom). The peak at 455.1 eV cor-
responds to Ti-C bond. In addition, two peaks are observed 
at 455.8 and 457.2 eV, which can be attributed to  Ti2+ and 
 Ti3+, respectively [71, 72].  Ti4+ also appears at 458.9 eV due 
to the surface oxidation of  Ti3C2Tx during the preparation 
process [73]. The Co 2p spectra of  CoSe2 (top) and CT2 
(bottom) are illustrated in Fig. 6b. The two peaks located 
at 778.6 eV and 781.1 eV can be ascribed to  Co3+ and 

 Co2+, respectively [74]. Figure 6c shows the Se 3d spectra 
of  CoSe2 (top) and CT2 (bottom), and the peak at 54.9 eV 
is attributed to  Se2−. In Fig. 6a, the  Ti2+ and  Ti3+ peaks 
of  Ti3C2Tx almost disappear after the formation of  CoSe2/
Ti3C2Tx composite, and the signal of  Ti4+ peak is greatly 
enhanced. While the  Co2+ peak of  CoSe2/Ti3C2Tx composite 
gets stronger in comparison with that of  CoSe2 (Fig. 6b). 
The valency of Se does not change significantly (Fig. 6c). 
Moreover, it can be found from Fig. 6a, b that electron trans-
fer occurs between Ti and Co, Ti is connected with Se then 
with Co, and finally Ti-Se-Co bonds are formed.

Figure 7a–c demonstrate the first four cycle CV curves 
of  Ti3C2Tx,  CoSe2, and CT2 at 0.2 mV  s−1, respectively. An 
irreversible reduction peak appears in the first cycle, which 
can be attributed to the generation of SEI layer. However, 
this peak disappears in the subsequent cycles, hinting that 
a stable SEI layer is already formed after the first cycle. 
The curves of the second, third, and fourth cycles almost 
overlap (Fig. 7a). The reduction peak at ~1.134 V may be 
due to the chemical reaction between  Ti3C2Tx and  Li+, 
while the oxidation peak at ~0.876 V can be ascribed to 
the generation of  Ti3C2Lix. In the first CV cycle of  CoSe2 
(Fig. 7b), the reduction peaks at about ~0.506 and ~1.138 V 
probably refer to the conversion of  CoSe2 to Co metal and 
 Li2Se, respectively. In addition, strong oxidation peaks 
at ~2.103 and ~1.126  V appear due to the formation of 
 CoSe2 by the reaction between Co and  Li2Se. The lithium 
storage mechanism of  CoSe2 can be described by a two-
stage reversible reaction:  CoSe2 +  Li+ +  e− ⇋  LixCoSe2 
and  LixCoSe2 +  e− ⇋ Co +  Li2Se [75]. Moreover, com-
pared with those in the first circle, the two reaction peaks 

Fig. 3  SEM images of samples 
a  Ti3C2Tx, b CT1, c CT2, and 
d CT3
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at ~ 0.506 and ~ 1.138 V in the second circle shift to ~0.653 
and ~1.394 V, respectively, which may be caused by the 
formation of SEI layer, decomposition of electrolyte, and 
microstructure change.

The electric potentials of the reduction peak and oxida-
tion peak in the third and fourth cycles are similar to those 
in the second cycle, but the response current decreases 
significantly, hinting a poor reversibility of  CoSe2 during 
the lithium-delithium process caused by the large volume 
change and comminution effect of  CoSe2 electrode. The 
CV curve of CT2 is an approximate combination of  CoSe2 
and  Ti3C2Tx CV curve, indicating an improvement of the 
reversibility in comparison with that of  CoSe2, as is shown 
in Fig. 7c. And the curves in the second, third, and fourth 
cycles of CT2 almost overlap because  Ti3C2Tx buffers the 

volume expansion of  CoSe2 particles and the formation of 
Ti-Se-Co bond could prevent  CoSe2 from dissolving into 
the electrolyte.

Figure 7d illustrates the CV curves of CT2 at scanning 
rates of 0.4, 0.6, 0.8, and 1.0 mV  s−1. It can be observed that 
the redox potential difference does not change significantly 
with the increase of scanning rate, revealing an excellent 
rate capability and small electrode polarization of CT2. 
Figure 7e–g show the charge–discharge curves of  Ti3C2Tx, 
 CoSe2, and CT2 in the first three cycles at 0.1 A  g−1, 
respectively, indicating the lower Coulombic efficiencies of 
 Ti3C2Tx (52.39%),  CoSe2 (55.03%), and CT2 (69.24%) that 
are caused by the irreversible redox reactions.

Figure 8a demonstrates the rate performance of  Ti3C2Tx, 
 CoSe2, and CT2-made electrodes at current densities of 

Fig. 4  Nitrogen adsorption/desorption isotherms of a CT1, b CT2, and c CT3. The BET-specific areas of d CT1-CT3
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0.03, 0.06, 0.15, 0.3, and 0.6 A  g−1 after 10 cycles. When 
the current density returns from 0.6 A  g−1 to the initial 0.03 
A  g−1, the specific capacities of  Ti3C2Tx and CT2 nearly 
do not decay, revealing their good reversibilities. But the 
specific capacity of  CoSe2 increases, indicating that  CoSe2 
electrode underwent more activation than other samples. In 
addition, it can be seen that as the current density increases, 
the specific capacities of all samples decrease gradually. 
That is because at high rates, a large number of electrolyte 

ions will be adsorbed on the interface between electrode and 
electrolyte, resulting in a rapid decrease of the concentration 
of electrolyte ions and thereby enhancing the concentration 
polarization, but the polarization voltage does not contribute 

Fig. 5  Low-magnification 
(a) and high-magnification 
(b) TEM images of CT2. 
HRTEM images of the part of 
 Ti3C2Tx (c) and part of a  CoSe2 
particle (d). The corresponding 
elemental mapping images (e–i)

Fig. 6  XPS spectra of a Ti 2p, b Co 2p, and c Se 3d in  Ti3C2Tx and CT2

Fig. 7  CV curves of a  Ti3C2Tx, b  CoSe2, and c CT2 at 0.2 mV  s−1 in 
the first four cycles. d CV curves of CT2 at different rates. Charge–
discharge curves of the first three cycles of e  Ti3C2Tx, f  CoSe2, and 
g CT2

◂
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any specific capacity. The rate performance of  CoSe2 is poor, 
while  Ti3C2Tx exhibits excellent rate performance. Thus, by 
combining  Ti3C2Tx with  CoSe2, the  CoSe2/Ti3C2Tx compos-
ite (CT2) displays high electronic conductivity and excel-
lent performance at high current density. Moreover, CT2 
has the best rate performance because of its smaller polari-
zation during redox process. The specific capacities of CT2 
at current densities of 0.03, 0.06, 0.15, 0.3, and 0.6 A  g−1 
are 331.95, 310.90, 280.47, 262.22, and 220.79 mAh  g−1, 
respectively.

Figure 8b shows the cyclic stability of  Ti3C2Tx,  CoSe2, 
CT1, CT2, and CT3 after 1000 cycles at a current density 
of 0.3 A  g−1. It can be seen obviously that the cyclic stabili-
ties of CT1-CT3 are higher than those of  CoSe2 but lower 
than that of  Ti3C2Tx. And after 1000 cycles, the specific 
capacities of  Ti3C2Tx,  CoSe2, CT1, CT2, and CT3 are 84.06, 
39.09, 156.10, 210.80, and 232.01 mAh  g−1, respectively. 
These results indicate that  Ti3C2Tx can only load a certain 
amount of  CoSe2 particles, and excessive  CoSe2 particles 
will aggregate and undergo large volume change and com-
minution effect during the charge–discharge process, which 
may result in the formation of new surfaces and reactiva-
tion and finally the enhancement of specific capacity. How-
ever,  CoSe2 may dissolve into the electrolyte later, causing 

a significant reduction of specific capacity. In addition, the 
excellent lithium storage performances of CT1-CT3 can be 
attributed to the stable layered structure of  Ti3C2Tx which 
provides additional active sites and improves the electronic 
conductivity. The formation of Ti-Se-Co bonds between 
 Ti3C2Tx and  CoSe2 particles also helps to alleviate the vol-
ume change of  CoSe2 during the cycling process.

Figure 9 shows the microscopic topography of CT2 after 
1000 cycles at a current density of 0.3 A  g−1. It can be seen 
that the sample as a whole still keeps a lamellar structure, 
indicating a good structural stability of the composite. In 
addition, the  CoSe2 particle number seems to decrease, 
which may be caused by the dissolution of  CoSe2 particles 
during the cycling process.

Electrochemical impedance spectroscopy (EIS) reveals 
the electrochemical behavior of  Ti3C2Tx,  CoSe2, and CT2 
samples, as is illustrated in Fig. 10. A typical EIS curve 
consists of a straight line representing the low-frequency 
region of the interfacial charge transfer impedance and a 
semicircular line representing the mid-frequency region of 
the lithium diffusion impedance [68]. Impedance data are 

Fig. 8  a Rate performance of 
 Ti3C2Tx,  CoSe2, and CT2. b 
Cycling stability of  Ti3C2Tx, 
 CoSe2, CT1, CT2, and CT3 at 
0.3 A  g−1 for 1000 cycles and 
the Coulombic efficiency of 
CT2

Fig. 9  SEM images of CT2 after 1000 cycles Fig. 10  Nyquist plots of  Ti3C2Tx,  CoSe2, and CT2

2984 Advanced Composites and Hybrid Materials (2022) 5:2977–2987



1 3

described by an equivalent circuit fit in the inset. The cir-
cuit consists of electrolyte resistance (Rs1), charge transfer 
resistance (Rs2), constant phase element (CPE), and War-
burg impedance (Zw) [76]. Obviously, the semicircle diam-
eter of CT2 is smaller than those of  CoSe2 and  Ti3C2Tx; 
therefore, CT2 can provide more active sites and reduce its 
resistance, which benefit the electron transfer.

The electrochemical properties of CT2 are compared with 
those of other  Ti3C2Tx- and  CoxSey-based anodes reported, 
as are listed in Table 1. It can be seen that CT2 possesses 
higher specific capacity than several  Ti3C2Tx-based anodes 
and higher stability than several  CoxSey anodes. It is believed 
that the reactive anode material of  CoSe2 mainly contributes 
to the higher specific capacity of CT2, and the layered struc-
ture of CT2 also favors the improvement of specific capac-
ity. On the other hand, the formation of Ti-Se-Co bonds 
between  Ti3C2Tx and  CoSe2 leads to a better structural sta-
bility. Therefore, the excellent cyclical stability of  Ti3C2Tx 
and high specific capacity of  CoSe2 enable CT2 to exhibit 
excellent electrochemical performances.

4  Conclusions

In summary, novel  CoSe2/Ti3C2Tx composites are success-
fully prepared with high specific capacity and excellent 
cycling stability. After 1000 cycles at 0.3 A  g−1, a high spe-
cific capacity of 210.80 mAh  g−1 is achieved. The introduc-
tion of  Ti3C2Tx is believed to ease the volume expansion 
of  CoSe2 during charge–discharge cycles, resulting in the 
improvement of cycling stability. Moreover, the excellent 
electronic conductivity of  Ti3C2Tx favors the electrochemi-
cal behavior of  CoSe2/Ti3C2Tx composites. Therefore, 
 CoSe2/Ti3C2Tx composites with high specific capacity and 
excellent cycling stability are achieved, which may find 
promising applications in LIBs as anode materials.
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