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Abstract
Ba0.8Sr0.2Zr0.1Ti0.9O3@MgO-Al2O3@ZnO-B2O3-SiO2 (BSZT@MgO-Al2O3@ZBSO) core double-shell lead-free nanocer-
amic is prepared by facile protocol. The protocol involves three steps of (a) BSZT synthesis by co-precipitation, (b) coating 
of MgO-Al2O3 layer through co-precipitation, and (c) ZBSO deposition via sol-precipitation method. The diameter of the 
resultant BSZT@MgO-Al2O3@ZBSO core double-shell nanoparticles is about 280 nm, and the average thicknesses of 
the MgO-Al2O3 and ZBSO layers are about 8 and 13 nm, respectively. The physical and chemical properties of BSZT@
MgO-Al2O3@ZBSO are tuned by varying the ratio between MgO and  Al2O3 of MgO-Al2O3 layer. The results reveal that 
the grain size increases with the decrease in the MgO/Al2O3 ratio, while the dielectric properties initially increase and then 
decrease with increase of  Al2O3 content. After sintering at 1150 °C for 2 h, the MgO-Al2O3 in the interlayer self-assembled 
into a  MgAl2O4 spinel phase. Thus, fine-grained relaxor ferroelectric BSZT@MgAl2O4@ZBSO core double-shell ceramic 
nanoceramics (grain size ≤ 300 nm) were obtained. The lead-free core double-shell nanoparticles with Mg/Al ratio of 4:2 
exhibit the maximum energy storage density of 0.91 J/cm3 under a maximum polarization field of 28.08 kV/mm.

Keywords Core double-shell nanoparticles · Self-assembly · Fine-grained ceramics · Relaxor ferroelectric · Energy storage

1 Introduction

With the increasing awareness of environmental pollution 
[1–5], people have made great efforts to pursue sustainable 
materials [6–8] and green energy types including batteries, 
phase change energy, solar, and capacitors [9–16]. Dielectric 

energy storage capacitors have been playing indispensable 
roles in modern electronic and electrical devices, including 
electric armors, electric guns, particle beam accelerators, 
high-power microwave sources, ballistic missile systems, 
and hybrid electrical vehicles [17–19]. Among the dielec-
tric materials that can be used in energy storage devices, 

 * Rong Ma 
 marong20@126.com

 * Bin Cui 
 cuibin@nwu.edu.cn

1 Faculty of Chemistry and Chemical Engineering, Key 
Laboratory of Phytochemistry of Shaanxi Province, 
Engineering Research Center of Advanced Ferroelectric 
Functional Materials, BaojiUniversity of Arts and Sciences, 
1 Hi-Tech Avenue, Baoji 721013, Shaanxi, China

2 Key Laboratory of Synthetic and Natural Functional 
Molecule Chemistry of Ministry of Education, Shaanxi 
Key Laboratory of Physico-Inorganic Chemistry, College 
of Chemistry and Materials Science, Northwest University, 
Xi’an 710127, Shaanxi, China

3 Department of Chemistry, Turabah University College, Taif 
University, Taif 21944, Saudi Arabia

4 Department of Food Science and Nutrition, College 
of Science, Taif University, Taif 21944, Saudi Arabia

5 Department of Chemistry, College of Science, Taif 
University, Taif 21944, Saudi Arabia

6 Advanced Materials Division, Engineered Multifunctional 
Composites Nanotech, LLC, Knoxville, TN 37934, USA

7 College of Materials Science and Engineering, Taiyuan 
University of Science and Technology, Taiyuan 030024, 
China

/ Published online: 1 July 2022

Advanced Composites and Hybrid Materials (2022) 5:1477–1489

http://crossmark.crossref.org/dialog/?doi=10.1007/s42114-022-00509-z&domain=pdf


1 3

dielectric ceramics have attracted much attention because 
of their high power density, fast charge/discharge rate, and 
excellent thermal stability [20, 21]. However, the relatively 
low energy storage density has become a major disadvantage 
limiting the application of dielectric ceramics. In addition, 
the use of lead-containing ceramics is strictly controlled for 
environmental reasons. Hence, there is an urgent need to 
develop lead-free dielectric ceramics with higher energy 
storage properties to further improve the overall perfor-
mance of power electronic devices.

Generally, the energy storage density (W), recoverable 
energy storage density (Wrec), and energy storage efficiency 
(η) of dielectric ceramics are calculated by integration of 
areas between the charging and discharging curves of dis-
placement-electric field loops (D-E) and polarization axis, 
which can be described by Eqs. (1)–(3), respectively [22].

where Pr is the remnant polarization, Pmax is the maxi-
mum polarization, and E is the applied electric field. It can 
be indicated from the above equations that high dielectric 
breakdown strengths (BDS), high Pmax, and low Pr are all 
essential to simultaneously achieve high Wrec and high η. 
Among many candidates for dielectric ceramics, including 
linear dielectrics, antiferroelectrics, and ferroelectrics [23, 
24], relaxor ferroelectrics have been considered as the most 
potential candidate because of their high maximum polari-
zation (Pmax) and low remnant polarization (Pr) [25, 26]. 
Moreover, their polarization can be maintained to tempera-
tures higher than Curie temperature due to the existence of 
polar nanoregions (PNRs).

The  Ba1 − xSrxTi1 − yZryO3 are promising relaxor ferroelec-
tric ceramics for energy storage due to their good dielectric 
and electrical properties over a wide range of temperatures 
and frequencies and environmentally friendly composition 
[27]. Applications with high energy density have led to 
increasing concern over the dielectric breakdown strength 
(BDS) which is critical in determining the energy storage 
capacity [28]. Therefore, numerous investigations of the 
ceramics that are suitable for energy storage have focused 
on their high BDS, and have found that this property is influ-
enced by several factors, such as secondary phase (such as 
MgO,  Al2O3, or ZnO [29, 30]), porosity, grain size, struc-
ture, and defects [31, 32]. Huang et al. [33] reported the 
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production of a BST-MgO composite ceramic using spark 
plasma sintering (SPS), which speeded up the sintering rate 
enough to let MgO exist at the grain boundaries, thereby 
improving BDS. Especially, when MgO and  Al2O3 are 
coated together, spinel  MgAl2O4 with higher BDS will be 
formed during the sintering process, which will be benefi-
cial to increase the BDS of the ceramics [34]. However, the 
presence of MgO and  Al2O3 decreases the sintering per-
formance, and SPS is too expensive for use in high-volume 
production and difficult to scale up [35]. Alternatively, the 
addition of a range of glasses has been shown to improve 
BDS while improving sintering performance and refining 
the microstructure, leading to a transition from a diffu-
sion phase to relaxor behavior [36, 37]. Young et al. [38] 
added BaO-SiO2-Al2O3-B2O3-ZrO2-SrO glass to  BaTiO3, 
and found that the BDS increased to 2.8 times that of pure 
 BaTiO3 at 20 vol% of the glass. Zhang et al. [39] found 
that BST ceramics containing 20 vol% of BaO-SiO2-B2O3 
glass had the highest average BDS (23.9 kV/mm), which 
is 1.9 times that of pure BST, and the ceramics had a grain 
size < 1 μm. To meet the growing demand for high energy 
density and miniaturization, there is an increasing need to 
develop fine-grained ceramics that can be used in multi-layer 
structures with very thin layers [40, 41]. The development 
of particles with a core–shell structure has been emphasized 
for the fabrication of multi-layer ceramic capacitors, espe-
cially for ceramics with good temperature stability, because 
this structure can inhibit the growth of grains [42]. At the 
same time, researchers have begun to study the suitability 
of particles with a core–shell structure for use in energy 
storage applications [43]. For example, our research group 
prepared fine-grained BSZT@MgO@ZBSO ceramics with 
a multi-level core–shell structure that exhibited the maxi-
mum energy storage density of 0.71 J/cm3 [44]. Therefore, 
selecting appropriate core and shell materials and designing 
a microstructure that can improve the BDS and reduce the 
sintering temperature without degrading the host material 
properties would be significant advances.

To explore the possibilities, BSZT@MgO-Al2O3@
ZBSO fine-grained particles were synthesized with the 
core double-shell structure that are capable of meeting the 
need for energy storage. The submicron BSZT particles 
were selected as the core owing to its dielectric relaxation 
properties. An intermediate layer comprised of MgO and 
 Al2O3 was introduced to improve the BDS and decrease 
the dielectric loss. The glass-phase ZBSO was coated as 
the outermost coating layer to prepare the dense ceramics 
under a relatively low sintering temperature. Further, the 
ratio between MgO and  Al2O3 of MgO-Al2O3 layer is var-
ied to optimize the microstructural and dielectric properties. 
Moreover, the outermost “shell” ZBSO promoted the self-
assembly of MgO and  Al2O3 in the intermediate layer to 
form  MgAl2O4 spinel phase upon densification at 1150 °C 
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for 2 h. The microstructural, dielectric, and energy storage 
characteristics were investigated using X-ray diffraction, 
electron microscopy, impedance, and ferroelectric analyzer 
methods. Compared with MgO as the intermediate layer, 
 MgAl2O4 effectively improved the BDS of the material, 
thereby improved the energy storage properties. The lead-
free core double-shell nanoparticles with Mg/Al ratio of 4:2 
exhibit the maximum energy storage density of 0.91 J/cm3 
under a maximum 8 kV/mm.

2  Experimental

2.1  Synthesis

The precursors, Ba(CH3COO)2, Sr(CH3COO)2·0.5H2O, 
Zr(NO3)4·5H2O,  TiCl4, Mg(CH3COO)2, Al(NO3)3, 
Zn(NO3)2·6H2O, tetraethoxysilane (TEOS),  C12H27BO3 
(tributyl borate), and NaOH, are obtained from the Shang-
hai Chemical Reagent Factory (Shanghai, China). All the 
chemicals are of analytical-grade chemicals (with a minimum 
purity of 99%). The BSZT@MgO-Al2O3@ZBSO particles 
and ceramics were prepared with 2.0 mol% MgO and 0.5, 
1.0, 1.5, and 2.0 mol%  Al2O3 with Mg/Al ratios of 4:1, 4:2, 
4:3, and 4:4, respectively. The content of ZBSO was 4.0 wt%.

Synthesis of the BSZT@MgO‑Al2O3 particles The submicron 
BSZT particles were prepared via co-precipitation with the 
stoichiometric composition of  Ba0.8Sr0.2Zr0.1Ti0.9O3 following 
the reported procedure [45]. Then prepared BSZT particles 
were suspended in deionized water (1 g/300 mL) by means of 
ultrasonic dispersion for 30 min. Then, 7.0 mL of 0.013 mol/L 
Mg(CH3COO)2 (2.0 mol% MgO) solution was slowly added to 
the slurries. Then, according to the stoichiometric ratio  (Al2O3 
content of 0.5, 1.0, 1.5, 2.0 mol%, respectively), four parts of 
Al(NO3)3 solution were separately added to the above four 
suspensions. The pH of these suspension were maintained at 
the values greater than 9 by adding ammonia. After additional 
reaction for 1 h, BSZT@MgO-Al2O3 core–shell structured 
particles were obtained by drying the total slurry and calcined 
the residues at 750 °C for 2 h in an air atmosphere.

Synthesis of the BSZT@MgO‑Al2O3@ZBSO particles and 
ceramics ZBSO was coated on the surface of BSZT@
MgO-Al2O3 core–shell structured particles through the sol-
precipitation method described in our previous work [46]. 
The molar ratio of ZnO,  B2O3, and  SiO2 in the ZBSO was 
3.1:1.0:2.8. After the completion of reaction, the solution 
was centrifuged to collect the resultant precipitate was dried 
at 150 °C for 3 h to obtain BSZT@MgO-Al2O3@ZBSO core 
double-shell nanoceramics. Of the polyvinyl alcohol (PVA), 
7 wt.% is added to the BSZT@MgO-Al2O3@ZBSO core 
double-shell nanoceramics as binder to make disk-shaped 

pellets at 6-MPa pressure. These pellets were sintered in 
air at 1150 °C for 2 h to produce the test samples. To meas-
ure the dielectric properties, silver paste was painted on the 
polished samples as the electrodes and the samples were 
annealed at 830 °C for 15 min. Figure 1 illustrates the design 
and preparation of fine-grained BSZT@MgAl2O4@ZBSO 
energy storage ceramics.

2.2  Characterization

The crystal microstructures were identified using X-ray 
diffractometer (XRD; D8 Advance, Bruker, Frankfurt, 
Germany) with Cu-Kα radiation (Kα = 1.54059 Å). The 
morphology of the particles was characterized using field-
emission transmission electron microscopy (FE-TEM; Tec-
nai G2 F20S-TWIN, FEI, Hillsboro, OR, USA) with energy-
dispersive spectroscopic (EDS) analysis. The morphology of 
the ceramic samples was characterized using a field-emission 
scanning electron microscope (FE-SEM; Model JSM-5800, 
JEOL, Tokyo, Japan). The P-E hysteresis loops were meas-
ured using a ferroelectric tester (Model 609B, Radiant tech-
nology, Washington, USA). Dielectric properties were meas-
ured using an LCR meter (Model HP4284A, Hewlett-Packard 
Company, CA, USA) controlled by a computer. The capaci-
tances of the ceramics were determined by a HP 4284A LCR 
at 1  Vrms from − 60 to 150 °C, increasing at rate of 2 °C/min.

3  Results and discussion

3.1  Phase composition and morphology of the BSZT@
MgO‑Al2O3@ZBSO powders

Figure 2 shows the crystalline structure of BSZT@MgO-
Al2O3@ZBSO core double-shell nanoceramics with differ-
ent MgO and  Al2O3 ratios. All the samples are coated with 
the same content (4.0 wt%) of ZBSO. All samples exhibit 
the tetragonal phase perovskite structure with a diffraction 
split corresponding to (002)/(200) planes at 45°–46°. The 
magnified image shows that the peak corresponding to the 
(002)/(200) facet broadens as the ratio between MgO and 
 Al2O3 is reduced. The more detailed discussion on the effect 
of MgO and  Al2O3 ratio on phase composition is discussed 
later in Sect. 3.2. No impurity (secondary phase) peak is 
detected in the X-ray diffraction pattern of BSZT@MgO-
Al2O3@ZBSO core double-shell nanoceramics. This is 
because that MgO and  Al2O3 form a barrier layer on the 
surface of the BSZT particles, which prevents the diffusion 
of  Mg2+ and  Al3+ ions into the lattice [47].

Figure  3 shows the TEM image and EDS line scan 
analysis of BSZT@MgO-Al2O3@ZBSO core double-shell 
nanoceramics with MgO/Al2O3 ratio of 4:2. It depicts that 
the BSZT@MgO-Al2O3@ZBSO have uniform spherical 
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morphology with an average diameter of about 280 nm. 
Figure 3b shows a single BSZT@MgO-Al2O3@ZBSO core 
double-shell nanoparticle. The interior (core) and edge 
(shell) of the spherical particles show distinctly different 
contrasts, indicating that the shell layer material is success-
fully coated on the BSZT surface. According to the EDS 
line scan analysis along the straight line AB, Zn, B, and Si 
are distributed in the outermost layer of the core double-
shell nanoparticles, indicating that the outermost layer of the 
particles is ZBSO. The average thickness of ZBSO shell is 
about 13 nm. Two sharp peaks of Mg and Al appear next to 

the inner side of the ZBSO layer, indicating that MgO and 
 Al2O3 form an intermediate shell coating next to of ZBSO. 
The average thickness of MgO-Al2O3 layer is about 8 nm. 
The above results confirm that the BSZT forms the “core,” 
the MgO-Al2O3 forms the intermediate shell, and the ZBSO 
forms the outermost shell for of the BSZT@MgO-Al2O3@
ZBSO core double-shell nanoceramics. The mechanism for 
the formation of coating layers, MgO,  Al2O3, and ZBSO, 
on the surface of monodisperse BSZT nanoparticles by pre-
cipitation method involves two direct steps First, Mg(Ac)2 
and Al(NO3)3 solutions were heterogeneously nucleated in 

Fig. 1  The illustration of the design and the preparation of fine-grained BSZT@MgAl2O4@ZBSO energy storage ceramics

Fig. 2  XRD patterns for 
BSZT@MgO-Al2O3@ZBSO 
core double-shell nanoceramics 
with different MgO/Al2O3 ratios 
in MgO-Al2O3 layer: (a) 4:1, (b) 
4:2, (c) 4:3, and (d) 4:4
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BSZT suspensions at pH ~ 9 to form Mg(OH)2 and Al(OH)3 
on the surface of BSZT particles, which were then calcined 
to form BSZT@MgO-Al2O3. Secondly, ZBSO is coated on 
the surface of BSZT@MgO-Al2O3 particle to form the out-
ermost shell layer.

3.2  Effect of the MgO/Al2O3 ratio on the phase 
composition and morphology of the BSZT@
MgO‑Al2O3@ZBSO ceramics

Figure 4 shows the XRD patterns of the BSZT@MgO-
Al2O3@ZBSO ceramics with different MgO/Al2O3 ratios. 
All the nanoceramic samples exhibit tetragonal phase 
perovskite structure. With increasing  Al2O3 content, the 
 MgAl2O4 spinel phase is detected from the ratio of 4:2 to 
the ratio of 4:4; characteristic peak of  MgAl2O4 (~ 27.5°) 
becomes prominent. This is because the outermost shell 
ZBSO promotes the reaction between MgO and  Al2O3, 
which leads to the self-assembly of  MgAl2O4 spinel phase 
to form the BSZT@MgAl2O4@ZBSO core double-shell 
nanoceramics [48]. The magnified image of (002)/(200) 
diffraction peak depicts a slight move towards higher angle 
with decrease in the MgO/Al2O3 ratio from 4:1 to 4:3. On 

further decreasing the MgO/Al2O3 ratio to 4:4, the (002)/
(200) diffraction peak moves slightly toward the lower angle. 
This may be related to the substitution of ions in the BSZT 
lattice. At a lower ratio, due to a smaller radius than  Mg2+, a 
small amount of  Al3+ enters the BSZT lattice first (promoted 
by ZBSO), causing the shift to a higher angle. However, at 
a higher ratio, the  Al3+ content is high and therefore  Al2O3 
is shared with the outermost layer ZBSO, promoting the 
entry of  Mg2+ into the BSZT lattice causing the shift towards 
lower angle. The general formula for the perovskite struc-
ture is  ABO3, where the A ion occupies the apex position 
of the face-centered cube, and the B ion occupies the face 
center position. The tolerance factor (t) for stable perovskite 
structure can be calculated from the following formula [49]:

where rA represents the ionic radius of the atoms at A site, 
rB represents the ionic radius of the atoms at B site, and rO 
represents the oxygen ion radius. The t value in the range 
between 0.77 and 1.10 leads to a stable perovskite structure. 
The closer the t value is to 1, the more stable the perovskite 

(4)t =
r
A
+ r

o
√

2(r
B
+ r

o
)

Fig. 3  (a)–(c)TEM image of 
BSZT@MgO-Al2O3@ZBSO 
core double-shell nanoceram-
ics with MgO/Al2O3 ratio of 
4:2 and (d) EDS results of 
line-scan microanalysis of the 
BSZT@MgO-Al2O3@ZBSO 
core double-shell nanoceramics 
along the line from A to B
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structure is. For a t value of less than 0.77, the ilmenite 
structure is formed, and for a t value of more than 1.10, 
the calcite structure is formed. In the  Ba0.8Sr0.2Zr0.1Ti0.9O3 
system, rA is the weighted average of the ionic radius of 
 Ba2+ (0.135 nm) and  Sr2+ (0.113 nm), and rB is the weighted 
average of the ionic radius of  Ti4+ (0.064 nm) and Zr.4+ 
(0.087 nm). The average value is calculated as

For the pure  Ba0.8Sr0.2Zr0.1Ti0.9O3 system, the calculated 
rA is 0.1306 nm and the rB is 0.0663 nm. The tolerance 
factors for the entry of  Mg2+ and  Al3+ into the lattice are 
listed in Table 1. Although  Mg2+ has the same valence as 
 Ba2+ and  Sr2+, t is closer to 1 when occupying the B site, 
indicating that  Mg2+ is more likely to enter the BSZT as 
lattice replacement for  Ti4+. Similarly, the t is closer to 1 
when  Al3+ replaces the B site instead of A site. Therefore, 
a small amount of  Mg2+ and  Al3+ replaces the B site, and 
the substitution between ions of different valence creates 
ionic vacancies and charge defects, while the system still 
retains the original perovskite structure. The lattice distor-
tion is caused as  Al3+ being substituted at the B site since the 
radius of  Al3+ is smaller than rB, resulting in the decrease in 

(5)r
A
= 0.8 ⋅ r

(

Ba2+
)

+ 0.2 ⋅ r(Sr2+)

(6)r
B
= 0.1 ⋅ r

(

Zr4+
)

+ 0.9 ⋅ r(Ti4+)

the interplanar spacing such that the (002)/(200) diffraction 
peak moves towards higher angle. The interplanar spacing 
is increased when  Mg2+ is substituted at the B position since 
the radius of  Mg2+ is larger than rB, which in turn causes the 
(002)/(200) diffraction peak to move towards lower angle 
[50].

Figure 5 shows the FE-SEM images and grain-size distri-
bution (inset) of the BSZT@MgAl2O4@ZBSO core double-
shell nanoceramics with different MgO/Al2O3 ratio and the 
EDS analysis spectrum of the ceramics with a MgO/Al2O3 
ratio of 4:3. As the MgO/Al2O3 ratio decreases, the densi-
fication of the ceramic increases, and the size of ceramic 
grains increases slightly (average grain sizes of a, b, c, d 
are 254 nm, 272 nm, 289 nm, 301 nm, respectively). This 
is because the  Al2O3 remaining in the shell or at the grain 
boundary inhibit the growth of ceramic grains. In addition, 
MgO and  Al2O3 composite coating can promote the sinter-
ing of ceramics [37, 51]. Therefore, when the amount of 
 Al2O3 is relatively large, it still promote sintering together 
with the outermost layer (ZBSO), and the liquid phase will 
fully infiltrate the solid particles during the sintering process 
to accelerate the ion mass transfer process, which is benefi-
cial to the formation of fine-grained dense ceramics. The 
ceramic grains are compactly arranged, exhibiting excellent 
densification. Especially when MgO/Al2O3 = 4:3, the grain 
size of ceramics is more uniform and has a compact micro-
scopic morphology. This is due to the lower melting point 
of MgO-Al2O3 composite, and the formation of liquid phase 
by outermost shell layer ZBSO to promote ceramic sinter-
ing to densify [52, 53]. Figure 5e, f show the FE-SEM and 
EDS analysis of ceramics at MgO/Al2O3 = 4:3, respectively. 
The distribution of Zn, B, and Si at the grain boundaries is 
higher than that inside the grains. Significant peaks appear 
in the 0–13 nm of shell layer and in the 276–289 nm of the 
spherical nanoceramics, indicating that Zn, B, and Si are 

Fig. 4  XRD patterns for 
BSZT@MgO-Al2O3@ZBSO 
core double-shell nanoceramics 
with different MgO/Al2O3 ratios 
in MgO-Al2O3 layer: (a) 4:1, (b) 
4:2, (c) 4:3, and (d) 4:4

Table 1  The tolerance factor of the dopant of  Mg2+ and  Al3+

Doped ions Ion radius (nm) Replace position t

Mg2+ 0.072 A 0.7268
B 0.9026

Al3+ 0.050 A 0.6514
B 1.0070
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mainly distributed in the outer layer of the grain. Two sharp 
peaks corresponding to Mg and Al appear in the vicinity of 
Zn, B, and Si, indicating that Mg and Al exist in the mid-
dle layer of BSZT@MgAl2O4@ZBSO core double-shell 
nanoceramic grains. Therefore, the grain size of BSZT@

MgAl2O4@ZBSO ceramics basically maintains the structure 
of the particles with a double-layer “core–shell” structure, 
indicating that the fine-grained ceramics with controlled 
microstructure are prepared by the method of double-layer 
coating and further sintering.

Fig. 5  FE-SEM images and grain-size distribution (inset) for BSZT@
MgAl2O4@ZBSO core double-shell nanoceramics with different 
MgO/Al2O3 ratios: (a) 4:1, (b) 4:2, (c) 4:3, and (d) 4:4. (e) FE-SEM 

image for the BSZT@MgO-Al2O3@ZBSO grain. (f) EDS results of 
line-scan microanalysis of the BSZT@MgO-Al2O3@ZBSO grain 
along the line from A to B in Fig. 5e
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3.3  Effect of the MgO/Al2O3 ratio on the dielectric, 
BDS, and energy storage properties 
of the BSZT@MgAl2O4@ZBSO ceramics

Figure 6 demonstrates the temperature dependence of the 
dielectric constant and temperature capacitance characteris-
tics (TCC) at 1 kHz over the temperature range from − 60 to 
150 °C for all the nanoceramic samples. The dielectric con-
stant initially increases and then decreases with the decrease 
in the MgO/Al2O3 ratio. When the MgO/Al2O3 ratio is 4:2, 
the dielectric constant is the highest, reaching 3143. This 
is because the uniformity of the particles was promoted by 
the  Al2O3 coating, which increased the dielectric constant. 
However, as the coating amount of  Al2O3 increases, the die-
lectric constant reduced due to the intrinsic low dielectric 
constant of  Al2O3. The ceramic meets the X8R standard (55 
to + 150 °C, magnitude of the temperature–capacitance char-
acteristic (TCC) within ± 15%) when the MgO/Al2O3 ratio 
is 4:4, which may be because the multi-layered core–shell 
structure is more conducive to the improvement of ceramic 
temperature stability. There is no obvious change in the 
Curie temperature (Tc). This may be due to several reasons. 
First, as the MgO/Al2O3 ratio decreases, the ceramic grain 
size does not change significantly. Second,  MgAl2O4 stays 
in the middle shell layer and does not diffuse into the lattice, 

which has little effect on the Tc of the ceramic. Table 2 shows 
the main parameters of the dielectric properties of ceramics. 
As the MgO/Al2O3 ratio decreases, the dielectric loss of 
BSZT@MgO-Al2O3@ZBSO ceramics at room temperature 
gradually decreases. This may be because  Al3+ can absorb 
jumping electrons between variable ions [54, 55], so as 
the amount of  Al2O3 coating increases, the dielectric loss 
decreases.

Figure 7 shows the dielectric temperature spectrum at 
different frequencies for BSZT@MgAl2O4@ZBSO nanoce-
ramics with different MgO/Al2O3 ratios. The Tc of all the 
samples shifts toward the high temperature as the frequency 
increases, showing good relaxation characteristics [56, 57]. 
This may be due to the existence of a complex interme-
diate shell of BSZT@MgAl2O4@ZBSO ceramics, and its  
polarization region becomes more complicated in the micro-
scopic region, so the ceramic has good dispersion with typi-
cal relaxation behavior [58]. Figure 7e shows the modified  
Curie–Weiss fit for BSZT@MgAl2O4@ZBSO nanoceramics  
with MgO/Al2O3 = 4:2. When the Mg/Al ratio is 4:2, r = 1.81  
is calculated from the graph, also indicating that it has good 
relaxation characteristics. The above research results, com-
bined with the previous XRD, SEM, and dielectric proper-
ties, indicate that a fine-grained ceramic material having a 
core–shell structure similar to the powder can be prepared 
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Fig. 6  Temperature dependence of (A) the dielectric constant (εr) and (B) the temperature capacitance characteristic (TCC) for BSZT@
MgAl2O4@ZBSO core double-shell nanoceramics with different MgO/Al2O3 ratios (a) 4:1, (b) 4:2, (c) 4:3, and (d) 4:4

Table 2  Main properties of 
the BSZT@MgAl2O4@ZBSO 
ceramics

MgO/Al2O3 εmax Tan δ (25 °C) εr (25 °C) TCC (%)

 − 55 °C Tc 150 °C

4:1 2743 0.0167 2737  − 9.39 0.22  − 22.83
4:2 3143 0.0166 3142  − 11.71 0.03  − 29.57
4:3 3037 0.0142 3037  − 11.33 0  − 29.56
4:4 2161 0.0103 2127  − 4.51 1.60  − 14.50
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by effective control of the sintering process. More impor-
tantly, through the layered coating of different materials, the  
dielectric properties and relaxation characteristics can be 
improved, and the dielectric loss can be reduced, thereby 
achieving controllable preparation from micronanopowders 

to fine-grained ceramics, laying the foundation for energy 
storage applications of miniaturized, high-capacity MLCCs.

Figure 8 shows the Weibull distribution of different MgO/
Al2O3 ratios of BSZT@MgAl2O4@ZBSO ceramics. The BDS 
can be expressed as:

Fig. 7  Temperature dependence of dielectric constant at different meas-
uring frequencies for BSZT@MgAl2O4@ZBSO core double-shell 
nanoceramics with different MgO/Al2O3 ratios in MgO-Al2O3 layer: 

(a) 4:1, (b) 4:2, (c) 4:3, and (d) 4:4. (e) Modified Curie–Weiss fit for 
BSZT@MgAl2O4@ZBSO nanoceramics with MgO/Al2O3 = 4:2
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where Ei is the electric field strength at each measurement, 
Pi is the probability of dielectric breakdown, and n is the 

(7)X
i
= ln(E

i
)

(8)Yi = ln[−ln(1 − Pi)]

(9)Pi = i∕(n + 1)

number of times the sample measured. As the ratio of  Al2O3 
increases, the BDS of the ceramic increases. On the one 
hand,  Al2O3 itself has a high BDS, and when it is uniformly 
coated on the surface of the ceramic grains, the BDS of the 
ceramic is improved; on the other hand, the formation of 
the spinel phase  MgAl2O4 increases the BDS of the ceramic 
significantly. In addition, the coating improves the dispersion 
and uniformity of the particles, and finally, a fine-grained 
ceramic material with uniform grains is obtained. The reduc-
tion of ceramic grains further plays an important role in the 
improvement of its BDS [32].

Figure 9 shows the hysteresis loop diagram of different 
MgO/Al2O3 ratios of BSZT@MgAl2O4@ZBSO ceramics. 
Table 3 shows the discharged energy density, charged energy 
density, energy storage efficiency, BDS, and DC resistivity 
of the ceramics. The hysteresis loops of all the ceramics 
are narrower. With the decrease of MgO/Al2O3 ratio, the 
linear enhancement of BSZT@MgAl2O4@ZBSO ceram-
ics, the decrease of the saturation polarization intensity, 
and the discharge energy storage density of ceramics first 
increase and then decreases. This may be due to the increase 
in  Al2O3 which improves the dispersion of the powder and 
increases the densification and BDS of the ceramic, thereby 
increasing the energy storage density. However, when the 
amount of  Al2O3 is high, it dilutes the ferroelectric phase 
and reduces the polarization intensity, which in turn reduces 
the energy storage density. When the MgO/Al2O3 ratio is 
4:2, the ceramic has a maximum energy storage density of 
0.91 J/cm3, which is due to the self-assembly of the spinel 

Fig. 8  Weibull distribution for the dielectric breakdown strength of 
BSZT@MgAl2O4@ZBSO core double-shell nanoceramics with dif-
ferent MgO/Al2O3 ratios in MgO-Al2O3 layer (a) 4:1, (b) 4:2, (c) 4:3, 
and (d) 4:4

Fig. 9  P-E hysteresis loops for 
the BSZT@MgAl2O4@ZBSO 
core double-shell nanoceramics 
with different MgO/Al2O3 ratios 
in MgO-Al2O3 layer: (a) 4:1, (b) 
4:2, (c) 4:3, and (d) 4:4
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phase  MgAl2O4 that is increasing the BDS of the ceramic. 
The corresponding DC resistivity is also increased. When 
the MgO/Al2O3 ratio is 4:4, the ceramic resistivity is 
2.81 ×  1012 Ω∙cm, indicating that the insulation perfor-
mance is improved, which is conducive to the improvement 
of energy storage density. The energy storage efficiency of 
ceramics first increases and then decreases. When the MgO/
Al2O3 ratio is 4:2, the energy storage efficiency of ceram-
ics reaches a maximum of 72.8%. Therefore, the selection 
of suitable coating materials and the control of the coating 
amount are particularly important for the improvement of 
energy storage properties.

4  Conclusion

Using submicron BSZT particles as a starting material, 
MgO and  Al2O3 as materials with high BDS, and ZBSO 
as a sintering agent, we rationally designed core double-
shell structural BSZT@MgO-Al2O3@ZBSO nanoceramics. 
MgO-Al2O3 in the intermediate layer was self-assembled 
into  MgAl2O4 spinel phase during sintering at 1150 °C for 
2 h, yielding dense, fine-grained relaxation ferroelectric 
BSZT@MgAl2O4@ZBSO ceramics (grain size ≤ 300 nm) 
with excellent energy storage performance. The discharge 
energy storage of BSZT@MgAl2O4@ZBSO nanoceram-
ics increases first and then decreases with the decrease in 
MgO/Al2O3 ratio. When the MgO/Al2O3 ratio is 4:2, the 
ceramic has the maximum dielectric constant of 3143 with 
good dielectric relaxation properties and a maximum energy 
storage density of 0.91 J/cm3. When the MgO/Al2O3 ratio 
is 4:3, the ceramic has the maximum BDS of 28.62 kV/
mm. The BSZT@MgAl2O4@ZBSO materials are easy and 
inexpensive to fabricate, and the improved microstructure 
and dielectric properties indicate that the core double-shell 
approach represents a good way to prepare such materials 
for use in multi-layer energy storage capacitors.
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