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Abstract
The effective and convenient delivery of poorly water-soluble drugs often needs a combined effort of several disciplines. 
In this study, a brand-new structural hybrid, tri-section Janus nanofiber (TJN), was successfully prepared using a tri-fluid 
electrospinning and was demonstrated to be useful for delivering helicide, a poorly water-soluble Chinese herbal medicine. 
The TJNs were composed of three sorts of polymer-based nanocomposites: helicide-polyvinylpyrrolidone (PVP), sodium 
dodecyl sulfate (SDS)-PVP, and sucralose-PVP. The electrospinning processes, characterized by a new homemade spinneret, 
were investigated to disclose the TJNs’ micro-formation mechanism. SEM and TEM results verified that the TJNs presented 
in the linear morphologies and the three sections within the nanofibers could be discerned clearly. XRD and ATR-FTIR 
showed that the functional ingredients, helicide, SDS, and sucralose, presented in their own sections in an amorphous state 
due to the favorable secondary interactions with the PVP matrices. Three methods were carried out to study the functional 
performances of TJNs. The results showed that not only the helicide was able to dissolve all at once, but also the loaded 
SDS and sucralose were able to be released before helicide for a sequential release effect and thus for a potential convenient 
and effective drug delivery to the patients through tongue mucosas. The TJN can be a useful platform for supporting the 
developments of advanced functional nanomaterials and multiple-functional biomaterials.

Keywords  Nanohybrids · Nanocomposites · Janus nanofibers · Tri-fluid electrospinning · Drug delivery · Poorly water-
soluble drug

1  Introduction

During the past half a century’s developments of pharma-
ceutics, the polymers are increasingly demonstrated to be 
the backbone for supporting new kinds of drug delivery 

systems (DDSs) [1–4]. Initially, properties of polymers are 
successfully exploited to modify the drug release profiles for 
an effective, safe, and convenient therapeutic action [5–7]. 
For example, the insoluble and degradable polymers are 
frequently exploited to develop drug sustained or extended 
release through a diffusion mechanism in the formats of 
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nanoparticles, nanofibers, and also bulk materials [8–10]. 
Hydrophilic and water-soluble polymers are always utilized 
to enhance the solubility and to accelerate the dissolution 
rates of poorly water-soluble drugs and also to develop 
the DDSs for providing the immediate or pulsatile drug 
release profiles [11–13]. However, how these DDSs show 
the desired functional performances has a close relation-
ship with the drug-polymer co-existing status and the related 
materials engineering methods [14–16].

The drug presents in the polymer matrix mainly in the 
following formats: separate (such as depots in the inner sec-
tion or nano crystals on the surface) [17, 18]; homogeneous 
distribution all over the polymeric carriers [19, 20]; and het-
erogeneous distributions (such as gradual distribution and 
discrete distribution) [21–23]. Among these co-existing 
manners, the most frequent type is the homogeneous dis-
tribution, by which the polymeric carriers’ properties are 
greatly exploited for the desired functional performances 
[24, 25]. These homogeneous products are often called pol-
ymer-based composites (as an opposite of hybrids, which 
often have separated phases within the subjects) or often 
solid dispersion in pharmaceutics [26–28]. How to make the 
drug molecules uniformly distribute all over the polymeric 
matrices comprises a big challenge to the researchers in the 
fields of pharmaceutics, materials science, nano science, and 
polymer engineering.

Electrospinning, as its peer electrospraying, is an elec-
trohydrodynamic technique and initially a method for cre-
ating polymeric nanofibers [29–32]. The polymers that are 
applied for drug delivery and have fine electrospinnability 
are slightly over one hundred in literature [33, 34]. How-
ever, there are numerous polymer-based composites that 
are generated using electrospinning [35–37]. This contrast 
should have a close relationship with the capability of 
electrospinning in creating a wide variety of nanofibers 
with various loaded ingredients for functional applica-
tions. Initially, electrospinning is popular with the advent 
of this nano era due to a top-down, straightforward, and 
facile manner for creating nano products [38–41]. How-
ever, with the developments of this technique, its capabil-
ity of generating nanofibers is fast expanded along several 
directions: (1) filament-forming polymers or some little 
molecules, typically lipid and β-cyclodextrin (CD), can 
be electrospun into nanofibers [42–44]; (2) the generation 
of multiple-chamber nanostructures in a single step using 
the multiple-fluid electrospinning, which is impossible for 
other top-down methods and also very difficult for most 
bottom-up methods such as molecular self-assembly [45, 
46]; (3) the applications of materials without electrospin-
nability for producing nanofibers directly, i.e., working 
fluids without electrospinnability can be converted into 
nanofibers when they are treated simultaneously with 

electrospinnable polymer solution [47–50]; and (4) the 
applications of electrospun polymeric nanofibers as tem-
plates for creating other kinds of products, such as ceram-
ics and other inorganic nanofibers from the after-treatment 
of the polymer-based nanofibers [51–55].

As for the multiple-fluid electrospinning and the related 
multiple-chamber structures, the most common one is 
coaxial electrospinning and its main products core-sheath 
nanofibers [56–62]. From the first reports about coaxial elec-
trospinning [63], today there are 4356 publications (with 
“TS = coaxial electrospinning or core–shell nanofibers 
or core-sheath nanofibers” to search in Web of Science in 
27-Jan-2022) about this processes and the corresponding 
core-sheath structures. Additionally, Dzenis once pointed 
out that coaxial electrospinning was one of the most impor-
tant break points in this field [64]. What is more, along this 
way, tri-axial (abbreviation of tri-layer coaxial) and quad-
axial electrospinning are successively reported in literature, 
and the related multi-layer core-sheath nanostructures were 
clearly demonstrated [25, 65–69]. However, a sharp contrast 
is that the investigations about side-by-side electrospinning 
and the related Janus nanofibers are extremely limited [70, 
71]. The found literature in Web of Science is only 269 (with 
“TS = side-by-side electrospinning or Janus nanofibers” to 
search in Web of Science in 27-Jan-2022), and in which half 
of them are review papers. This has a close relationship with 
the difficulties of creating Janus nanofibers using two metal 
capillaries in a parallel manner as the spinneret. The same 
charge of two working fluids makes it inevitable that they 
separate from each other due to the repelling, when they are 
pumped out from the outlets of a spinneret nozzle. In turn, 
this phenomenon would result in the failure of creating Janus 
nanofibers with integrated side-by-side (or Janus) structures 
[72, 73].

To solve this issues, an eccentric spinneret was recently 
reported, which is characterized by two capillaries with one 
relied on the inner wall of another capillary [74, 75]. This 
spinneret is demonstrated to be effective for preventing the 
separation of two parallel working fluids due to the follow-
ing reasons. One is that the two fluids were formed a full and 
whole circle for being charged, just as the concentric spin-
neret. The other is that the two working fluids can contact 
with each other through an enlarged surface area, not a point 
contact in the two-parallel metal capillary format. Later, this 
method was further improved by exploiting a third solvent 
to keep the drawing and drying processes simultaneously 
for creating Janus nanofibers with an integrated inner Janus 
structure [76, 77]. Inspired by this strategies and the related 
electrohydrodynamic knowledge, the parallel pumping of 
3 or even 4 working fluids to the electrical fields should be 
possible for creating the 3-section Janus or even 4-section 
Janus nanofibers.
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In this study, a brand-new tri-fluid electrospinning pro-
cess is developed, which is characterized by a new struc-
tural spinneret. The electrospun tri-section Janus nanofib-
ers (TJNs) contained helicide (a poorly water-soluble drug 
model), sodium dodecyl sulfate (SDS, a trans-membrane 
enhancer), and sucralose (a sweeter) in their owns’ pol-
ymer-based nanocomposites. The TJNs can be exploited 
for drug delivery through oral mucosa for realizing fast 
dissolution and rapid permeation for a therapeutic action, 
and meanwhile, a sequentially controlled release of them 
can ensure a convenient and compliant administration to 
the patients.

2 � Materials and methods

2.1 � Materials

Helicide (98% purity, 4-Formylphenyl beta-D-Allopyranoside) 
was received from Xi’an boliante Chemical Co., Ltd. (Xi’an, 
China). Two polymeric matrices of polyvinylpyrrolidone (PVP 
K 60, Mw = 360,000 and PVP K10, Mw = 8,000) were pur-
chased from Sigma-Aldrich Corp. (Shanghai, China). Sodium 
dodecyl sulfate (SDS), N,N-dimethylacetamide (DMAc), anhy-
drous ethanol, methylene blue, and basic fuchsin were bought 
from Sinopharm group (Shanghai, China) and were used as 
received.

2.2 � Preparation of TJNs

After some pre-experiments, three working fluids were pre-
pared for implementing the tri-fluid side-by-side electrospin-
ning to prepare the TJNs.

Fluid 1: 10.0 g PVP K60 and 4.0 g helicide were co- 
dissolved into 100 mL solvent mixture of ethanol and DMAc  
in a volume ratio of 7:3 (for optimizing the experimental 
conditions, 0.01 g methylene blue was added).
Fluid 2: 20.0 g PVP K10 and 10.0 g sucralose were 
co-dissolved into 100 mL ethanol (for optimizing the 
experimental conditions, 0.01 g basic fuchsin was 
added).
Fluid 3: 10.0 g PVP K60 and 0.5 g SDS were co-dissolved 
into 100 mL 80% (v/v) ethanol aqueous solution.

A homemade spinneret was developed to build a tri-fluid 
electrospinning system, which was explored for creating the 
TJNs. The fluid flow rates (mL/h) were fixed at 1.0:1.0:0.5 
(Fluid 1:Fluid 2:Fluid 3). The applied voltage was fixed at 
11.0 kV. The nanofiber deposition distance was fixed at 20 
cm. The collected TJNs were kept at a vacuum drying oven 
for characterization.

2.3 � Characterization of properties

2.3.1 � Morphology and structure analyses

The morphology of electrospun TJNs was observed using 
a field emission scanning electron microscopy (SEM, FEI 
Quanta450FEG, USA). Their cross-sections were prepared 
by inserted a piece of TJNs into liquid nitrogen for 20 min 
and later broken manually. The samples for SEM were gold 
sputter-coated for 1.5 min under N2 atmosphere. The fibers’ 
diameters were estimated using ImageJ software (National 
Institutes of Health, USA) by analyzing over 100 fiber places 
in SEM images. The tri-section Janus structures of nanofibers 
were also assessed using a transmission electron microscope 
(TEM, JEM 2100F, JEOL, Tokyo, Japan).

2.3.2 � State of the loaded components and their 
compatibility

An X-ray diffractometer (Bruker-AXS with Cu Kα radiation, 
Karlsruhe, Germany) was utilized for conducting X-ray dif-
fraction (XRD) analyses. The experimental conditions: an 
applied voltage of 40 kV, a current of 30 mA, and a 2θ range 
from 5 to 60°. A Spectrum 100 FTIR Spectrometer (Perkin-
Elmer, Billerica, USA) was exploited to implement the attenu-
ated total reflectance-Fourier transform infrared (ATR-FTIR) 
measurements at a resolution of 2 cm−1 and at a range from 
4000 to 500 cm−1.

2.4 � Functional performances

2.4.1 � Drug loading efficiency

The helicide concentration was measured using a UV–vis 
spectrophotometer (UV-2102PC, Unico Instrument Co., Ltd. 
Shanghai, China). The standard equation between the heli-
cide concentration (C, μg/mL) and absorbance (A) was A = 
0.117C-0.014 (R = 0.9996), which was built at the maximum 
absorbance at λmax = 270 nm and within a linear range of 0.0 
to 25.0 μg/mL.

For determining the encapsulation efficiency (EE, %) of 
helicide in the TJNs from the tri-fluid electrospinning, an 
amount of 10.0 mg TJNs were dissolved into 500 mL distilled 
water. After detection of the solutions, the detected helicid 
content (CD) can be calculated from the standard equation, and 
the EE values can be achieved through Eq. (1):

in which CO is a theoretical value according to the prepara-
tion conditions using Eq. (2):

(1)EE =
CD

CO

× 100%
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where f and C denote fluid flow rate and solute concentra-
tion, respectively; the subscript “1,”,”2,” and “3″ refer to the 
fluid number, respectively.

2.4.2 � Fast disintegrating observations

In vitro dissolution and additional two self-created methods 
were explored to observe the fast disintegrating and fast-
dissolving processes of the prepared TJNs. Those TJNs 
prepared during the optimization processes (i.e., contain-
ing blue and red markers) were exploited for distinguish-
ing the sequential dissolution of encapsulated functional 
ingredients.

2.4.3 � In vitro dissolution tests

In vitro dissolution tests were conducted according to the 
paddle method in Chinese Pharmacopoeia (2020 Ed.). An 
amount of 100.0 mg TJNs were immersed in 600 mL normal 
saline at 35 ± 0.5 °C. At predetermined time points, 5.0 
mL aliquot was withdrawn, and 5.0 mL of fresh saline was 
added. The amounts of helicide released were measured and 
calculated. Experiments were repeated 3 times.

3 � Results and discussion

3.1 � The new tri‑fluid electrospinning process

Among the four parts of an electrospinning system, i.e., 
power supply, collector, syringe pump, and spinneret, the 
spinneret is the most innovative one [78–80]. Often, a new 
spinneret can determine a new electrospinning process, for 
example, an eccentric spinneret for a side-by-side electro-
spinning [81] and a concentric spinneret for a coaxial elec-
trospinning [82, 83]. In this study, a new spinneret is devel-
oped, whose information is concluded in Fig. 1. Figure 1a 
is a whole digital view of the spinneret, which has a weight 
of 37.2 g for easily installing the electrospinning system. 
Figure 1b shows the co-outlets of nozzle, with two outlets 
in a typical round shape and the third outlet in a “strange 
arch” shape. The inner arrangement of the metal capillar-
ies and the combinations are disclosed in Fig. 1c. In the 
“strange arch” shape, a large contact surface area between 
the three working fluids can be ensured during the working 
processes for a successful preparation (as indicated by the 
letter “A”). The spinneret is very convenient for being fixed 
by one syringe pump, which the syringe holding the fluid 

(2)CO% =
f
1
∗ Chelicid

f
1
∗
(

Chelicid + CPVP1

)

+ f
2
∗
(

Csucralose + CPVP2

)

+ f
3
∗
(

CSDS + CPVP3

)

passing through the “strange arch shape” can be directly 
inserted into the spinneret; the other two working fluids can 
be guided to the spinneret through the high elastic silicon 
tubes, as shown by the digital picture of Fig. 1d.

Helicide is not soluble in water and ethanol but soluble 
in DMAc. SDS is soluble in water. Thus, although PVP 
is soluble in water and almost all the organic solvents, 
it is impossible for blending all the functional ingredi-
ents, helicide, SDS, and sucralose, with PVP to form a 
co-dissolving solution, and thus it is impossible to prepare 
a multiple-component nanocomposite using a single-fluid 
blending process. Multiple-fluid electrospinning has the 
capability of encapsulating multiple components from 
different working fluids. Here, to investigate the tri-fluid 
working process through the structural spinneret, color 
markers methylene blue and basic fuchsin were loaded into 
the co-dissolved working fluids of helicide-PVP K60 and 
sucralose-PVP K10, respectively. Only the fluid containing 
PVP K60 and SDS was transparent. The arrangements of 
three pumps for constructing the home-made electrospin-
ning apparatus are shown in Fig. 2a. After optimizing the 
fluid flow rates of three working fluids, a droplet dripped 
from outlet of the spinneret’s nozzle can be observed in 
the up-right inset of Fig. 2a, showing the co-pumped out 
three fluids before applying the high voltage for prepar-
ing TJNs. The ways that the three working fluids were 
guided into the spinneret and the connection between the 
power supply and the spinneret through an alligator clip 
are shown in the digital photo of Fig. 2b. When the applied 

Fig. 1   Construction of the structural spinneret: a a whole digital 
view; b the co-outlets of nozzle (the other “arch” was blocked by 
epoxy resin); c a diagram showing the inner arrangement of the metal 
capillaries and their combination using epoxy resin; d a digital pic-
ture telling the connections of spinneret with the three syringes hold-
ing the three sorts of working fluids
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voltage was lifted to 15 kV, the electrospinning process is 
stable. A typical working process was observed in Fig. 2c. 
The platitudes are a compound Taylor cone, followed by a 
straight fluid line and an instable region, characterized by 
the gradually enlarged bending and whipping circles. An 
enlarged image of the compound Taylor cone is given in 
Fig. 2d. The two colors (blue and red) and a transparent 
section in the cone demonstrated the co-electrospinning 
of the three working fluids.

As mentioned previously, the publications about coaxial 
electrospinning and core-sheath nanofibers are greatly larger 
than their counterparts, i.e., side-by-side electrospinning and 
Janus nanofibers. Similarly, the investigations about tri-axial 
electrospinning and tri-layer core-sheath nanofibers are 

reported in decades of papers, but few articles can be found 
about the tri-fluid side-by-side electrospinning and tri-layer 
Janus nanofibers. The key difficult point is that it is very 
hard to keep the side-by-side working fluids to be drawn in 
an integrated manner through the Taylor cone, straight fluid 
jet, and bending and whipping processes [84, 85]. When 
these fluids are pumped out from the nozzles, they carry the 
same electrical charges and thus it is inevitable to repel each 
other using a traditional spinneret comprising three parallel 
metal capillaries (diagrammed in Fig. 3). Particularly, the 
charges distribute in an irregular format. These adverse fac-
tors would make the formation of integrated TJNs failure 
due to separation of each sections during the electrospinning 
processes.

In obvious contrast, the present new spinneret has its 
advantages to ensure a robust and effective preparation of 
TJNs. First of all, the three fluids have a larger contact sur-
face area (as indicated by “A” in Fig. 1). Second, the working 
fluids can be more easily self-regulated into a round shape 
due to surface tension although an irregular shape of the 
outlet of nozzle (as indicated by letter “A” in Fig. 3). Third, 
the spinneret is coated mostly by epoxy resin, leaving only 
a small section of metal capillary for connecting the alliga-
tor clip, which is favorite for an effective transferring of the 
electrical energy to the working fluid, other than being scat-
tering to the environment [86].

Fig. 2   Implementation of the tri-fluid electrospinning processes: a a 
digital image of the home-made electrospinning apparatus, the up-
right inset shows a droplet from the nozzle of spinneret before apply-
ing the high voltage; b the ways that the three working fluids were led 
into the spinneret and the connection between the power supply and 
the spinneret through an alligator clip; c a typical working process 
with bending and whipping loops; d a typical compound Taylor cone 
with color markers

Fig. 3   The formation mechanism of the electrospun TJNs using the 
new spinneret

Fig. 4   Morphologies of the prepared tri-section Janus nanohybrids: 
a the surface morphology of the nanofibers, the up-right inset shows 
an enlarged image; b the nanofibers’ diameters and their size distri-
bution; c the cross-sections of the tri-section nanofibers; d a typical 
image of the nanofiber’s cross-section, in which, “A”(sucralose-PVP 
10), “B”(helicide-PVP K60), “C” (SDS-PVP K60), three different 
sections can be clearly discerned
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3.2 � The TJNs’ morphologies and inner structures

The surface morphologies of the electrospun TJNs are 
shown in Fig. 4a, with an enlarge image in its up-right inset. 
The estimated diameters of these nanofibers are about 870 
± 140 nm (Fig. 4b). Clearly, there TJNs are round and in a 
straight line format with smooth surface. Although unspin-
nable fluid of PVP K10-sucralose was exploited, the electro-
spinnable PVP K60-helicide and PVP K60-SDS fluids were 
able to ensure the formation of linear nanofibers without 
beads or spindles. The cross-sections of TJNs are shown 
in Fig. 4c and d. It is obvious that three different sections 
(labeled with “A,” “B,” “C” beside) within the cross-section 
of nanofiber can be discerned.

TEM images of the TJNs are shown in Fig. 5a to c. The 
gray levels in the TEM images taken under bright field are 
often from three aspects, i.e., element, thickness, and den-
sity. When the magnification is 5,000, all the nanofibers 
showed the same gray levels, which is shown in Fig. 5a. 
However, when the magnification is enlarged to 200,000, the 
different gray levels within the TJNs can be clearly distin-
guished out, as exhibited in Fig. 5b and c. The multiple gray 
levels should have a close relationship with the view angle 
on the nanofibers. A diagram showing the formations of dif-
ferent regions with various gray levels is drawn in Fig. 5d. 
The thicker and the more sections involved, the darker the 
gray level is.

3.3 � The three sections of polymer‑based 
nanocomposites within the TJNs

Essentially, electrospinning is a physical method, which 
electrostatic energy is exploited to eliminate the solvents 
from the working fluids at an extremely short time period, 
often at a scale of several decades of milliseconds [87–89]. 
Based on this situation, it is often anticipated that the physi-
cal state of components in the liquid working fluids will 
be propagated into the solid nanofibers. This advantage 
makes electrospinning a highly popular tool for preparing 
drug-polymer composites or molecular solid dispersion in 
pharmaceutical field [34, 90, 91]. Thus, there are numerous 
nanofiber-based composites or solid dispersion in literature, 
which are often fabricated using a single-fluid blending 
electrospinning process [20, 92, 93]. The active ingredient, 
the filament-forming polymer, and sometimes other addi-
tives are all co-dissolved into one electrospinnable working 
fluid, and then the fluid was transferred into polymer-based 
composites.

However, these homogeneous polymer-based compos-
ites and also the single-fluid blending electrospinning are 
only limited to some special situations, in which the drug, 
the polymer, and also the additive can be co-dissolved 
together in a solvent or a solvent mixture. Meanwhile, 
the single solvent system must ensure that the polymer 
has fine electrospinnability and must ensure that the drug 
and additives have enough loading for functional perfor-
mances. Thus, multiple-fluid electrospinning processes 
and the related complex nanostructures are able to expand 
the capability of electrospinning in generating functional 
nanomaterials. Here, the tri-fluid side-by-side electro-
spinning processes have exploited three different kinds 

Fig. 5   Inner structures of the prepared TJNs: a a whole TEM image 
of the nanofibers on the carbon membrane; b and c two typical TEM 
images; d a diagram showing the formations of different regions with 
various gray levels

Fig. 6   XRD patterns of the tri-section TJNs and the five raw materi-
als including PVP K60 and K10, SDS, sucralose, and helicide
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of solvent systems, i.e., ethanol and DMAc for PVP K60 
and helicide, ethanol for PVP K30 and sucralose, and 
ethanol and water for PVP K60 and SDS. All the solu-
tions were transparent liquids. After electrospinning, the 
TJNs’ XRD patterns were achieved (Fig. 6). Compared 
with the XRD patterns of the raw helicide, sucralose, and 
SDS, in which Bragg sharp peaks suggesting crystalline 
materials, there are no any sharp peaks on the curve of 
TJNs, but two halos like the XRD patterns of PVP K10 
and K60. These phenomena gives a hint that all the crys-
talline helicide, SDS, and sucralose have been transferred 
into amorphous polymer-based composites in their owns’ 
sections of tri-section Janus products, whereas the whole 
TJNs are nanohybrids, which consist of three different 
sorts of polymer-based nanocomposites.

In this study, three different functional ingredi-
ents were successfully encapsulated into two different 
polymeric matrices to create the designed TJNs. Their 
molecular formula are concluded in Fig. 7. Although the 
polymer matrices PVP K10 and K60 have their differ-
ences in molecular weights and dissolution rates, they 
similarly have numerous C = O groups in their molecules 
and meanwhile the N bring some positive charges. Both 
helicide and sucralose have OH groups in their molecules. 
Thus, it can be anticipated that both of them have fine 
compatibility with PVP. This is because the favorite sec-
ondary interaction, i.e., hydrogen bonding, can be formed 
between them, which can keep a high stability of the com-
posites through a long time period [11]. SDS, as a trans-
membrane enhancer, has negative charges on the element 
O; thus, electrostatic actions can form between SDS and 
PVP, i.e., PVP-SDS nanocomposites also have a high 

stability. Thus, it is no strange that all the sharp peaks 
presented in the figure regions of the ATR-FTIR spectra 
of sucralose, SDS, and helicide have disappeared in the 
spectra of TJNs due to the secondary interactions, which 
have revised their covalent bonds’ original stretching and 
bending actions. Meanwhile, compared with the spectra 
of PVP K10 and K60, the characteristic peak places of 
C = O of TJNs have showed some red shifts from 1662 
to 1657 cm−1.

3.4 � The functional performances of the prepared 
TJNs

The measured content of helicide in the TJNs was 8.23 ± 
0.41%. According to the experimental conditions, the theo-
retical concentration is 8.12%. Thus, the drug loading effi-
ciency is 101.4%. This result suggests that there were no 
any drug losing during the electrospinning process. All the 
drugs have been encapsulated into the TJNs due to just a fast 
drying procedure of the co-dissolving solutions, which is 
similar as all the other electrospinning processes.

Three different methods are developed for measuring 
the fast dissolution properties of the electrospun TJNs and 
disclosing the sequential release performances. Shown in 
Fig. 8, a disintegration experiment was carried out using 
a piece of glass slide. After about 10 min of the deposi-
tions of TJNs, a drop of water was dripped on the TJNs. 
A camera was exploited to record the fast disintegrating 
process. After contacting the water, the TJNs were quickly 
disintegrated into transparent gels, as demonstrated by the 
gradually enlarged circle from 1 to 6 in Fig. 8. The total time 
was 4 s for the buried characters “USST” (abbreviation of 

Fig. 7   ATR-FTIR spectra of the 
TJNs and the five raw materials 
including PVP K60 and K10, 
SDS, sucralose, and helicide, 
and their molecular formula
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University of Shanghai for Science and Technology) to be 
completely appeared.

For drug delivery, the drug release is most frequently 
measured using the quantitative methods, particularly those 
dosages form for drug sustained release [22]. The above-
mentioned fast disintegrating experiment was just a quali-
tative observation. According to Chinese Pharmacopoeia 
(2020 Ed.), the paddle method was used to measure the dis-
solution of helicide. As the SDS and sucralose have no any 
absorbance at the maximum wavelength of λmax = 270 for 
helicide. Thus, the absorbance of dissolution media were 
detected, and the values were exploited to calculate the 
drug concentration using the standard equation. The result 
is shown in Fig. 9. As anticipated, all the loaded helicide in 
the TJNs was freed within 1 min. In comparison, the helicide 
powders (≤ 50 μm) released only 3.6 ± 1.4% into the dis-
solution media after a time period of 30 min, suggesting a 
typical poorly water-soluble drug.

The TJNs prepared during the optimization of experimen-
tal parameters (i.e., with color markers) were exploited to 
distinguish the dissolution procedures of different functional 

ingredients encapsulated in the TJNs. Shown in Fig. 10, a 
piece of TJNs were placed on a cup of water with a stirring 
rate of 50 rpm. The whole time from 1 to 6 was 34 s. During 
the processes, two phenomena were clear, one is that the 
center of the floated solid TJNs (in the shape of “T” due to 
the stirring) was mainly in purple and blue colors, whereas 
the dissolution medium was in pink color, suggesting that the 
red marker dissolved and diffused to the dissolution media 
faster than the blue marker. Both of the red and blue markers 
have fine water solubility, and both of them contacted the 
environments due to the Janus structures. Thus, it is the solu-
bility differences of their polymeric matrices, i.e., PVP K10 
and PVP K60, that made the two colors be released through 
different rates through the polymeric erosion mechanisms. 
The other is that the water gradually turned its color from 
pink to purple, also suggested that the later dissolution and 
diffusion of blue marker. These phenomena suggest that the 
sucralose loaded with PVP K10 will be faster released than 
the drug helicide encapsulated with PVP K60. Thus, in the 
administration applications, the sweet taste of sucralose will 
be firstly felt by the patients and will mask the bitterness of 
helicide, and thus the patients’ compliance can be effectively 
improved by this sequential release performance.

Helicide is a monomer extracted from the fruit of wild 
plant radish tree of Longan family [94]. It is frequently used 
for neurasthenia, neurasthenia syndrome, and vascular nerve 
headache. However, its poor water solubility has greatly lim-
ited its applications, and its bitter taste has decreased its 
patient compliance [95]. Here, it was selected as a model 
active pharmaceutical ingredient to develop a nanofiber-
based DDS. It is expected that the suggested protocols 
can be applied to many other drugs due to the strategies 
and mechanisms disclosed here. Shown in the diagram of 
Fig. 11, the TJNs have three sections in an irregular side-
by-side manner. All the three sections contact the environ-
ments. The side from the “arch shape” outlet of spinneret 
has the thinnest thickness and largest surface, which can also 
play a role in making a different dissolution rate besides the 
polymeric matrices, although this point cannot be detected 
presently due to the extremely fast whole dissolution rate. 

Fig. 8   A glass slide was used 
to collect TJNs to test the fast 
disintegrating processes, the 
time cost from 1 to 6 was 4 s

Fig. 9   The in vitro dissolution test results of the TJNs and raw heli-
cide powders
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The release of SDS in an earlier step can benefit an effec-
tive trans membrane of the later released drug molecules. 
Meanwhile, the release of sucralose will be rapider than the 
helicide for a better compliance, as detected in the above-
mentioned experiments. Thus, the whole sequential release 
of SDS, sucralose, and helicide from their owns’ PVP-based 
nanocomposites will ensure the tri-section Janus medicated 
hybrids an ideal nano DDS for the patients.

In the traditional electrospun fast disintegrating mem-
branes, orodispersible films, and sublingual membranes, 
the drug and also the additive are simultaneously dissolved 
[47]. Here, the TJNs not only release the loaded functional 
ingredients in an immediate manner, but during the fast 
process, the release of different ingredients can be manipu-
lated in a certain order. For drug delivery applications, this 

is favorite for the patients; the formerly release of sweeter 
and trans-membrane enhancer can effectively cover up the 
bite taste of drug and promote drug transportation to pen-
etrate the biological mucosa due to an earlier release than 
drug and thus increase the conveniences, compliance, and 
effectiveness of drug delivery to the patients. This strategy, 
on one hand, should be not only useful for the delivery of 
a certain drug but should be more useful for manipulating 
the combined therapy of several different kinds of drugs, 
which are presently under investigations. On the other hand, 
with the hints from literature [96–98]. The protocols can be 
explored for developing a series of multifunctional hybrid 
and composite materials in other scientific fields such as 
food and agroforestry.

4 � Conclusions

A new tri-fluid electrospinning, characterized by a home-
made spinneret, was successfully developed for preparing 
tri-section Janus nano structures. Three functional ingredi-
ents, sucralose, SDS, and helicide were loaded separated 
into the Janus structures with two different polymeric matri-
ces, i.e., PVP K10 and PVP K60. The prepared TJNs were 
demonstrated to have a linear morphology and comprise 
three nanocomposites, i.e., helicide-PVP K60, SDS-PVP 
K60, and sucralose-PVP K10, which are demonstrated by 
SEM and TEM images. XRD and ATR-FTIR verified that 
the functional ingredients, helicide, SDS, and sucralose, 
existed in their own sections in an amorphous state due to 
the favorite secondary interactions with the PVP matrices. 

Fig. 10   A disintegrating release 
experiment for measuring the 
dissolution procedure of func-
tional ingredients within the 
TJNs by using the color markers

Fig. 11   Sequential release of sucralose, SDS, and helicide from the 
prepared TJNs
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Two disintegrating experiments (with a drop of water and a 
cup of water) and in vitro dissolution tests demonstrate that 
the TJNs have the fast dissolution performances, and mean-
while, they can manipulate the sucralose, SDS, and heli-
cide to be released in a sequential manner. This is useful for 
compliance (sweeter masking the bite taste of helicide) and 
effective (SDS as trans-membrane enhancer) drug delivery. 
The tri-fluid electrospinning and the TJNs reported here pave 
a new way for developing multiple functional nanomaterials.
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