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Abstract
As a promising candidate for flexible epidermal strain sensor, the obvious resistance sensing signal drift of ionic conductive 
hydrogel affects its practical application significantly, and the AC impedance analysis appears to be an effective test method. 
Here, the rarely reported impedance sensing mechanism was investigated based on an axon-like ionic conductive hydrogel 
strain sensor, which is composed of cellulose hydrogel particles (CHPs) as the core sensing medium, rubber tube as the 
elastic cortex, and stainless steel as the electrode. Specifically, the prepared hydrogel strain sensor exhibited a negative ion 
concentration-dependent impedance sensing behavior, the impedance variation (△Z/Z0) and sensitivity (GF) at 400% reach 
441.5 and 630.1, respectively. What is more, the AC impedance sensing behavior of the hydrogel sensor displayed good strain 
amplitude identifiability in a wide strain range up to 400%, ultralow detection limit (0.1% strain), excellent rate independ-
ence, and outstanding long-term fatigue resistance. Importantly, an equivalent circuit model was built, and the variation of 
ion transport impedance and electric double-layer capacitance at the electrode-CHPs interface during the tension process 
were verified to be the internal sensing mechanism. What is more, the special skin–core structure can effectively solve the 
dehydration problem and poor mechanical property of hydrogel, and the amounts of interfaces between adjacent CHPs are 
also beneficial for improving the impedance responsivity. We believe the proposed impedance response mechanism will 
undoubtedly provide important guidance for the design of high-performance ionic conductive hydrogel strain sensor.
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1  Introduction

With the development of artificial intelligence, high- 
performance wearable strain sensors are highly demanded 
in the fields of physiological signal monitoring [1–3], 
motion detection [4–6], human–machine interfaces [7–10], 

intelligent robotics [11–13], and so on. Owing to the brilliant 
characteristics of self-healing, high stretchability, surface 
compliance, and good biocompatibility, ionic conductive 
hydrogels have aroused great attentions to be used as the 
promising materials for next-generation flexible epidermal 
strain sensors [14–17].

Due to the unique structure of three-dimensional cross-
linked polymer networks and the amount of adsorbed aque-
ous solution, there are still some enormous challenges to be 
solved. For instance, the dehydration of hydrogels is easy to 
cause the attenuation of sensing capacity, elastic deteriora-
tion, and even complete failure of their strain sensor during 
the long-term outdoor use. Besides, the poor mechanical 
property of most hydrogels will undoubtedly restrict their 
application in most practical applications, so some enhance-
ment methods are necessary, increasing the complexity and 
production cost. More importantly, the resistance sensing 
signal of most ionic conductive hydrogel often exhibits obvi-
ous baseline drift and even inconsistent sensing signal with 
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strain, which can be attributed to the accumulation of ions 
at the interface between hydrogel and electrode under a DC 
filed, forming an electrical double-layer capacitance (EDLC) 
and uncomplete loop in the circuit.

Recently, enormous efforts have been conducted to solve 
the problems stated above. For instance, the application of 
non-volatile solvent [18–21] and high salt concentration 
[22–25] can effectively overcome the dehydration problem 
of hydrogels and greatly expand the service temperature 
of their sensor, but the high sensitivity of those response 
medium to environmental humidity is still inevitable. What 
is more, the addition of electronic conductive network 
[26–28] and rational structure design of hydrogel strain sen-
sors [29, 30] can also effectively improve their responsive-
ness, but the complex and costly processing process is still 
necessary. Furthermore, AC impedance method has been 
applied to investigate the strain sensing behavior of ionic 
conductive hydrogel strain sensor [17, 31–34]. Under the 
excitation of AC signal, the conductive ions in the hydrogel 
were cyclic reciprocating motion, forming a complete loop 
with the external electronic circuit through the interfacial 
coupling of the EDLC, so that the baseline drift problem in 
the DC method can be effectively voided and stable sensing 
pattern was successfully achieved. However, the detail sens-
ing mechanism of ionic conductive hydrogel strain sensor 
working in the AC test mode is still not deeply analyzed.

Inspired by the fidelity transmission of nerve signals in 
axon, an environmental tolerant and highly sensitive axon-
like ionic conductive hydrogel is constructed for flexible 
epidermal strain sensor. Similar to the axon, the skin–core 
structured strain sensor composed of cellulose hydrogel par-
ticles (CHPs) as the core sensing medium, rubber tube as the 
elastic cortex, and stainless steel as the electrode. Specifi-
cally, the effect of ion concentration on impedance sensing 
behavior upon tension was systematically studied, and an 
equivalent circuit model was built to analyze the detail sens-
ing mechanism. Then, the strain amplitude and rate depend-
ent impedance sensing performances and long-term stability 
of the hydrogel strain sensor were further studied. As a veri-
fication, combined with TENG which is a typical advanced 
wearable power source, the axon-like CHPs strain sensor 
shown a good performance in human motion and physiology 
signal detection. This study will provide great guidance for 
the widespread application of ionic conductive hydrogel in 
wearable strain sensor.

2 � Experimental section

2.1 � Materials and chemicals

α-Cellulose with a molecular weight of 162.06 was pur-
chased from Aladdin (Shanghai, China). Epichlorohydrin 

(ECH) was supplied by Tianjin Damao Chemical Rea-
gent Factory (China). Sodium hydroxide (NaOH), urea, 
and sodium chloride (NaCl) were bought from Sinopharm 
Chemical Reagent Co. Ltd, China. All the materials and 
chemicals were used as received without treatment.

2.2 � Preparation of cellulose hydrogel particle

Typically, 12 g cellulose powder was dispersed into 300 g 
aqueous solution containing 7 wt % NaOH and 12 wt % 
urea, which was then precooled in a − 18 °C refrigerator for 
12 h and mechanically stirred for 30 min to dissolve the 
cellulose completely. After that, transparent cellulose hydro-
gel was obtained by adding 30 mL ECH under vigorous 
stirring, cross-linking at 50 °C for 8 h, and aging at room 
temperature for 48 h. After being soaked in deionized (DI) 
water to remove the remnant NaOH and urea until the PH 
value reaches 7, the resultant cellulose hydrogel with poor 
mechanical strength (Fig. S1) was smashed into particles 
using a blender and treated using a 20-mesh sieve followed 
by an 80-mesh sieve to remove the large and small parti-
cles. The final cellulose hydrogel particles (CHPs) were re-
dispersed in DI water containing different NaCl concentra-
tions (0.05 M, 0.154 M, 0.5 M, and 1 M) for 24 h to achieve 
a balance of ion changing, obtaining series of CHPs with 
different NaCl loading, which were named as CHPs-0.05, 
CHPs-0.15, CHPs-0.5, and CHPs-1, respectively.

2.3 � Fabrication of CHPs‑based strain sensor

For the preparation of CHPs-based strain sensor, CHPs were 
first squeezed into a rubber tube with an internal diameter 
of 1.6 mm, and two stainless steel electrodes were inserted 
into both ends to build a CHPs filled length of 12 mm. After 
that, the inserted stainless-steel electrodes were strongly 
tied, and an effective elastic length of 28 mm was created 
for the strain sensor.

2.4 � Characterizations

Electrochemical impedance spectroscopy (EIS) and AC 
impedance as a function of time for strain sensor were 
measured using an electrochemical workstation (Chen-
hua CHI660E, China). In the frequency range of 0.1 Hz 
to 1 MHz, the AC potential and bias voltage was set to be 
100 mV and 0 V for EIS test. The strain sensing perfor-
mance of the sensor was studied through in-situ recording 
the AC impedance change using the electrochemical work-
station coupled with a universal tensile testing machine 
(Suns UTM2203, China). Here, the applied AC potential, 
bias voltage, and testing frequency were set to be 100 mV, 
0 V, and 1000 Hz, respectively.
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3 � Results and discussions

Inspired by the fidelity transmission of nerve signals in 
axon, as shown in Fig. 1a, an environmental tolerant and 
highly sensitive axon-like ionic conductive hydrogel strain 
sensor with a skin–core structure was designed. Figure 1b 
illustrates the preparation process of CHPs-based strain 
sensor, and the details are listed in the experiment part. 
The designed strain sensor consists of highly elastic cor-
tex (rubber tube), core sensing medium (ionic conductive 
CHPs), and stainless-steel electrode. Specifically, rubber 
tube provides excellent stretch-recovery properties and 
good dehydration prevention of hydrogel, CHPs supplies 
conductive path and responds to the device deformation, 
and stainless-steel electrode is closely connected with the 
filled CHPs to form the interface of electronic circuit and 
ionic conductor. Figure 1c shows the optical picture of 
the filled CHPs which were squeezed onto a glass plate 
directly, of which a large number of irregular particles 
aggregate together closely to construct tight interfaces 

without obvious void based on the existence of hydrogen 
bonding. Optical pictures of the CHPs-based strain sensor 
under releasing and stretching state are shown in Fig. 1d, 
e, and the red backlight can homogeneously transmit the 
rubber tube even when the strain sensor is stretched to 
250% strain, indicating that the filled CHPs keeps densely 
aggregation without obvious fracture, which is conductive 
to endow the strain sensor with large sensing range.

For the practical application, excellent stretching-releasing 
performance is an essential characteristic that profoundly 
affects the stability and long-term durability of strain sen-
sor. As shown in Figs. 2a and S2, the maximum stress keeps 
almost constant with a slight decrease of 4.5% over 500 
cycles, and the energy loss coefficient displays an obvious 
decrease in the initial several cycles and then tends to be 
stable at 6.5% in the subsequent cycles. Meanwhile, it also 
exhibits a stable plastic deformation of 1.96% after a slight 
increase process. All these can be ascribed to the highly 
elastic rubber that lays the foundation for stable response 
characteristics of the CHPs-based strain sensor. Furthermore, 

Fig. 1   a Schematic illustration showing the axon-like CHPs-based 
strain sensors and b its detail preparation process. c Optical picture of 
the filled gel particles in CHPs-based strain sensor. Optical pictures 

of CHPs-based strain sensor under d releasing and e stretching state 
(250% strain)
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the impedance value of the CHPs-based strain sensor with 
increasing ionic concentrations was tested to be 13,340 Ω, 
8045 Ω, 2614 Ω, and 836 Ω for CHPs-0.05, CHPs-0.15, 
CHPs-0.5, and CHPs-1, respectively (Fig. 2b). Such an 
ionic concentration-dependent electrical property is mainly 
ascribed to the construction of perfect ionic conductive 
pathway under a higher ionic concentration. The influence 
of ionic concentration on the impedance response perfor-
mance of the CHPs strain sensor was explored, and the rela-
tive impedance variation △Z/Z0 (△Z = Z − Z0, where Z is the 
impedance in the stretching state and Z0 is the initial imped-
ance) as a function of strain was depicted in Fig. 2c. Clearly, 
△Z/Z0 increases gradually during the stretching process up 
to 400% strain and then decreases gradually to the initial 
value during the releasing process for all CHPs-based strain 
sensors, and the obtained △Z/Z0–strain curves display good 
symmetry in one stretching-releasing cycle, demonstrating 
excellent resilience and recoverability, which is unlike the 
baseline drift of the DC resistance sensing behavior of the 

reported ionic hydrogel strain sensor. What is more, CHPs 
with a higher ionic concentration produces a smaller △Z/Z0 
under the same strain, indicating a lower sensitivity. Here, 
gauge factor (GF, the derivative of △Z/Z0 to the applied 
strain (ε)) is applied to evaluate the sensitivity of different 
strain sensors. As shown in Fig. 2d, all GFs show a linear 
increasing trend followed by a sharp increase after 350% 
strain. Specifically, the GF at 400% stain is calculated to be 
630.1, 346.2, 171.1, and 96.5 for CHPs-0.05, CHPs-0.15, 
CHPs-0.5, and CHPs-1, respectively.

To explain the strain sensing mechanism, the circuit struc-
ture and equivalent circuit of the CHPs-based strain sensor are 
analyzed and shown in Fig. 3a. Specifically, the circuit of the 
sensor mainly contains the ion transport impedance in filled 
CHPs (R), the charge-transfer resistance across the electrode-
CHPs interfaces (Rct), the electric double-layer capacitance at 
the electrode-CHPs interface (CPEedl), the induction capaci-
tance between the two electrodes (CPEic), and the diffusion 
resistance of ion/electron in the electrode surface oxide layer 

Fig. 2   a Cyclic tensile mechanical properties of CHPs-based strain sen-
sor. b Impedance values of CHPs-based strain sensors with different 
ion concentrations. c Impedance response of CHPs-based strain sensors 

with different ion concentrations during one stretching-releasing pro-
cess. d GF as a function of strain for CHPs-based sensor with different 
ion concentrations
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(Wurburg, W). After being stretched, as shown in the Nyquist-
plots of CHPs-0.05 under different strains (Fig. 3b), both 
the real and imaginary parts of impedance increase rapidly 
with increasing strain. Clearly, capacitance–resistance arcs 
in the high-frequency region and the diffusion slashes in the 
low-frequency region are observed for all Nyquist diagrams. 
In addition, the fitted curve of impedance spectra using the 
equivalent circuit are all in good coincidence with the test 
results, indicating that the established circuit model was con-
sistent with the real situation of the device.

According to the simulated circuit parameters of the 
CHPs-0.05-based strain sensor shown in Table S1, it can 
be seen clearly that R increase from 5.12 KΩ at 0% strain 
to 5.92 MΩ at 400% strain, showing a much higher vari-
ation (1155 at 400%) than the theoretical result (105.8 at 
400%) based on the resistivity model (Fig. S3). Hence, it 
can be concluded that the introduction of hydrogel particles 
which supplies amounts of interface between them plays 
an important impact on the ion transport behavior in filed 
CHPs, improving the strain impedance response of hydrogel-
based devices significantly. Besides, the increasing strain 
also leads to the reduction of CPEedl and the increase of Rct 
and W due to the reduction of hydrogel-electrode contact 
area caused by the necking of the rubber tube, while CPEic 

reduces based on the increased electrode spacing. Gener-
ally, the reduction of CPEedl and CPEic implies an increased 
impedance.

Furthermore, the variation of the real impedance (Z'), 
imaginary impedance (Z''), and phase angle of CHPs-0.05-
based strain sensor in a 400% stretching-releasing cycle 
are analyzed to support the above analysis. As depicted in 
Fig. 3c, Z′ represents the charge carrier transport impedance 
and Z″ represents the capacitive impedance increase simul-
taneously with the increasing strain. In the low strain region, 
the growth rate of Z′ is significantly faster than that of Z″ 
because of the good strain impedance response behavior of 
the filed CHPs and the necking of rubber tub is not obvi-
ous in this region, resulting in a gradual decreasing phase 
angle. In the high strain region, the necking of rubber tub 
becomes serious, the contribution of CPEedl and Rct, which 
describe the charge transfer behavior at the CHPs-electrode 
interfaces, to the total impedance increases significantly. 
As a result, Z″ displays a faster growth trend than that of 
Z′, and the phase angle becomes to be an increasing trend. 
Especially at the high strain range greater than 350%, the 
rapid increase of the Z″ significantly improves the response 
of the total impedance to strain, which is consistent with the 
mutation point of the linear growth of GF.

Fig. 3   a Schematic diagram showing the structure change of CHPs-
based strain sensor and the corresponding equivalent circuit model. b 
The Nyquist-plots of the CHPs-0.05-based strain sensor under differ-
ent strain amplitudes, the midpoint diagram of the small figure is the 

measured data, and the solid line is the fitting result of the model cir-
cuit. c The variation of the real impedance (Z'), imaginary impedance 
(Z'') and phase of the CHPs-0.05-based strain sensor during a 400% 
stretching-releasing cycle
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To evaluate the applicability of the prepared CHPs-based 
strain sensor, dynamic impedance response and sensing sta-
bility were systematically studied. As shown in Fig. 4a–c, the 
impedance response of CHPs-0.05-based strain sensor exhib-
its good discrimination and reproductivity for a wide strain 
ranging from 0.1 to 400%, and an ultralow limit of detection 
(LOD) of 0.1% was achieved, enabling it to monitor subtle 
and large deformation effectively. In addition, the response 
curves of the sensor keep excellent consistency under differ-
ent strain rates (Fig. 4d), such a good rate-independent sens-
ing behavior can ensure a precise and reliable detection when 
doing exercise. Furthermore, as depicted in Fig. 4e, the pre-
pared sensor exhibits stable sensing pattern without obvious 
signal drift upon 50% tensile strain at a rate of 2 mm/s in a 
period of 10,000 s, demonstrating good long-term durability 
of the CHPs-based strain sensor. More importantly, the rub-
ber tube can also effectively avoid the impedance response 
drift or failure caused by the dehydration of conventional 
hydrogel strain sensor, and the good durability of our pre-
pared CHPs-based sensor can also be well maintained after 
being stored at room temperature for 6 months (Fig. 4f). All 
these undoubtedly make our prepared sensor to be workable 
in various application scenarios.

Owing to the abovementioned excellent AC impedance 
sensing performances, the axon-like CHPs-based strain 
sensor can be coupled with the advanced wearable power 
generator such as triboelectric nanogenerator (TENG) 

and piezoelectric nanogenerator (PENG), which can pro-
vide weak alternating excitation signals. As shown in 
Figs. S4 and S5, a simple and efficient detection circuit 
composed of TENG, CHPs-based strain sensor, regulated 
diodes and ammeters is constructed, where the alternat-
ing current flowing through the sensor is inversely pro-
portional to the recorded impedance sensing signal. As 
shown in Fig. 5a–d, CHPs-based strain sensor driven by 
TENG is employed to detect the elbow joint bending at 
0°, 45°, 90°, and 135°, respectively. The strain sensor is 
stretched when the elbow joint of volunteer is bent, result-
ing in an increased impedance, and the alternating current 
through the device decreases obviously. The peak current 
response peak decreases monotonously as the bending 
angle increases, indicating that bending of elbow joint can 
be accurately tracked. Meanwhile, the response pattern 
also displays excellent stability and repeatability in the 
continuous interactive transformation of different elbow 
bending states (Fig. 5e–i and Video S1). As revealed in 
Fig. 5j, the wearable CHPs-based strain sensor is fixed on 
the volunteer’s chest to detect human breathing, which is 
a significant physiological signal. It can be seen in Fig. 5k 
and Video S2 that shallow breathing and deep breathing 
are clearly discriminated from their different sensing 
patterns, implying the great potential application of the 
CHPs-based strain sensor to be applied for the real-time 
monitoring of apnea.

Fig. 4   Cyclic impedance response of CHPs-0.05-based strain sensor under a, b, c different strain amplitudes and d different strain rates. Cyclic 
impedance sensing stability of e CHPs-0.05-based strain sensor and f after being stored for 6 months at room temperature
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4 � Conclusion

In summary, high-performance axon-like CHPs-based 
strain sensor was fabricated using CHPs as the core sens-
ing medium, rubber tube as the elastic cortex substrate, and 
stainless steel as the electrode. The effect of ionic concen-
tration on the impedance sensing behavior of the sensor was 
first investigated, the obtained impedance variation–strain 
curves of the sensor with different ionic concentrations dis-
played good symmetry in one stretching-releasing cycle, 
and a higher ionic concentration can lead to a lower sensi-
tivity. To explain the impedance sensing mechanism of the 
sensor, an equivalent circuit model was built, and the vari-
ation of ion transport impedance and electric double-layer 
capacitance at the electrode-CHPs interface during the ten-
sion process were verified to be the internal sensing mecha-
nism. Besides, the dynamic impedance response behavior 
of our prepared CHPs-based strain sensor also exhibited 
excellent stability and good consistency with the strain 
under different strain amplitudes and rates, which is unlike 
the baseline drift of the DC resistance sensing behavior of 

the reported ionic hydrogel strain sensor. What is more, the 
special skin–core structure of the strain sensor can effec-
tively solve the dehydration problem and poor mechani-
cal property of hydrogel, and the amounts of interfaces 
between adjacent CHPs are also beneficial for improving 
the impedance responsivity. Finally, the CHPs-based strain 
sensor powered by the advanced wearable power generator 
of TENG also displays great potential application for real-
time human motion and health monitoring.
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Fig. 5   Response behavior of CHPs-based strain sensor powered by 
friction power generation device to detect the human movements. a–d 
Current response of elbow joint bending at 0°, 45°, 90°, and 135°. e 

Current response of elbow in continuous motion under different bend-
ing states. f–i Digital photos of elbow joint bending at 0°, 45°, 90°, 
and 135°. j Digital images and k current response of human breath
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