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Abstract
Herein, using 1, 3 indandione and three thiophene unit by Suzuki coupling reaction, small organic oligomer–based indandione 
derivative, 2-(5″-hexyl-[2,2′:5′2″ terthiophen]-5-yl) methylene)-1H-indene-1,3(2H) dione oligomer (HTD) was synthesized. 
A functional and highly effective nanocomposite based on the synthesized HTD oligomer and graphene oxide (GO) was 
further synthesized and utilized to fabricate high-sensitive and selective chemical sensor. The synthesized HTD@GO func-
tionalized nanocomposites were further examined by several techniques and finally coated on the glassy carbon electrode 
(GCE) to fabricate the chemical sensor. Due to the synergistic impacts of HTD oligomer and GO, the functionalized HTD@
GO nanocomposite exhibited outstanding physiochemical, structural, and surface characteristics. Thus, using an electro-
chemical method, the HTD@GO/GCE sensor probe demonstrated the outstanding simultaneous trace detection of heavy 
metals such as  Cr2+ and  Cu2+ ions. The HTD@GO/GCE sensor probe revealed a strong selectivity towards  Cr2+ and  Cu2+ 
ions when compared to other metal ions  (Al3+,  Zn2+,  K+,  Mn2+). Importantly, the HTD@GO/GCE-based sensor exhibited 
relatively good dynamic linear ranges of 1–100 µM and detection limit values of ~3.65 μM and ~2.25 μM, respectively, for 
trace  Cr2+ and  Cu2+ ions. The HTD@GO/GCE sensor probe has low relative standard deviations (RSDs) of ~10% and ~6.4% 
for  Cr2+ and  Cu2+ ions, respectively, as suggested by the repeatability test. Analyzing actual water samples was also used to 
test the reliability of the functionalized nanocomposite sensor.
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1 Introduction

Organic semiconducting or electronic materials remain of 
vital interest in the field of electrochemistry for their flex-
ibility in chemical and electrochemical behavior. Electro-
chemical sensors are becoming popular, owing to their good 
detection performances, ease of operation, less expensive, 
fast, and selective analytic technique [1]. The sensing per-
formance is highly influenced by the electrode materials for 
enhancing the catalytic effects and elimination of interfer-
ers; thus, it is of great importance to design new electrode 
materials. For developing electrode materials, we can hardly 
ignore conjugated organic semiconductors due to their high 
electrical conductivity, highly efficient, tailorable charge 
transport characteristics, and rapid signal transduction [2–6]. 
Due to associate π-conjugation in the backbone of conju-
gated organic semiconductors [7, 8], they exhibit a direct 
interaction with the analyte in a redox process and thus, 
help in increasing the selectivity and sensitivity. Park et al. 
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fabricated chromium (VI) sensor based on catalytic reduc-
tion using the nanoporous layer of poly (aminopyrimidyl-
terthiophene)/AuNi composite and reported the detection 
limit of 0.25 ± 0.05 ppb [9]. Shim and co-workers devel-
oped chronocoulometric sensor for heavy metal ions using 
a diaminoterthiophene modified electrode doped with gra-
phene oxide [10]. In another report, Lee and his research 
group compared enzymatic and non-enzymatic glucose 
sensors based on hierarchical Au-Ni alloy with conductive 
polymer. The linear range of enzymatic sensor was attained 
from 1 μM–30 mM with a detection limit of 0.29 μM [11]. 
In search of important findings related to conjugated organic 
semiconductors, this work reports the synthesis of indandi-
one oligomer as electrode material. Our synthetic strategy 
is to design a small molecule semiconductor, 2-(5″-hexyl-
[2,2′:5′2″ terthiophen]-5-yl) methylene)-1H- indene-1,3(2H) 
dione, HTD, comprised of 1, 3 indandione and three thio-
phene (3 T) unit containing one hexyl side chain. In synthe-
sized HTD, hexyl side chain not only enhances the solubility 
in common organic solvents but also helpful for molecular 
packing, improves the charge transport properties, and sup-
ports the formation of excellent thin films [12].

Rapid industrialization has led to the release of heavy 
metals ions such as  Cd2+,  Pb2+, and  Cu2+ ions in wastewater. 
These highly toxic and non-degradable heavy metals are not 
only imposing threats to the environment but also destruct-
ing the health of living beings [13–16]. The intake of heavy 
metal by the human body, even at trace concentrations, 
might cause irreversible damage to human health [17–20]. 
Averting the harm of heavy metal ions to the environment 
and humans, it is quite demanding to develop a direct and 
highly sensitive determination method in monitoring the 
contamination. Among the detection methods, conventional 
analytical techniques such as atomic absorption spectros-
copy (AAS), inductively coupled plasma atomic emission 
spectroscopy (ICP-AES), inductively coupled plasma mass 
spectrometry (ICP-MS), and hyper-Rayleigh scattering, 
fluorescence detection [21, 22] are largely explored but 
despite of exhibiting high sensitivity and reproducibility; 
the implementation of these techniques is expensive which 
restricts their usage [23]. Moreover, most of the determina-
tion methods are focused on single ion detection, and thus, 
simultaneous detection of heavy metal ions is challenging 
due to mutual interference between heavy metal ions, the 
formation of intermediate alloys, and competitive adsorp-
tion on active sites [24–26]. Currently, square wave anodic 
stripping voltammetry (SWASV), one of the electrochemical 
methods, displays impressive ability of simultaneous deter-
mination of trace heavy metal ions, shows excellent sensi-
tivity, low detection limits, portable, and of cheap cost [27, 
28]. Armstrong et al. developed bismuth-based electrode 
for the stripping analysis of heavy metal ions and obtained 
a high sensitivity with low detection limits of ~93 ng  L−1 

and ~54 ng  L−1 for Pb (II) and Cd (II), respectively [29]. 
Wang and co-workers established simultaneous detection 
of three main heavy metal ion pollutants  (Cd2+,  Pb2+, and 
 Cu2+ ions) with improved reproducibility and reliability 
using SWASV method [30]. Simultaneous detection of  Cd2+, 
 Cu2+,  Hg2+, and  Pb2+ ions with low detection limits and 
wide dynamic ranges was performed by differential pulse 
voltammetry (DPV) measurements [31]. Suvina et al. stud-
ied the formation of novel hydrogels of conjugate polymer 
polypyrrole (PPy) and reduced graphene oxide (rGO) for 
the simultaneous detection of four different heavy metals 
ions such as  Cd2+,  Pb2+,  Cu2+, and  Hg2+ [32]. A variety 
of electrode surface modifications have been explored for 
increasing the sensing performances. One common approach 
of modifying the electrode surface is using graphene oxide 
(GO) due to the high specific surface area, chemical sta-
bility, high π-conjugation, and hydrophilic properties [33, 
34]. The aim of this research work is the modification of 
GCE through the functionalization of indandione oligomer 
(HTD) with GO. The presence of π-bond in HTD oligomer 
supports the surface adsorption of GO due to π–π* stacking 
interactions, hydrogen bond, and Vander Waals interactions 
[35]. Herein, the incorporation of carbonaceous material to 
HTD oligomer can improve the electroanalytical qualities of 
the system through an increase in the surface area and can 
improve the mass transport of the analyte. Moreover, the 
properties like electrical conductivity and dispensability are 
also improved due to the synergistic effect of HTD oligomer 
and GO. To the best of our knowledge, it is the first report of 
sensitive and selective simultaneous detection of  Cr2+ and 
 Cu2+ ions with HTD@GO/GCE sensor probe by a simple 
electrochemical method at room conditions.

2  Experimental section

2.1  Synthesis of 2‑(5″‑hexyl‑[2,2′:5′2″ 
terthiophen]‑5‑yl) methylene)‑1H‑ 
indene‑1,3(2H) dione (HTD)

HTD oligomer was synthesized by the simple coupling reac-
tion using 1, 3 Indandione (1) and 2-(5-brmothiophen-2-yl)
methylene)-1H-indene-1,3(2H)-dione (2) [36], as illustrated 
in scheme 1 (supporting information). The coupling reac-
tion for HTD oligomer was obtained by mixing (2) (0.35 g, 
1.09 mmol), 2-(5′-hexyl-[2, 2′-bithiophen]-5-yl)-4, 4, 5, 
5-tetramethyl-1, 3, 2-dioxaborolane (0.53 g, 1.42 mmol), 
and 5 mol % Pd(PPh3)4 in anhydrous toluene  (C7H8, 20 ml, 
Sigma Aldrich) and stirred in a round bottom flask. After 
that, potassium carbonate  (K2CO3, 2 M, Sigma Aldrich) in 
5 ml of deionized (DI) water was introduced into the reac-
tion mixture, and refluxed at 110 °C for 24 h under argon 
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atmosphere. After completion, the cooled reaction mixture 
was quenched with DI water, and sequential washing with 
brine and DI was performed. An organic phase was then 
extracted with dichloromethane (DCM) and dried over 
magnesium sulfate  (MgSO4, Sigma Aldrich). The resultant 
solution was filtered, evaporated in vacuum under reduced 
pressure and the obtained residue was further purified by 
flash column using (dichloromethane (DCM): heaxane 
 (C6H14), 1:4 v/v) and recrystallized (DCM: EtOH, 1: 5 v/v) 
(yield 67.62% 0.36 g). 1H NMR (500 MHz,  CDCl3, ppm) 
δ: 7.91 (m, 2H), 7.85 (s, 1H), 7.80 (d, J = 4.1 Hz, 2H), 7.73 
(m, 2H), 7.32 (d, J = 3.9 Hz, 1H), 7.20 (d, J = 4.0 Hz, 1H), 
7.04–7.09 (dd, J = 4.1 Hz, 3.7 Hz 2H), 6.68 (d, J = 3.6 Hz, 
1H), 2.78 (t, J = 7.5 Hz, 2H), 1.65 (m, 4H), 1.34 (m, 4H), 
0.89 (t, J = 6.9 Hz, 3H). 13C NMR (100 MHz,  CDCl3, ppm) 
δ: 190.42, 189.82, 150.36, 146.92, 143.81, 142.04, 140.54, 
140.41, 135.93, 135.83, 135.01, 134.80, 134.24, 133.98, 
127.35, 125.22, 124.52, 124.40, 124.16, 123.46, 122.99, 
122.82, 31.65, 31.60, 30.32, 28.85, 22.67, 14.18. MS: m/z 
calc. for  [C28H24O2S3 +  H]+: 489.68; found: 489.56.

2.2  Fabrication of sensor probe

GO was prepared according to modified Hummer’s method 
using the graphite powder [37]. Optimized solution of HTD 
oligomer (10 mg) with different amounts of GO (0.2 mg, 
0.5 mg and 1 mg) were dispersed in 1 ml chlorobenzene 
solvent and drop casted on cleaned GCE, followed by dry-
ing in air oven at 70 °C. Herein, prior to the deposition, 
GCE was cleaned by using wet soft polishing cloth with 
alumina powder (0.5 and 0.03 mm, successively), followed 
by cleaning with DI water and ethanol. Synthesized HTD@
GO functionalized nanocomposite was used as sensor probe 
for the simultaneous detection of  Cr2+ and  Cu2+ ions.

2.3  Characterizations of HTD oligomer and HTD@
GO functionalized nanocomposite

The configuration and structure of HTD oligomer were 
confirmed by nuclear magnetic resonance spectroscopy 
with (1HNMR, JEOL FT-NMR) in deuterated chloroform 

Fig. 1  FESEM images of a HTD oligomer and HTD@GO functionalized nanocomposite with b 0.2 mg GO, c 0.5 mg GO, and d 1 mg GO
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 (CDCl3) solvent at 600 MHz for 1H and 100 MHz for 13C13. 
High-resolution mass spectrometry was used to support the 
synthesis of HTD oligomer. The presence of bond structures 
was examined by Fourier transform infra-red spectroscopy 
by using JASCO FTIR-4100 Japan. The morphological 
observations of as-synthesized HTD@GO functionalized 
nanocomposite were observed by field emission scanning 
electron microscope (FESEM, Hitachi S-4700). The absorp-
tion and photoluminescence (PL) spectrum of HTD@GO 
functionalized nanocomposite were recorded by UV–Visible 
spectrophotometer (JASCO, V-670) and FP-6500 (JASCO) 
respectively. The structural modifications of HTD@GO 
functionalized nanocomposite were studied by Raman scat-
tering (Raman microscope, Renishaw). X-rays photoelectron 
spectroscopy (XPS) was performed by using AXIS-NOVA 
CJ109, Kratos Inc., ranges 0 − 800 eV for surface composi-
tion and the surface interaction of HTD@GO functionalized 
nanocomposite. The cyclic voltammetry (CV) experiments 

were conducted in 0.1 M phosphate buffer solution (PBS, 
pH = 7) at the scan rate of 50 V/s, using WPG100 electro-
chemical measurement system which was carried out using 
10 ml electrochemical cell comprising of three-electrode 
system including GCE working electrode, Pt wire as counter 
electrode and Ag/AgCl reference electrode.

3  Results and discussion

3.1  Formation and morphological studies of HTD@
GO functionalized nanocomposite

The formation of HTD oligomer is confirmed by various 
spectroscopic characterizations such as 1HNMR, 13CNMR, 
FTIR, and high resolution mass spectrometry (HRMS), 
as given in supporting information (SI). The morpholo-
gies of HTD oligomer and HTD@GO functionalized 

Fig. 2  UV–vis absorption spectra of a HTD oligomer, HTD@GO 
functionalized nanocomposite; b HTD@GO functionalized nanocom-
posite with various GO concentrations; c photoluminescence (PL) 

spectra of HTD oligomer, HTD@GO functionalized nanocompos-
ite; and d HTD@GO functionalized nanocomposite with various GO 
concentrations
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nanocomposite are investigated by FESEM analysis. Fig-
ure 1a shows irregular small rods like morphology of HTD 
oligomer which is the usual morphology of organic small 
molecule [38]. From Fig. 1b, c, HTD@GO functionalized 
nanocomposites show uniformly mixed morphology of HTD 
oligomer and GO. Moreover, a high amount of GO (1 mg) 
in HTD@GO functionalized nanocomposite, as depicted 
in Fig. 1d, causes an agglomeration of rods and GO which 
results in large aggregates. Thus, GO (0.5 mg) in HTD@
GO nanocomposite is the optimized ratio for obtaining the 
uniform and well-mixed thin film. Herein, HTD oligomer 
might form the bond with GO, which will be later confirmed 
by XPS studies.

3.2  Optical properties of HTD@GO functionalized 
nanocomposite

UV–Vis absorption was recorded quantitatively in chloro-
form solution for HTD oligomer and HTD@GO functional-
ized nanocomposites. From Fig. 2a, the synthesized HTD 
oligomer presents an absorption band at ~355 nm, referring 
to π-π* transition, whereas the dominant absorption band 
at ~515 nm indicates n-π* transitions of HTD oligomer [39].

However, HTD@GO functionalized nanocomposite dis-
plays three absorption bands at ∼251 nm, ∼355 nm and 
∼525 nm, corresponding to the characteristics bands of 
GO and HTD oligomer, respectively [40]. Significantly 
for HTD@GO functionalized nanocomposite, a slight shift 
of absorption band towards a higher absorption edge indi-
cates π–π* interaction between HTD oligomer and GO 
[41]. From Fig. 2b, GO (0.5 mg) in HTD@GO functional-
ized nanocomposite shows the highest absorption intensity 
as compared to other ratio of HTD@GO functionalized 
nanocomposites, which again suggests a good mixing of 

GO and HTD oligomer. Furthermore, PL spectra of HTD 
oligomer and HTD@GO functionalized nanocomposites 
are examined using an excitation wavelength of ~350 nm, 
as shown in Fig. 2c, d. HTD oligomer displays a promi-
nent emission PL peak centered at ~635 nm in the green 
region due to the benzenoid groups of HTD oligomer [36]. 
Referring to HTD@GO functionalized nanocomposite, a 
considerable shift from 635 to ~656 nm with prominent PL 
quenching is observed. This quenching describes the gen-
eration of singlet excitons [42]. The quenching is intensi-
fied after an interaction of GO with HTD oligomer. HTD@
GO functionalized nanocomposite with GO (0.5 mg) dis-
plays the maximum quenching, suggesting the emission 
process of conjugated organic semiconductors like HTD 
oligomer.

3.3  Structural characterization of HTD@GO 
functionalized nanocomposite

HTD oligomer and HTD@GO functionalized nanocom-
posite are further analyzed by FTIR spectra, as shown 
in Fig.  3a. Herein, HTD oligomer shows C-H stretch-
ing (aliphatic) at ~2922 and ~2861  cm−1, C = O stretching 
at ~1716 and ~1672   cm−1, C = C stretching is displayed 
at ~1576   cm−1, and C = C (aromatic) stretching appears 
at ~1432  cm−1, and H-C-H bonding are shown by the peaks 
at ~ 1380 and ~1337  cm−1 [43]. The other peak for C-S-C 
bending is visible at ~1196  cm−1, and C-S stretching appears 
at ~97 and ~726  cm−1 [44]. However, in HTD@GO func-
tionalized nanocomposite, IR bands are shifted negatively 
to ~1708  cm−1, ~1568  cm−1, and ~1231  cm−1 indicating the 
linkage between GO and HTD oligomer. Considerably, the 
marginal shifting in IR band at ~1568  cm−1 and ~1708  cm−1 
again supports the interaction between GO and HTD 

Fig. 3  a FTIR spectra of HTD oligomer, HTD@GO functionalized nanocomposite, and b Raman spectrum of HTD@GO functionalized nano-
composite with 0.5 mg GO
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oligomer via π-π* interactions and partial hydrogen bonding 
[45]. The structural behavior of HTD@GO functionalized 
nanocomposite is further characterized by Raman spectros-
copy, as illustrated in Fig. 3b. Typically, GO Raman bands 
are appeared at ~1356  cm−1 and ~1595  cm−1 which normally 
refer to D band or K-point phonons of  A1g symmetry and 
Raman active G band of  sp2 hybridized carbon (the  E2g pho-
nons), respectively [46, 47]. However in Fig. 3b, Raman 
bands for D and G in HTD@GO functionalized nanocom-
posites are visibly shifted from ~1356  cm−1 to ~1347  cm−1 
and ~1595   cm−1 to ~1540   cm−1, favoring the interaction 
between HTD oligomer and GO, in particular specifying the 
interaction between C-S+.of HTD oligomer and carboxylate 
group of GO [50]. These results are in excellent agreement 
with the FTIR results.

XPS measurements are performed for HTD@GO 
functionalized nanocomposite to investigate the chem-
ical states of O 1 s, S 2p, and C 1 s. The survey XPS 

spectrum (Fig. 4a exhibits three binding energies peaks 
at ~ 284.5  eV, ~ 164  eV, and ~ 520.2  eV, representing 
to C 1 s, S 2p, and O 1 s peaks, respectively. To define 
the detailed structural interaction and bonding between 
HTD oligomer and GO, a high-resolution C 1 s, S 2p, 
and O 1 s XPS are deconvoluted. Figure 4b shows C 1 s 
XPS spectra of HTD@GO functionalized nanocomposite 
with binding energies positioned at deconvoluted peaks 
at ~289.1, ~286.3, ~283.4, and ~284.8  eV, referring to 
−O–C = O, C–O, C–S, C–C, and C–H bonds [48, 49]. In 
Fig. 4b, the binding energy at ~284.8 eV represents  sp2 
carbon skeleton of C–C bond in GO and C–C of the ben-
zonoid ring in HTD oligomer, showing the bonding of 
GO–S (thiophene unit in HTD oligomer) which confirms 
the intermixing of C–C aromatic bond of GO and HTD oli-
gomer. The deconvoluted O1s XPS of HTD@GO function-
alized nanocomposite exhibits three binding energy peaks 
with one center binding energy peak, as shown in Fig. 4c. 

Fig. 4  a Survey, b C 1 s, c O 1 s, and d S 2p XPS spectra of HTD@GO functionalized nanocomposite
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The binding energy positioned at ~530.9 eV is normally 
assigned to C = O or C–OH group in carbon-based materi-
als [50]. The binding energy at ~531.8 eV could be attrib-
uted to C = O and O = C–O− functional groups in HTD@
GO functionalized nanocomposite, while a higher binding 
energy peak at ~ 532.4 eV corresponds to the bound water 
molecules [51]. Figure 4d displays S 2p XPS spectrum 
of HTD@GO functionalized nanocomposite which is 
consisted of two binding energies at ~165.1 eV (S  2p1/2) 
and ~163.8 eV (S  2p3/2), resulted from C–S bond [52]. The 
appearance of binding energy at ~162.5 eV might be origi-
nated from thiophene (S) of HTD oligomer. Importantly, 
the position of binding energy is slightly shifted towards 
higher binding energy as compared to S 2p XPS of GO–S 
bond [53], suggesting the interaction of sulfur in HTD oli-
gomer to carboxylate group of GO, which partially forms 
the hydrogen bonding.

3.4  Electrochemical characterization of HTD@GO/
GCE sensor probe

3.4.1  Selectivity of metal ions detection through CV 
measurements

The selectivity of HTD@GO/GCE sensor probe towards 
heavy metal ion detection is determined by CV measure-
ments at scan rate of 50 mV/s. Herein, the supporting elec-
trolyte of 0.1 M PBS solution is used in different metal ion 
solutions of  K+,  Al3+,  Mn2+,  Zn2+,  Cu2+, and  Cr2+ ions. 
Firstly, CV plots of bare GCE, GO/GCE, and HTD@GO/
GCE in 0.1 M PBS electrolyte with 0.05 M KCl are meas-
ured to explain the sensing behavior of HTD@GO func-
tionalized nanocomposite, as shown in Fig. 5a. A weak 
current response is recorded with bare GCE whereas, a 
slightly higher response is observed for GO/GCE. Herein, a 

Fig. 5  a CV plots of bare GCE, GO/GCE, and HTD@GO/GCE sen-
sor probe in 0.1  M PBS electrolyte; b CV responses using HTD@
GO/GCE sensor probe towards the determination of 6 metal ions viz 
 K+,  Al3+,  Mn2+,  Zn2+,  Cu2+, and  Cr2+ ions at the uniform concen-

tration of 1 μM; c simultaneous detection of  Cr2+ and  Cu2+ ions by 
SWASV using same electrode in 0.1 M PBS; and d CV plots of  Cr2+ 
and  Cu2+ ions measured with HTD@GO/GCE sensor probe
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low current response in bare GCE shows the poor conduc-
tivity of GCE electrode and the slightly improved current 
response with GO/GCE is related to the presence of GO 
which has considerably increased the number of active sites 
over the electrode surface. As seen in Fig. 5a, a high current 
response for HTD@GO/GCE sensor probe is observed with 
the existence of significant oxidation current peak. Herein, 
a large specific surface area of GO, well dispersion of HTD 
oligomer into GO (as confirmed from FESEM results), and 
a good bonding between HTD oligomer and GO (corrobo-
rated from XPS results) collectively promoted the electron 
transfer rate and improved the surface properties of HTD@
GO/GCE sensor probe. In general, the modification of GO/
GCE surface with conjugated organic semiconductors is a 
proven strategy to improve the current response character-
istics of the fabricated sensor by improving the conductivity 
of the electrode. In our case, the improvement of HTD@GO/
GCE sensor probe is realized via a charge hopping transport 
mechanism of HTD oligomer through the depletion of the 
charge injection barrier. Figure 5b shows the CV responses 
using HTD@GO/GCE sensor probe towards the determina-
tion of 6 metal ions viz  K+,  Al3+,  Mn2+,  Zn2+,  Cu2+, and 
 Cr2+ ions at the concentration of 1 μM. Among of all ions, 
a strong anodic current response for  Cr+2 ions at − 0.31 V 
is observed, whereas  Cu+2 ion also shows a strong anodic 
current response at 0.21 V.

These responses indicate that HTD@GO/GCE sensor 
probe is promising for the detection of  Cr+2 and  Cu+2 ions 
in 0.1 M PBS electrolyte. The enhancement of the sensing 
signal for  Cr+2 and  Cu+2 ions can be ascribed to the factors 
of (i) HTD oligomer owns negative charges due C–S− and 

C =  O−, causing HTD@GO/GCE sensor probe to adsorb 
more target ions and receive stronger signal secondly, and 
(ii) GO moieties provide more effective active area for the 
nucleation due to its large surface-to-volume ratio [54]. To 
further verify the feasibility of an electrochemical method 
for the simultaneous detection of metal ions, the presence 
of  Cr+2 and  Cu+ ions is detected by stripping voltammetry 
using same electrode in 0.1 M PBS (pH = 7), as depicted 
in Fig. 5c. The peak potentials for  Cr+2 and  Cu+ ions are 
observed at ~ −0.29 V and ~0.24 V, respectively. Moreover, 
the peak intensity of  Cr2+ ion is lower than that of  Cu2+ 
peak detection intensity in the supporting electrolyte. This 
reduction of stripping signal might due to the formation 
of intermetallic compounds and the existence of competi-
tion between the analytes and the interfering ions for the 
active sites of HTD@GO/GCE sensor probe [55]. These 
results indicate that the fabricated HTD@GO/GCE sen-
sor probe is capable of simultaneous detection of multiple 
heavy metal ions (such as  Cr+2 and  Cu+ ions) with a high 
sensitivity.

The suggested mechanism for the determination of  Cr+2 
and  Cu+ ions is shown in Fig. 6. As described above, the 
combination of HTD oligomer with advantageous large 
surface area of GO considerably provides a large amount 
of active sites as well as improves the electrical conductiv-
ity of electrode, which are necessitated for high adsorption 
of heavy metal ions (in our case,  Cr+2 and  Cu+ ions) and 
enhances the electron transfer properties of the electrode. 
Thus,  Cr+2 and  Cu+ ions easily interact with the surface 
of HTD@GO/GCE sensor probe, resulting in increasing 
the current and conductance.

Fig. 6  Proposed mechanism 
for  Cr+2 and  Cu+ ions detection 
over HTD@GO/GCE sensor 
probe
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3.4.2  Sensitivity, reproducibility, and stability of HTD@GO/
GCE sensor probe

The details of sensing properties of HTD@GO/GCE sensor 
probe for  Cr+2 and  Cu+ ions have been further analyzed by 
measuring the series of CV plots using different concen-
trations of ions (1–100 μM) in PBS electrolyte. Figure 7a 
shows the CV plots of HTD@GO/GCE sensor probe for dif-
ferent concentrations of  Cr2+ ions in 0.1 M PBS electrolyte. 
The anodic current at −0.31 V gradually increases with an 
increase of  Cr2+ ions concentration, indicating an elevation 
in the ionic strength of an electrolyte. From Fig. 7b, a similar 
behavior of HTD@GO/GCE sensor probe is recorded for 
the detection of  Cu2+ ions, in which an increase of  Cu2+ ion 
concentration leads to the continuous enhancement in an 
anodic current. Thus, an anodic current in CV measurements 
with different ion concentration prominently explains the 
sensing characteristics of HTD@GO/GCE sensor probe for 
the determination of  Cr+2 and  Cu+2 ions.

The calibration plots of anodic current responses from 
CV measurements for the determination of  Cr+2 and  Cu+2 
ions are plotted in Fig. 7c, d. The sensing parameters such 
as sensitivity, limit of detection (LOD), linear range, and 
regression coefficient for the detection of  Cr+2 and  Cu+2 ions 
are summarized in Table 1. Calibration plots for  Cr+2 and 
 Cu+2 ions present a linearity of current with the increase of 
ion concentrations. Linear dynamic for  Cr+2 and  Cu+2 ions 
are observed as ~1–100 μM, whereas reasonably good LODs 
of ~ 3.65 μM and ~ 2.25 μM are estimated for  Cr+2 and  Cu+2 
ions, respectively. The results obtained by HTD@GO/GCE 

Fig. 7  CV plots of HTD@GO/GCE sensor probe for different concentrations of a  Cr2+ ions and b  Cu2+ ions in 0.1 M PBS electrolyte, and the 
calibration plot of anodic current responses from CV measurements for the determination of c  Cr2+ and d  Cu2+ ions

Table 1  Sensing parameters of HTD@GO/GCE sensing probe for the 
determination of  Cr2+ and  Cu2+ ions

Ions Dynamic range LOD (μM) R2 Sensitivity (μA 
μM−1  cm−2)

Cr+2 1–100 µM 3.65 0.90113 483.3
Cu+2 1–100 µM 2.25 0.95867 101.47
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sensor probe are compared with different electrochemical 
systems for the determination of metal ions, as discussed 
in Table 2.

The reproducibility of HTD@GO/GCE sensor probe 
is studied by obtaining the sensing responses from six 
electrodes prepared under similar conditions, as shown in 

Table 2  Comparison of sensing performances with other reported chemical sensors

Electrode Target metal Dynamic range LOD R Ref

4-Amino-6-hydroxy-2-mercaptopyrimidine Cu(II) 10 pM–0.1 mM 8 ×  10−9 M 0.9971 [56]
Poly(3, 4-ethylenedioxythiophene) (PEDOT) Pb(II) 0.1 mM–0.4 M 0.19 nM 0.998 [57]
N,N-dichromone-p-phenylenediamine/ carbon paste electrode Cu(II) 0.1–10 nM 0.096 nM 0.999 [58]
Polyaniline/glassy carbon electrode Cd(II) 300 nM–2 μM 130 nM 0.974 [59]

Pb(II) 300 nM–2 μM 100 nM 0.989
Polyethyleneimine (PEI) decorated black phosphorus (BP) nanocomposite Cu(II) 0.25–91 μM 0.02 μM 0.994 [60]
MnS/Ag-polyvinylpyrrolidone nanocomposite Hg(II) 1–150 nM – 16 nM [61]
Diethyl thieno[2, 3-b]thiophene-2, 5-dicarboxylate (DETTDC2)/glassy 

carbon electrode
Hg(II) 0.1 nM–0.1 M 12.80 pM 0.9979 [62]

Poly(L-glutamic acid)/graphene oxide composite Cu(II) 250 nM–5.5 μM 24 nM 0.995 [63]
Cd(II) 15 nM 0.982
Hg(II) 32 nM 0.993

Graphene/brominated white PANi flakes Pb(II) 0.01–0.18 μM 0.0073 μM – [64]
Cd(II) 0.01–0.23 μM 0.0065 μM –

Fig. 8  Reproducibility test of HTD@GO/GCE from six electrodes for a  Cr2+, b  Cu2+ ions, and c stability test of HTD@GO/GCE sensor probe 
for 30 days
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Fig. 8a, b. The relative standard deviations (RSDs) of  Cr+2 
and  Cu+2 ions are calculated to be ~ 10%, ~ 6.40%, respec-
tively. The obtained result indicates that HTD@GO/GCE 
sensor probes vary less from standard values, and therefore, 
this is highly reproducible and reliable sensor electrode for 
the detection of  Cr+2 and  Cu+2 ions. To explore its stabil-
ity, the sensing behavior of fabricated HTD@GO/GCE sen-
sor probe was tested for 30 days. Figure 8c presents that 
sensitivity of the sensor maintains the values of ~ 92.5%, 
and ~ 91.4% for  Cr+2 and  Cu+2 ions, respectively, after 
30 days of checking, indicating a good stability of the devel-
oped electrochemical sensor.

3.4.3  Real samples analysis of HTD@GO/GCE sensor probe

To investigate the practical applicability of the fabricated 
sensor with HTD@GO/GCE sensor probe, the electrochemi-
cal performance for the determination of  Cr+2 and  Cu+2 ions 
(0.1 M PBS) is checked in real sample using tap water as 
supporting electrolyte, as shown in Fig. 9a, b. The anodic 
currents of  Cr+2 and  Cu+2 ions are weak in bare tap water 
sample, indicating that the concentrations of  Cr+2 and  Cu+2 

ions are lower at the potentials of ~0.31 V, and ~0.21 V. 
Moreover, as shown in Fig. 5c, the stripping peaks exhibit 
well-defined and well-separated signals for  Cr2+ and  Cu2+ 
ions, indicating that the HTD@GO/GCE sensor probe can 
simultaneously detect the target ions at such a low concen-
tration as 1 µM.

4  Conclusions

In this work, the planar 2-(5″-hexyl-[2,2′:5′2″ terthiophen]-
5-yl) methylene)-1H- indene-1,3(2H) dione oligomer (HTD) 
is synthesized by Suzuki-coupling reaction. Functionalized 
nanocomposite of HTD oligomer with graphene oxide (GO), 
HTD@GO, exhibits the synergic effects of HTD and GO as 
electrode material for the fabrication of a simple, reliable, 
and sensitive sensor to simultaneously detect the trace  Cr2+ 
and  Cu2+ ions. The covalently linked HTD oligomer with 
GO not only improves the conductivity, dispersion, and sur-
face area of HTD@GO functionalized nanocomposite, but 
also supports the diffusion and promotion of the electron 
transfer rate. Due to unique structural characteristics and 
good electrochemical performance of HTD@GO function-
alized nanocomposite, simultaneous detection of  Cr2+ and 
 Cu2+ ions with high sensitivity and reliability has been real-
ized. The practicality of our fabricated sensor is validated by 
the recovery test of target metal ions in tap water.
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