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Abstract
Herein, flexible and porous  Co3O4-carbon nanofibers  (Co3O4-CNFs) were fabricated by electrospinning technique combining 
with the followed carbonization process. The effects of material composition and calcination temperature on morphology, 
pore structure, and electrochemical properties of the  Co3O4-CNFs were systematically investigated. Results indicated that 
the obtained  Co3O4-CNFs exhibited high porosity, high mechanical strength, and superior electrical conductivity. Elec-
trochemical characterization results showed that the optimized  Co3O4-CNFs as binder-free electrodes exhibited a specific 
capacitance of 369 F  g−1 at the current density of 0.1 A  g−1. Even at a high current density of 2 A  g−1, the specific capaci-
tance still remained at 181 F  g−1, with the capacitance retention rate of 49%. Intriguingly, the prepared  Co3O4-CNF film 
could recover to its original state easily after folding for three times, indicating good mechanical flexibility for free-standing 
electrodes. Coupled with the excellent mechanical flexibility, high specific capacitance, and simple fabrication process, the 
flexible and free-standing  Co3O4-CNFs with hierarchical porous structure could be promising electrode materials for energy 
storage applications.
Flexible and porous  Co3O4-carbon nanofibers were prepared by electrospinning and carbonization,which can be used as 
free-standing electrodes for supercapacitors.
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1 Introduction

Much attention has been focused to supercapacitors (SCs) 
because of their fascinating power density, long life cycles, 
fast charge and discharge rates, and high efficiency [1, 
2]. However, the low energy-power ratio of SCs has been 

restricted to their applications. In recent years, numerous 
materials, such as carbonaceous materials [3, 4], metal 
oxides or hydroxides [5, 6], and conducting polymers [7, 
8], have been widely used in SCs. Among the electroactive 
materials,  Co3O4 has been extensively reported because of 
its high theoretical specific capacitance up to 3560 F  g−1, 
high redox performance, controllable size and shape, rela-
tively cost-effective, and widespread applications [9–12]. 
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Recently, much progress has been made in the development 
of energy storage device [13–17]. For example, Pal et al. 
have demonstrated a single-step solvothermal method to 
synthesize self-supported ultra-small  Co3O4 nanocubes over 
Ni foam, which exhibited pseudocapacitive performance of 
1913 F  g−1 at current density of 8 A  g−1 [18]. Jiang et al. 
reported a technique combining hydrothermal and calcina-
tion for the synthesis of two-dimensional  Co3O4 thin sheets, 
which showed a specific capacitance of 1500 F  g−1 at 1 A 
 g−1 [19]. Besides, the  Co3O4 has also widely been used 
as wave-absorbing material, as they have good impedance 
matching [20–24]. For example, the hierarchically porous 
Co/C nanocomposites were fabricated by freezing dry and 
carbothermic reduction process with excellent absorption 
performance of its minimum reflection loss could reach to 
34.2 dB, which was profit from the optimization of hier-
archical porous microstructures and impedance matching 
[25]. However, the low electrical conductivity and inferior 
rate capacity of  Co3O4 have greatly limited their practi-
cal application [26–28]. To address these drawbacks, the 
carbon-based  Co3O4 composites for SCs electrodes have 
been investigated in various forms [29–31].

Carbon matrixes, such as carbon nanotube (CNT), gra-
phene, and carbon nanofibers (CNFs), have been regarded 
as potential candidates for SC electrodes [32–34]. Recently, 
Zheng et al. constructed 3D hierarchical N-doped carbon-
based  Co3O4 nanopillar arrays as a binder-free electrode, 
which exhibited a maximum specific capacity of 978.9 F 
 g−1 at 0.5 A  g−1 [35]. Fan and co-workers reported the 2D 
thin  Co3O4 nanosheets anchored on 3D porous graphene/
nickel foam substrate through hydrothermal synthesis 
[36]. Because of the synergy of thin  Co3O4 nanosheets 
and conductive grapheme layer, the composites displayed 
a high specific capacitance of 3533 F  g−1 at a current of 
1 A  g−1. Besides, Su et al. prepared two-ply yarn SCs by 
electrochemical deposition of MnOx or  Co3O4 materials 
on CNT/stainless steel (SS), the  Co3O4/CNT/SS yarn elec-
trode exhibited volumetric capacitance of 82.94 F/cm3 at 
0.02 V/s [37]. Nevertheless, the complicated synthesis pro-
cess and high cost of graphene and CNT may prevent their 
widespread application in SCs [38]. Fortunately, CNFs have 
been scaled up to industrial production by electrospinning 
technique, with a much lower cost than graphene and CNT, 
which have high mechanical strength, excellent chemical 
resistance, and superior electrical conductivity [39–42].

Traditional CNFs are mostly made from polyacrylonitrile 
(PAN), in which the high cost and environmental concerns 
limit its extensive applications. As a green and sustainable 
material, lignin is regarded as one of the most attractive pre-
cursors for CNFs because of its high carbon content (up to 
60%) and aromatic monomers [43–53]. However, most of the 
lignin-based CNFs show lower mechanical strength as com-
pared to PAN-based CNFs [54–58]. Although lignin-based 

CNFs may not meet the high requirement standard for con-
struction materials, they can be promising electrode materi-
als for energy storage applications. In addition, it is reported 
that the flexibility and electrochemical performances of 
lignin-based CNFs can be improved by rational design of the 
porous structure [59–61]. For example, Liu et al. reported 
the fabrication of free-standing hierarchical porous CNFs 
films by a metal ion-assistant acid corrosion process [62]. 
Results indicated that the porous structure could increase ion 
transportation path and facilitate the accessibility between 
CNFs and electrolyte. Samuel and co-workers demonstrated 
the preparation of flexible core–shell SnOx/CNF composites 
using poly (methyl methacrylate) as pore-forming agent. It 
was found that the SnOx/CNF-based symmetric SCs exhib-
ited a specific capacitance of 289 F  g−1 at a scan rate of 
10 mV  s−1 [63].

Inspired by the above-mentioned studies, we propose 
to synthesize lignin-derived porous  Co3O4-CNFs by using 
electrospinning technique and the subsequent carboniza-
tion, in which the advantages of porous structure of CNFs 
with good mechanical performance, high theoretical spe-
cific capacitance of  Co3O4, and the low cost of lignin can 
be integrated. The surface chemistry, crystalline structure, 
and morphology of the as-produced  Co3O4-CNFs were 
characterized by FTIR, XPS, XRD, EDS, SEM, and TEM 
analyses. Moreover, the electrochemical behaviors of the 
 Co3O4-CNFs electrodes were measured by cyclic voltam-
metry (CV), galvanostatic charging-discharging (GCD), and 
electrochemical impedance spectroscopy (EIS) tests. This 
work will provide a facile and versatile strategy to prepare 
porous CNF-based composite electrode materials for high-
performance supercapacitors.

2  Experimental section

2.1  Materials

Cobalt nitrate hexahydrate, acetic acid, and N,N-dimethyl-
formamide (DMF) were purchased from Beijing Chemical 
Works. PAN (Mw = 150 000) and terephthalic acid (TPA) 
were bought from Macklin. Lignin (Mw = 10,000) was pur-
chased from Sigma-Aldrich. All chemicals used were ana-
lytical grades and utilized without further purification.

2.2  Synthesis of porous  Co3O4‑CNFs

A total of 0.50 g of PAN and 0.30 g of TPA were mixed 
and dissolved in 5 mL DMF at 60 °C forming a homogene-
ous colloidal solution. Meanwhile, 0.20 g lignin and 0.291 g 
cobalt nitrate hexahydrate were dissolved in the mixed solu-
tion of 0.5 mL acetic acid and 1 mL DMF. Then, the above 
two solutions were mixed together by stirring. The mixed 
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solution was transferred into a plastic syringe (10 mL) 
equipped with capillary needle (0.42 mm in diameter). The 
solution was electrospun at a feeding rate of 0.5 mL  h−1 
under high voltage of 20 kV. Then, the fibers were collected 
with an aluminum foil sheet, which distance between the 
needle and collector was 18 cm. The fibers were then dried 
in fume hood. Then, the dried nanofibers were thermosta-
bilized in tube furnace to 280 °C at 1 °C  min−1 and kept at 
280 °C for 2 h in air environment. Subsequently, they under-
went a pyrolysis process in tube furnace at three different 
temperatures, 700, 800, and 900 °C for 2 h in  N2 atmosphere 
with a heating rate of 3 °C  min−1. Finally, the carboniza-
tion nanofibers were annealed at 300 °C for 60 min in air to 
obtain  Co3O4 nanoparticles (NPs). The schematic illustra-
tion of the experimental process is shown in Scheme 1. The 
corresponding samples were labeled as  Co3O4-CNFs-700, 
 Co3O4-CNFs-800, and  Co3O4-CNFs-900, respectively.

2.3  Characterization

X-ray powder diffraction (XRD) detection was analyzed 
in the 2θ range from 10 to 80° on a Rigaku DMax-RB 
91–0459 diffractometer with Cu Ka radiation at a scan rate 
of 4°  min−1. The morphology of nanofibers was investigated 
by the high-resolution images, which were measured by 
FESEM (SU8010, Japan). Besides, the structures of CNFs 
were conducted by transmission electron microscopy (TEM, 
JEOL, JEM-1010). The X-ray photoelectron spectroscopy 
(XPS) date was performed on an ESCALAB 250Xi X-ray 
photoelectron spectroscope with a monochromatic Al Ka 
radiation. And the spectral elemental analysis was examined 
by EDS (Thermo Scientific attached with Hitachi S-4800 

operated at 15 kV). The pore structure of  Co3O4-CNFs was 
tested by  N2 adsorption/desorption isotherms using Belsorp-
max surface area detecting instrument. Thermogravimetric 
analysis (TGA) of the precursors was measured (SDT Q600) 
in air atmosphere with the temperature range of 30–600 ℃ at 
a heating rate of 10 ℃  min−1. FTIR spectra of lignin, precur-
sor, and CNFs were collected on Thermo Nicolet (Nicolet 
iN10) with a resolution of 4  cm−1. Raman spectroscopy was 
recorded from 100 to 2000  cm−1 using a LabRAM HR Evo-
lution by wavelength of 523 nm under ambient conditions.

2.4  Electrochemical measurement

Electrochemical properties were performed using CHI 660D 
electrochemistry workstation (Shanghai Chenhua Instru-
ment Co., China) in three-electrode setup, where CNFs were 
served as working electrodes without any additional binders 
or conductive additives, Hg/HgO as reference electrode and 
platinum mesh as counter electrode, respectively. Electro-
chemical tests including CV, GCD, and EIS were performed 
in 3 M KOH aqueous electrolyte at room temperature.

3  Results and discussion

Figure 1a presents the electrospinning precursor before cal-
cination, in which the obtained nanofibers are smooth and 
randomly ordered with a network structure and the aver-
age nanofiber diameter of 600 nm. After carbonization and 
oxidation process, the TPA component sublimated, generat-
ing many pores in the carbonized fibers. Furthermore, the 
appearance of  Co3O4-CNFs became rough, and  Co3O4 NPs 

Scheme 1  Schematic illustra-
tion of porous  Co3O4-CNFs 
prepared by electrospinning and 
carbonization
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were also found on the surface of the CNFs uniformly. It is 
probably because of the formation of porosity and  Co3O4 
NPs, the mean diameter of  Co3O4-CNFs-700 shows little 
change after carbonization (Fig. 1b). While the calcina-
tion temperature increased to 800 ℃, the mean diameter of 

 Co3O4-CNFs-800 reduced to 450 nm (Fig. 1c), which could 
be due to the further decomposition of polymer during the 
carbonization process. Additionally, the average diameter 
of  Co3O4-CNFs-900 continues to reduce to 250 nm, and in 
the meantime, the quantity of cobalt nanoparticles decreases 

Fig. 1  SEM images of a 
PAN-cobalt salt precur-
sors, b  Co3O4-CNFs-700, 
c  Co3O4-CNFs-800, and d 
 Co3O4-CNFs-900, respectively

Fig. 2  The EDS element map-
pings of  Co3O4-CNFs-700: a C; 
b N; c O; d Co
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with the increase of particle size (Fig. 1d). Moreover, the 
element mappings in Fig. 2 demonstrate the existence and 
uniform dispersion of  Co3O4 NPs. The energy-dispersive 
X-ray spectroscopy (EDS) analysis also proves the existence 
of C, N, O, and Co in the samples, which could be attributed 
to carbon,  Co3O4, and the retention of N from PAN.

The transmission electron microscopy (TEM) images 
(Fig. 3) further reveal the detailed morphologies and struc-
tures of  Co3O4-CNFs. Figure 3a, b show that the  Co3O4 NPs 
exhibit a hollow structure with diameters ranging from 120 
to 600 nm. As displayed, the hollow  Co3O4 NPs are formed 
by Kirkendall effect, which refers to higher diffusion rate of 

outward Co than that of inward O [64]. In consequence, it 
enabled hollow  Co3O4 NPs to form. When the calcining tem-
perature was up to 900 °C, the hollow  Co3O4 NPs turned into 
solid ones, and the size of these nanoparticles became large. 
It is suspected that Co/CoO is not transformed into  Co3O4 
crystals completely after oxidation process. In the meantime, 
the amorphous carbon transformed to graphitic carbon par-
tially (Fig. 3c, d). More detailed structures of  Co3O4-CNFs 
are demonstrated through the high-resolution TEM (HRTEM) 
and selected area electron diffraction (SAED). The measured 
d-spacings distance of carbon layers is 0.35 nm, assigning 
to the (002) plane of carbon (Fig. 3d). And the lattice fringe 

Fig. 3  TEM images of 
a  Co3O4-CNFs-700, b 
 Co3O4-CNFs-800, and c 
 Co3O4-CNFs-900, respec-
tively; d, e HRTEM images of 
 Co3O4-CNFs-800, and f the 
corresponding SAED pattern
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d-spacings of 0.285 and 0.243 nm related to the (220) and 
(311) planes of  Co3O4 (Fig. 3e). The corresponding selected-
area electronic diffraction (SAED) pattern shows a polycrys-
talline nature of the  Co3O4, and the diffraction rings can be 
indexed to (220), (311), (400), (511), and (440) crystallo-
graphic planes of  Co3O4 crystal (Fig. 3f).

The formation of  Co3O4 and graphitic carbon could be 
confirmed by X-ray diffraction (XRD), Raman, and X-ray 
photoelectron spectroscopy (XPS). Figure 4a shows the 
X-ray diffraction (XRD) pattern of  Co3O4-CNF products. As 
shown, the six characteristic peaks of  Co3O4-CNFs-900 at 
31.6, 36.8, 45.2, 55.4, 59.5, and 65.1° can be corresponded 
to the lattice planes of (220), (311), (400), (422), (511), and 
(440), respectively, which belong to the JCPDS card no. 
42–1467 of  Co3O4. The broad diffraction peak located at 
24.7° index to the (002) diffraction plane of carbon fibers. 
The diffraction peaks of  Co3O4-CNFs-700 are not apparent, 
which may be due to the trace amount of  Co3O4. From the 
XRD pattern of three different calcination temperatures, one 
can see that with the increase of temperature, the carbon and 
 Co3O4 diffraction peak intensity increases. The XRD results 
reveal that  Co3O4-CNFs include an amorphous carbon and 
 Co3O4, which could greatly affect their electrochemical 
performance.

Raman spectroscopy is the standard technique to investi-
gate the structure and graphitic degree of carbon materials 
(Fig. 4b). Raman spectra of  Co3O4-CNFs exhibit two vis-
ible peaks at around 1330 and 1590  cm−1, corresponding 
to the D (ascribed to defects and disordered carbon at the 
edges of the sp2 domain) and G (related to the  E2g in-plane 
vibration of the graphite lattice of the C sp2 atom) bands, 
respectively [65–68]. The degree of graphitization could be 
calculated by the intensity ratio of D and G band (ID/IG). 

As we know, the higher the ratio is, the more disordered the 
carbon material will be. For  Co3O4-CNFs-700, the ID/IG 
value is 1.13. With increase of calcination temperature, the 
ID/IG of  Co3O4-CNFs-800 decreased to 1.05, indicating the 
increase content of graphite carbon. Furthermore, the Raman 
spectra of  Co3O4-CNFs display characteristic peaks at 189, 
466, 517, and 673  cm−1, corresponding to  F1

2g,  E2g,  F2
2g, 

and  A1g vibration modes of  Co3O4, respectively, which is in 
good agreement with XRD results [69, 70].

The chemical composition of  Co3O4-CNFs was further 
examined by X-ray photoelectron spectroscopy (XPS) 
(Fig. 5). Three typical peaks corresponding to the binding 
energies of C 1 s, N 1 s, and Co 2p are observed. As shown 
in Fig. 5, the XPS spectrum of C 1 s can be deconvoluted 
into four peaks with binding energies at 284.7, 285.4, 286.6, 
and 289.5 eV, corresponding to sp2 graphitic carbon, C–C, 
C–O, and O–C = O, respectively [71, 72]. The graphitic car-
bon was increased with the calcination temperature, which 
could enhance the electron transfer efficiency of CNFs. And 
the import of doped nitrogen from pyrolysis of PAN is also 
conducive to promote the conductivity of CNFs, resulting in 
the improvement of electrochemical performance [73–75]. 
The high-resolution N 1 s spectrum can be further fitted into 
three individual peaks, which are centered at 398.6, 400.2, 
and 401.4 eV, corresponding to the pyridinic N, pyrrolic N, 
and graphitic N, respectively [76–78]. At the same time, the 
peak at 401.4 eV of  Co3O4-CNFs-900 is the strongest, and 
the corresponding graphitic N can improve the conductivity 
of CNFs, which indirectly indicates that the electrochemical 
performance of  Co3O4-CNFs-900 sample is optimal. What 
is more, the high-resolution spectra of Co 2p of the three 
samples displayed two similar XPS peaks with two weaker 
satellite peaks. The spectra of Co  2p3/2 peak reveal binding 

Fig. 4  a XRD patterns of  Co3O4-CNFs samples and b Raman spectrum.
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energy at 795.6 and 780.0 eV, which is in good agreement 
with the reported data on  Co3O4, further confirming the 
presence of  Co3O4 in  Co3O4-CNFs composites [79]. The 
principle peaks can be deconvoluted into four sub peaks, 
which the fitting peaks located at 781.3 and 796.9 eV are 
assigned to  Co2+, and the 779.9 and 795.6 eV peaks are 
indexed to  Co3+ [80]. The integrated intensity ratio of  Co2+ 
to  Co3+ of  Co3O4-CNFs decreased at first and then increased 
with the increasing calcining temperature, which indicated 
that more  Co2+ ions are generated accompanying with the 
generation of oxygen vacancies [81]. Benefiting from the 
advantage of high calcination temperature, high graphitic 
carbon and more oxygen vacancies will improve the specific 
capacity of the samples. Therefore, TEM, XRD, and XPS 
demonstrated that the homogeneously dispersed nanocrys-
talline  Co3O4 and conductive carbon species existed in 
 Co3O4-CNFs, which is desired for high-performance elec-
trochemical materials.

The nitrogen adsorption desorption measurement has 
been taken as represented in Fig. 6. The  Co3O4-CNFs 

present a type-IV isotherm with a distinct hysteresis loop, 
showing the characteristics of a mesoporous material. Fur-
thermore, the isotherm shows a sharp increase at high rela-
tive pressures (p/p0 > 0.9), demonstrating the macroporous 
characteristics [82–85]. Meanwhile, the corresponding 
pore size distribution curves (inset figures) also show the 
hierarchical pore structure of the  Co3O4-CNFs. The total 
BET surface areas can be determined to be 86.31  m2  g−1 
and 347.62  m2  g−1, respectively. The specific surface areas 
increase with the increasing calcination temperature, 
which can be ascribed to the high calcination tempera-
ture that offered more specific surface and pore structure 
by sublimation of the TPA component and degradation of 
lignin. That could be beneficial for achieving higher elec-
trochemical performance due to the moderate BET surface 
areas by providing passageways for the ion to pass through 
with the hierarchical pore structure. TGA measurement 
was performed in air from 30 to 600 °C to confirm the 
content of  Co3O4 in  Co3O4-CNF sample (Fig. 7). The TGA 
curve of the  Co3O4-CNFs-900 sample presented a sharp 
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Fig. 5  XPS spectrum of  Co3O4-CNFs, high-resolution C1s, N1s, and Co2p spectra
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weight loss at 260–510 °C, which corresponds to the burn-
ing of carbon matrix [86–89]. Correspondingly, the DTG 
curve showed the main peaks at 395 °C and 468 °C. There-
fore, the TGA-DTG analysis determined that the content 
percentage of  Co3O4 was 54.9% in the sample.

At the same time, the flexibility and foldability of the 
prepared  Co3O4-CNFs were studied. As shown in Fig. 8, 
after three folds,  Co3O4-CNFs could fully recover to their 
initial state, indicating their excellent flexibility and high 
mechanical strength. Such outstanding flexibility and bend-
ing of  Co3O4-CNFs give them a superior benefit for appli-
cations in flexible devices. The results also revealed that 
the porous structure of as-obtained CNFs could conduce 
to improve the flexibility of CNFs by using TPA as a soft 
template, because the sublimation of TPA in carboniza-
tion process resulted in the formation of porous structure. 
The porous morphology of obtained CNFs could also be 
observed in TEM images (Fig. 3).When  Co3O4-CNFs were 
bent, the flexibility of CNFs can be enhanced. Because the 
pore structure can expand stress distribution, thus reducing 
the stress, then its flexural performance can be optimized. 
At the same time, the existence of micro- and mesoporous 
can enhance ion transport rate and strengthen the charge 

accommodation, resulting in excellent electrochemical prop-
erties of the samples.

The FTIR spectra of lignin PAN, PAN/cobalt salt pre-
cursors, and  Co3O4-CNFs-700 fibers are shown in Fig.9a. 
In lignin, the characteristic peaks at 1607   cm−1 and 
1411–1587  cm−1 correspond to C–C = C in aromatic ring, 
which is prevalent in lignin structure [90–94]. The band at 
1037  cm−1 represents the absorption peak of carbonyl group 
[95–98]. The peak at 1456  cm−1 can be assigned to –CH2 
bending vibration, and peak at 2245  cm−1 is ascribed to C≡N 
stretching vibration in PAN chain. As for the spectra of PAN-
cobalt precursor composite fibers, the C–C = C peak in aro-
matic ring is still observed. Compared with lignin spectrum, 
the peak strength of carbonyl group at 1037  cm−1 is signifi-
cantly reduced in lignin, which indirectly indicates that lignin 
interacts with the nitrile group in PAN. The peaks at 1594 
and 1296  cm−1 can be attributed to N–O stretching vibration 
of PAN. Compared with PAN, the C≡N peak strength of 
PAN/cobalt precursor at 2245  cm−1 was also significantly 
reduced, indicating that with the introduction of lignin, part 
of C≡N bond is converted to C = N in PAN, and the N–O 
bond is formed with –O–H of lignin [99–106]. The possible 
connections between PAN and lignin are shown in Fig. 9b.

Fig. 6  N2 absorption and des-
orption isotherms and pore size 
distribution of the  Co3O4-CNFs 
(inset figures)
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The obtained flexible  Co3O4-CNFs were directly used 
as working electrode without adding binder or conducting 
agent, and the electrochemical properties were evaluated 
by CV, GCD, and EIS. Figure 10 shows the CV curves of 
different  Co3O4-CNFs samples at scan rates ranging from 5 
to 500 mV/s. As can be seen, the CV curves of three sam-
ples maintain a rectangular shape in the operating voltage 
range of − 0.2–0.8 V, indicating their ideal electrochemi-
cal performance with a fast charging-discharging process. 
Among them,  Co3O4-CNFs-900 has the largest CV curve 
area, indicating its maximum capacitance. At the same 
time,  Co3O4-CNFs have an arch curve at a scanning rate of 

5 mV/s, indicating that it also has pseudocapacitive proper-
ties (Fig. 10d). The specific capacitance of  Co3O4-CNFs-900 
is the largest, possibly because the graphitization degree 
of carbon fiber increases with the increase of calcination 
temperature [107–117]. Besides,  Co3O4 particles increase 
and their size becomes larger, which may be caused by the 
increase in the number of micropores. The CV curves of 
 Co3O4-CNFs-700 and  Co3O4-CNFs-800 have larger deforma-
tion than  Co3O4-CNFs-900 at high scanning rates, indicating 
that their impedance is larger, and there is a charge transfer 
resistance, which mainly comes from the resistivity of sam-
ples and the ion diffusion resistance in micropores [111, 112].

Fig. 8  a The digital pho-
tographs of  Co3O4-CNFs 
sample under 3-folded and 
could recover its initial state. 
b Digital photo images of the 
flexible  Co3O4-CNFs sample. 
c The paper cutting cut by 
 Co3O4-CNFs sample.

Fig. 9   a FTIR spectra of lignin, 
PAN, PAN-cobalt salt precur-
sors, and  Co3O4-CNFs-700 
and b possible lignin/PAN 
interaction.
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In addition, Fig.  11 shows the GCD curves of 
 Co3O4-CNFs at various current densities ranging from 0.1 
to 2 A  g−1. It can be observed that the GCD curves exhibit 
a similar triangle shape in the range of − 0.2–0.8 V, indi-
cating that the double-layer capacitance is reversible at 
wide range of current density. Meanwhile, the GCD curves 
show a small deviation, which also indicates that the  Co3O4 
has pseudocapacitance. At higher calcination tempera-
ture,  Co3O4-CNFs-900 has higher graphitization and more 
micro- and mesopores. The unique 3D  Co3O4-CNFs network 
pore structure could reduce the electron pathways between 
electrode and electrolyte, and the pores could serve as elec-
trolyte reservoir. Thus, it shows the longest discharge time, 
indicating that they have the highest specific capacitance, 
which is in good agreement with the CV results. Figure 12a 
compares the capacitance values of different samples at 
different current densities. When the current density is 
0.1 A  g−1, the specific capacitance of  Co3O4-CNFs-900, 

 Co3O4-CNFs-800, and  Co3O4-CNFs-700 is 369, 125, and 
119 F  g−1, respectively. When the current density is 2 A 
 g−1, the specific capacitance of  Co3O4-CNFs-900 is 181 
F  g−1, and its capacitance retention rate is 49%, exceeding 
most other flexible or self-standing similar carbon electrodes 
(Table 1). Besides, after the cycling measurements, the hier-
archical porous CNFs network, as well as the morphology 
of  Co3O4, was almost maintained, indicating the excellent 
structural stability of the electrode during the electrochemi-
cal process (Fig. 12a). Its good rate performance is mainly 
due to the fact that the porous CNF network structure can 
shorten the electronic pathway between electrode and elec-
trolyte, and the doping of N and  Co3O4 can further improve 
its electrical conductivity. However, when the current den-
sity increases, the specific capacitance of  Co3O4–CNFs also 
tends to decrease gradually, which is due to the space limi-
tation of CNF itself, so that only part of ions can penetrate 
the micropores.
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Fig. 10  CV curves of a  Co3O4-CNFs-700, b  Co3O4-CNFs-800, and c  Co3O4-CNFs-900 at different scan rates, i.e., 5, 50, 100, 200, and 
500 mV  s−1; d CV curves of different  Co3O4-CNFs samples at scan rates of 5 mV  s−1
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Figure 12b shows the Nyquist plot of  Co3O4-CNFs in 
the frequency range of 100 kHz to 0.01 Hz. Obviously, the 
Nyquist diagram of  Co3O4-CNFs-900 consists of semi-
circular arc in the high-frequency region and double-layer 
capacitance response diagonal in the low-frequency region. 
The equivalent series resistance (Rs) of  Co3O4-CNFs sam-
ples is 3.9, 2.53, and 2.63 Ω, respectively, indicating that 
the three samples have good conductivity. The interfacial 
charge transfer resistance (Rct) of  Co3O4-CNFs-900 can 

be obtained from the diameter of solid axis semicircle in 
the high-frequency region, which is 6.93 Ω, while the Rct 
of  Co3O4-CNFs-800 and  Co3O4-CNFs-700 is higher. The 
results further indicate that the improvement of graphitiza-
tion degree, the increase of  Co3O4 particles, and the hier-
archical pore numbers can improve the electronic conduc-
tivity of CNFs. In addition, the Warburg diffusion line of 
 Co3O4-CNFs-900 is smaller, while the Warburg resistance 
region of  Co3O4-CNFs-800 and  Co3O4-CNFs-700 is more 
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Fig. 11  GCD curves of a  Co3O4-CNFs-700, b  Co3O4-CNFs-800, and c  Co3O4-CNFs-900 under different current densities; d GCD curves of dif-
ferent  Co3O4-CNFs samples at the current density of 1 A  g−1

Table 1  Comparison of specific 
capacitive performances of 
 Co3O4-CNFs in this work and 
similar materials reported in the 
literature

Electrode materials Voltage window Electrolyte Specific capacitance Reference

Tubular porous  Co3O4/carbon 0–0.5 V 6 M KOH 284.2 F/g at 1 A/g [116]
NFC/porous  Co3O4 0–0.35 V 6 M KOH 594.8 mF  cm−2 at 5 mV  s−1 [117]
Porous carbon/Co3O4 0–0.4 V 3 M KOH 423 F/g at 1 A/g [118]
CNF/Co(OH)2  − 1.0–0 V 6 M KOH 135 F/g at 2 A/g [119]
Co3O4/graphene  − 0.2–0.4 V 2 M KOH 60 F/g at 2 A/g [120]
Co3O4  − 0.1–0.5 V 6 M KOH 162 F/g at 2.75 A/g [121]
Co3O4-CNFs-900  − 0.2–0.8 V 3 M KOH 181 at 2 A/g This work
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obvious. Warburg resistance region is short, indicating a 
high ion adsorption efficiency, and electrolyte ions can 
effectively diffuse at the electrode interface [122–128]. At 
lower frequency,  Co3O4-CNFs-900 also shows a higher 
slope, demonstrating good double-layer capacitance behav-
ior. It can also be concluded that  Co3O4-CNFs-900 has high 
specific capacitance performance from EIS analysis.

4  Conclusions

In summary, we have successfully fabricated the flexible, 
free-standing, and porous  Co3O4-CNFs by electrospinning 
technique and the followed carbonization process. TPA was 
used as a soft template during the synthesis process to form 
hierarchical pore structure, which significantly improved 
the porosity and flexibility of the as-prepared  Co3O4-CNFs. 
The calcination temperatures played an important role in 
the elctrochemical properties of the obtained  Co3O4-CNFs. 
For example, the  Co3O4-CNFs-900 showed the highest spe-
cific capacitance of 369 F  g−1 at the current density of 0.1 
A  g−1, which is about three times higher than that of the 
 Co3O4-CNFs-700 at the same testing condition. Also, the 
 Co3O4-CNFs-900 electrode exhibited good rate capability, 
i.e., the specific capacitance retained to 181 F  g−1 at a high 
current density of 2 A  g−1. The superior electrochemical per-
formance was mainly attributed to the high electrical con-
ductivity, the extra pseudocapacitance contributed by  Co3O4 
and N heteroatom, and the hierarchical pore structure (pro-
viding fast transport channels for ions). With the advantages 
of excellent mechanical flexibility, high conductivity, and 
high specific capacitance, the free-standing  Co3O4-CNFs 

could be a promising candidate for the development of high-
performance flexible energy storage devices.
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