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Abstract
Na superionic conductor (NASICON)–type  Na3V2(PO4)3(NVP) has attracted great attention due to its unique conductive 
framework and high capacity. However, the poor intrinsic conductivity seriously restricted the further development. This 
work proposes an effective strategy of introducing the beneficial carbon-based matrix materials including reduced graphene 
oxide (rGO), polypyrrole (ppy), and carbon nanotubes (CNTs) to the NVP system. The modified composites reveal particular 
morphological features and enhanced specific surface areas, benefiting to improve the kinetic characteristics and sodium 
storage performance. Accordingly, the optimized NVP/C@CNT composite shows superior electrochemical performance. It 
can release a high reversible discharge capacity of 98.7 mAh  g−1 at the 0.1 C rate. Meanwhile, a high capacity retention of 
81% is obtained after 500 cycles at 2 C. Moreover, the kinetic characteristics demonstrate that the optimized NVP/C@CNT 
sample shows a high  Na+ diffusion coefficient. This work offers a unique avenue for the development of the modification 
and synthesis of polyanion cathodes for sodium ion batteries.
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1 Introduction

Nowadays, energy crisis has been a serious issue around the 
world. The rapid development of new energy storage devices 
is a key scheme to solve the problem [1–13]. Lithium ion 
batteries (LIBs), possessing the high energy density, have 
been deemed to be the most successful commercial energy 
storage systems in the recent years [14–19]. Nevertheless, 
the drawbacks of raw-material limitation and uneven global 
distribution have boosted the costing price significantly 
[20–26]. Hence, the researchers have to explore more inex-
pensive alternatives with comparable performance. Sodium 
ion batteries (SIBs) have attracted much attention due to the 
low-cost raw materials and excellent electrochemical prop-
erties [27–32]. However, the larger radius of  Na+ (1.03 Å) 
and higher equivalent weight lead to sluggish kinetic char-
acteristics during the charging and discharging processes 

[33–36]. Therefore, it is of great importance to investigate a 
promising electrode material with stable structure and supe-
rior kinetics.

In this regard,  Na3V2(PO4)3(NVP) has been considered as 
a prospective cathode material with a unique Na superionic 
conductor (NASICON) framework, which can provide a fac-
ile channel for rapid transportation of  Na+ [36–38]. Moreo-
ver, the NVP composite can reveal a theoretical capacity of 
117.6 mAh  g−1 with a high voltage of 3.4 V, corresponding 
to the redox couple of  V3+/V4+ during the electrochemical 
procedure [38–40]. However, the poor intrinsic electronic 
conductivity seriously restricts the release of performance 
for the NVP system. Many efficient routes are proposed to 
improve the capability of electronic transportation of NVP 
material [41–48]. Among them, the most widely utilized 
method is recombining the conductive carbon-based matrix, 
such as carbon nanotubes and reduced graphene oxide 
[49–52].

In current work, we have modified the NVP compos-
ite by constructing a dual conductive framework contain-
ing the coated carbon layers and enwrapped carbon matrix 
materials. The optimized samples are synthesized by a fac-
ile sol–gel route. The investigation about the influence of 
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different carbon matrixes on the crystal structure, morpho-
logical features, and sodium storage property for the NVP 
composite is conducted. As a result, the beneficial carbon 
matrix is facilitated to accelerate the migration of electrons 
and therefore significantly improve the rate capability of 
the electrodes. Distinctively, the NVP/C@CNT composite 
possesses the best electrochemical performance among all 
the samples. It can release reversible discharge capacities 
of 98.7, 89.3, 85.2, 83.2, 80.5, and 78.9 mAh  g−1 at 0.1, 1, 
2, 4, 6, and 10 C rates. A high capacity retention of 81% is 
obtained after 500 cycles at 2 C. Moreover, the kinetic char-
acteristics conducted by CV measurement demonstrate the 
optimized NVP/C@CNT sample showing a high  Na+ diffu-
sion coefficient (1.28 ×  10−10  cm2  s−1 for the charge process; 
8.56 ×  10−11  cm2  s−1 for discharge process).

2  Experimental sections

2.1  Material preparation

All the samples were prepared by a facile sol–gel method. 
 NH4VO3, citric acid,  NH4H2PO4, and  Na2CO3 were utilized 
as raw materials. All the materials were original without 
other processing. Noteworthily, the addition of citric acid 
was an excess due to the complete reduction reaction of 
 V5+/V3+. Moreover, the advantage citric acid can act as the 
chelating agent to form the favorable morphology, as well as 
providing the resources for coated carbon layers surrounding 
the active grains. Initially, the stoichiometric  NH4VO3 and 
citric acid,  NH4H2PO4, and  Na2CO3 were added into the 
deionized water to form a clarified solution with magnetic 
stirring. The precursor sample was heated at 80 °C until a 
gel was prepared. Subsequently, freeze-drying measurement 
was carried out to make the particles disperse uniformly. 
After this procedure, the black composites were grounded 
carefully and then preheated at 450 °C for 4 h in nitrogen 
atmosphere. Finally, the powders were sintered at 700 °C 
for 6 h at the same atmosphere. The optimized compos-
ites of  Na3V2(PO4)3/C@CNTs,  Na3V2(PO4)3/C@rGO, and 
 Na3V2(PO4)3/C@ppy were synthesized by the same route 
except for the addition of CNTs, rGO, and ppy. Finally, 
the prepared  Na3V2(PO4)3/C,  Na3V2(PO4)3/C@CNTs, 
 Na3V2(PO4)3/C@rGO, and  Na3V2(PO4)3/C@ppy samples 
are abbreviated as NVP/C, NVP/C@CNTs, NVP/C@rGO, 
and NVP/C@ppy.

2.2  Characterization

X-ray diffraction measurement was conducted to investigate 
the crystal structure of all composites. The morphological 
features of all samples were determined by scanning elec-
tron microscopy (SEM, SU8010). The  N2 adsorption and 

desorption measurements were performed to obtain the sur-
face area and pore size distribution (JWGB, BK122W). The 
carbon contents were determined by thermal gravimetric 
analysis (TG, METTLER).

2.3  Electrochemical measurements

The CR2016 type half-cells are used to evaluate the sodium 
storage properties of all composites. All coin cells are 
assembled in a glove box filled with argon. The electrode 
slurry was constituted by 80 wt% active material, 10 wt% 
conductive acetylene, and 10 wt% binder PVDF. N-Methyl-
2-pyrrolidone (NMP) was utilized as the solvent solution. 
All the mixtures were ball-milled for 10 h to acquire the uni-
form slurry. Subsequently, an automatic coater was used to 
smear the obtained slurry onto a clean aluminum foil, which 
was dried in vacuum at 120 °C overnight. For matching the 
2016 battery jar, we punched the electrode slice into disks 
with a diameter of 12 cm for the further package. As for a 
half-cell, sodium metal was used as the counter electrode, 
and Celgard 2400 membrane was utilized as the separator. 
The electrolyte contained 1 M  NaClO4 in propylene carbon-
ate (PC) with 2 vol% fluoroethy-lene (FEC). The loading 
mass of active material in each electrode is 1.4 mg with 
a footprint area of 2.01  cm−2. Cyclic voltammetry (CV) 
tests for all electrodes were explored on an electrochemical 
workstation (IVIUM-n-Stat). The measuring parameters are 
2.3–4.1 V with various scan rates of 0.1, 0.2, 0.5, 1, 2, and 
5 mV  S−1. Besides, a LAND Battery Testing System was 
carried out to evaluate the galvanostatic charge/discharge 
(GCD) processes in a scale of 2.3–4.1 V. Rate capability 
and cyclic performance of all samples were tested in the 
same system. All the measurements were conducted at room 
temperature.

3  Results and discussion

To investigate the effects of different carbon matrixes on 
the crystal structure, XRD measurements are explored and 
the results are revealed in Fig. 1. As shown below, all com-
posites display sharp diffraction peaks within the range of 
10–80°, indicating the excellent crystallinity for all samples. 
Obviously, the positions of peaks for all samples precisely 
correspond to the PDF card (#00–053-0018), revealing that 
the synthesized composites conform to the typical NVP sys-
tem. Moreover, no obvious peaks representing impurities are 
observed, suggesting that the addition of the carbon matrix 
has no influence on the synthetic results. Furthermore, the 
peak shapes for all compounds (NVP@rGO, NVP@ppy, 
NVP@CNTs) are much sharper than those of the NVP/C 
sample, suggesting the better crystal stability for the carbon 
composites.
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To deeply investigate the crystal structure and obtain the 
cell parameters, structural refinement is conducted by High-
score software and the results are revealed in Fig. 2 and 
Table 1. As shown in Fig. 2, the values of the fitting index 
(R) for all samples are very low, suggesting the reliability 
and veracity of the refined results. As presented in Table 1, 
there are no obvious changes to cell parameters including 
a, c, and V after combining with the carbon-based matrix 
materials. This is reasonable because the addition of carbon 
materials will not influence the internal crystal characteris-
tics of the NVP system.

In order to explore the morphological features of all 
modified samples, SEM measurement is carried out and the 
results are revealed in Figs. 3. As shown in Fig. 3a, some 
lamellar rGO nanosheets embed into the irregular particles 
of NVP, isolating the contact between the active grains, 
which is beneficial to restricting the growth of NVP particles 
and therefore provide a shortened pathway for the migration 
of  Na+ and electrons. Meanwhile, as presented in Fig. 3d, 
some rGO sheets with a large surface can act as the matrix 
to support the adherence of active grains, supplying a favora-
ble conductive network for facilitated transportation of elec-
trons. Figure 3b displays the morphology of a ppy-decorated 
NVP/C sample, revealing that tubular ppy is utilized as the 
medium to connect the adjacent active NVP gains, show-
ing a function of conducting the charge transfer between 
particles. The HRSEM image in Fig. 6e indicates that the 
pipe diameter of ppy is around 200 nm, and the length is 
more than 2 μm. Furthermore, the typical image of the CNT-
enwrapped NVP/C sample is shown in Fig. 3c and f. Obvi-
ously, the agglomerated particle possesses a particle size 
of 5 μm, covered by a thin and uniform amorphous carbon 
layer. As can be seen in the HRSEM image with enlarged 
magnification (Fig. 3f), the big active grain is constituted 

of fine particles and massive conductive CNTs, in which 
CNTs wrap around the particle to construct the unique and 
efficient conductive framework. This mixed system signifi-
cantly facilitates the transportation of  Na+ and electrons, 
resulting in the superior kinetic characteristics and electro-
chemical property. Similarly, all the carbon-based NVP/C 
composites show a phenomenon of particle clustering. This 
may be derived from the heat treatment at high temperature 
after the sol–gel method.

To deeply investigate the effects of adding carbon-based 
materials on the specific surface area, nitrogen isothermal 
adsorption/desorption tests are conducted and displayed in 
Fig. 4. As revealed in Fig. 4a, all plots of the four sam-
ples show typical-shape isotherms, indicating the identical 
IV curve with a hysteresis loop. This demonstrates that all 
samples possess the mesoporous microstructure [53, 54]. In 
addition, the specific surface area of NVP/C, NVP/C@rGO, 
NVP/C@ppy, and NVP/C@CNT composites is 21.812, 
47.123, 32.287, and 58.535  m2  g−1, respectively. Notably, 
combining with beneficial carbon-based matrix materials 
can significantly improve the surface area, resulting from 
the unique morphological features. Moreover, the enlarged 
area benefits to infiltrate the active electrode by electrolyte 
and provide sufficient space for the crystal volume shrink-
age of NVP material during the charge/discharge process. 
Obviously, the NVP/C@CNT composite behaves the largest 
surface area among all samples, accompanied with a typi-
cal mesoporous structure, supplying the favorable capacitive 
charge storage and therefore improving the high-rate capa-
bility. Furthermore, Fig. 4b reveals the pore size distribution 
of all samples, further verifying the presence of mesopores. 
The average value of pore size is about 4 nm.

To investigate the carbon contents of all samples, thermal 
gravimetric (TG) analysis is conducted and the TG curves 
are patterned in Fig. 5. The numerical values of carbon con-
tent for the NVP/C sample is close to 4 wt%. Contents of 
NVP/C@CNTs, NVP/C@rGO, and NVP/C@ppy are 10.70 
wt%, 9.51 wt%, and 12.01 wt%, respectively, which are 
much higher than those of NVP/C. For NVP/C, the weight 
loss is derived from the decomposition of excessed citric 
acid. For other modified composites, the sluggish mass loss 
comes from the decomposition of carbon matrix materials 
and citric acid, coinciding with the preconceived strategy 
[55, 56]. The adequate carbon can construct a beneficial 
electronic conductive network to improve the rate capabil-
ity of modified composites significantly.

Cyclic voltammetry (CV) measurement tested at a work-
ing window of 2.3–4.1 V with a scan rate of 0.1 mV  s−1 is 
carried out to identify the electrochemical behaviors of all 
electrodes. As revealed in Fig. 6, all samples present the 
identical redox peaks, including oxidation peak at 3.54 V 
and divisive reduction peak at around 3.21 and 3.34 V. 
All existed peaks are corresponding to the  V3+/V4+ redox 

Fig. 1  XRD patterns of all samples
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pair that occurred in the NVP system during the proce-
dure of de-intercalation of  Na+. The split of the reduction 
peak may be resulted from the non-uniform distribution 
of particle size. Moreover, as for the discharge process, 
the scanning area for three carbonous composites is much 
larger than the NVP/C sample, suggesting that the modi-
fied samples possess more capacities. Meanwhile, these 

samples containing a carbon matrix behave stronger peak 
intensity, indicating the better  Na+ migration capability.

Furthermore, to deeply investigate the kinetic charac-
teristics using CV measurement, all electrodes are tested 
at different scan rates of 0.1, 0.2, 0.5, 1, 2, and 5 mV  s−1. 
The results are displayed in Fig. 7. On the whole, for all 
composites, the polarization voltage obviously increases 
as the change of scan rate, indicating the worse revers-
ibility along with the increase of scan rate. Interestingly, 
when the rate becomes higher, the divisive reduction 
peaks merge into one peak, suggesting that the two-step 
de-intercalation procedure has disappeared at high current 
rate. Furthermore, the apparent diffusion coefficient of  Na+ 
(DNa+) can be calculated by the Randles–Sevcik equation 
as shown below [57, 58]:

Fig. 2  Refined XRD patterns of all samples by Highscore software a NVP/C b NVP/C@rGO c NVP/C@ppy d NVP/C@CNTs

Table 1  Refined crystal cell parameters for all samples

Sample a/Å b/Å c/Å V/Å3

NVP/C 8.726 8.726 21.82 1439.18
NVP/C@CNTs 8.727 8.727 21.84 1439.74
NVP/C@rGO 8.725 8.725 21.83 1439.23
NVP/C@ppy 8.729 8.729 21.83 1440.32
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where n, A, C, and ν represent the number of transferred 
electrons (n = 2), the contact area between cathode and elec-
trolyte (here is 2.0096  cm2), the concentration of  Na+ in the 
electrode (mol  cm−3), and scanning rate (V  s−1), respec-
tively. Based on Eq. (1), we plot the curve containing the 
relationship between Ip and v1/2. The slope values for all elec-
trodes during charge and discharge process are revealed in 
Fig. 7b, d, f, h, and the obtained results are listed in Table 2. 
As shown in Table 2, all optimized samples containing the 
carbon matrix show a better DNa+ property than the NVP/C 

(1)Ip = 2.69 × 10
5n3∕2ACD1∕2v1∕2 sample, suggesting that the conductive carbon matrix favors 

to facilitate the  Na+ migration effectively. Obviously, the 
NVP/C@CNT composite achieves the highest DNa+ values 
of 1.28 ×  10−10  cm2  s−1 and 8.56 ×  10−11  cm2  s−1 during the 
charge and discharge processes, demonstrating the superior 
kinetic characteristics.

Moreover, the controlling mode of all electrodes is evalu-
ated by CV tests and the corresponding results are revealed 
in Fig. 8. As well known, we can acquire the controlling 
mode by the b-value (0.5 for the diffusion-controlled and 1 
for the pseudocapacitance-controlled) according to the equa-
tion of i = aνb, where i, v, and b represent the peak current, 

Fig. 3  SEM and HRSEM images of a, d NVP@rGO, b, e NVP@ppy, and c, f NVP@CNT samples

Fig. 4  a N2 absorption and desorption isotherm of all samples. b Barrett-Joyner-Halenda (BJH) pore distribution for all samples
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scan rate, and linear slope, respectively. As displayed in 
Fig. 8, the relationship between logi and logv is calculated 
and it behaves a linear correlation. According to the slope 
values, we can obtain the b values. Obviously, the b value 
for all samples during charge process is close to 0.5, indicat-
ing the controlling mode is diffusion-controlled. As for the 
discharge process, all samples reveal a b value of 0.9, sug-
gesting a primary contribution of pseudocapacitance.

To evaluate the sodium storage property of all elec-
trodes, GCD measurements are carried out within a range of 
2.3–4.1 V. Figure 9a shows the initial charge and discharge 
profiles of all samples at the 0.1 C rate. Clearly, all elec-
trodes reveal a long and flat voltage plateau at 3.4 V, coin-
ciding with the redox peaks presented in CV curves. This 
potential platform is derived from the redox reaction of  V3+/
V4+, corresponding to the phase reaction of  Na3V2(PO4)3 
and  Na1V2(PO4)3. Specifically, the discharge capacities of 
NVP/C, NVP/C@rGO, NVP/C@ppy, and NVP/C@CNT 
composites are 85.6, 93.5, 97.8, and 98.8 mAh  g−1, respec-
tively. It is demonstrated that adding a conductive carbon 
matrix is beneficial to improving the discharge capacity 
for the NVP system. Moreover, the polarization voltage is 
slight for all samples, indicating the excellent electrochemi-
cal reversibility. The rate capability for all composites is 
tested from 0.1 to 10 C, and the results are shown in Fig. 9b. 
Obviously, all modified samples containing carbon matrix 
materials possess higher specific capacities than the NVP/C 
sample at all different current densities. For the NVP/C@
CNT electrode, the reversible capacities of 98.7, 89.3, 85.2, 
83.2, 80.5, and 78.9 mAh  g−1 are recorded at 0.1, 1, 2, 4, 
6, and 10 C, respectively. The capacity retention can reach 
80%. However, the corresponding reversible capacities of 
the NVP/C sample are 68.5, 63.8, 59.0, 56.9, 53.4, and 49.5 
mAh  g−1 at current densities of 0.1, 1, 2, 4, 6, and 10 C, 
respectively. The low retention ratio of 72.6% indicates the 
poor rate capability of NVP/C electrode. Significantly, other 
modified samples (NVP/C@rGO, NVP/C@ppy) reveal the 
similar rate performance as the NVP/C@CNT sample, sug-
gesting that the addition of the conductive carbon-based 
matrix can greatly improve the rate performance.

The cycling performance of all composites at the 1 C 
rate is evaluated and displayed in Fig. 9c. The NVP/C 
sample delivers an original capacity of 72.5 mAh  g−1 at 1 
C, and a capacity of 65.6 mAh  g−1 after 100 cycles. As for 
the modified samples, the reversible capacities are obvi-
ously superior than the NVP/C sample. Notably, the initial 
capacity of the NVP/C@CNT sample is 89.9 mAh  g−1 
and 93.4% capacity could be maintained after 100 cycles, 
indicating an enhanced cycling performance compared to 
NVP/C. Even after cycling for 300 cycles, a high capac-
ity of 77.9 mAh  g−1 can be obtained for NVP/C@CNTs. 
To explore the electrochemical reversibility, coulombic 
efficiency for NVP/C@CNTs is evaluated and shown in 
Fig. 9c. Obviously, the value can maintain at 100% during 
the prolonged process, indicating the excellent reversibil-
ity of the NVP/C@CNT electrode. At a higher rate of 2 

Fig. 5  TG curves of all samples conducted at the range of 50–600 °C

Fig. 6  Comparison of CV curves for all samples at a scan rate of 
0.1 mV  s−1

Fig. 7  CV curves for a NVP/C, c NVP/C@rGO, e NVP/C@ppy, and 
g NVP/C@CNTs at 0.1, 0.2, 0.5, 1, 2, and 5 mV   s−1. The relation-
ship between Ip and v1/2 for b NVP/C, d NVP/C@rGO, f NVP/C@
ppy, and h NVP/C@CNTs

◂
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C, the NVP/C sample only delivers a reversible capacity 
of 68.7 mAh  g−1 and remains a capacity of 57.9 mAh  g−1 
after 500 cycles. The optimized NVP/C@CNTs present the 
best cycling performance among all samples. It can release 
a high capacity of 91.5 mAh  g−1 at the 1st cycle and keep 
a considerable value of 74.1 mAh  g−1 after 500 cycles, 
suggesting a high capacity retention of 81%. Meanwhile, 
the coulombic efficiency of NVP/C@CNTs maintains 
close to 100% during the prolonged cycling process at 2 

C, indicating the excellent reversibility of  Na+ insertion/
extraction.

Moreover, the SEM images of NVP/C and NVP/C@
CNT samples cycled at 1 C after 100 cycles are revealed 
in Fig.  10. As shown below, both composites display 
white particles and tiny black grains, which correspond 
to the PVDF binder and conductive agent acetylene, 
respectively. The tested powders originate from the 
electrode slice after cycling, which contains the active 

Table 2  Apparent diffusion 
coefficients of  Na+ of all 
electrodes during charge and 
discharge

Sample Slope DNa+/cm2  s−1

Charge Discharge Charge Discharge
NVP/C 0.0337  − 0.0339 4.05 ×  10−11 4.10 ×  10−11

NVP/C@CNTs 0.05991  − 0.04899 1.28 ×  10−10 8.56 ×  10−11

NVP/C@ppy 0.04337  − 0.04045 6.71 ×  10−11 5.83 ×  10−11

NVP/C@rGO 0.05549  − 0.04728 1.10 ×  10−10 7.97 ×  10−11

Fig. 8  The relationships between log (i) and log (v) from 0.1 to 5 mV  s−1  for a NVP/C b NVP/C@rGO c NVP/C@ppy d NVP/C@CNTs
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material, conductive agent, and binder. Figure 10a shows 
that severe agglomeration of active materials is emerged 
for the NVP/C sample after cycling, which may inferior 
electrochemical performance. However, the distribution 

of active grains is still homogeneous for the NVP/C@
CNT composite reveled in Fig. 10b, demonstrating the 
stable structure, which results in the superior sodium stor-
age property.

Fig. 9  Sodium storage property with voltage range of 2.3–4.1 V: a initial charge/discharge profiles, b rate capability of all samples, and cycling 
performance for all electrodes at the c 1 C and d 2 C rates
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4  Conclusion

In conclusion, beneficial conductive carbon-based matrix 
materials are introduced into the NVP system to improve 
the kinetic characteristics and sodium storage properties. 
The modified samples are successfully synthesized by a 
facile sol–gel method. Notably, the NVP/C@CNT com-
posite possesses the largest specific surface area and fast-
est  Na+ diffusion coefficient, revealing the superior rate 
capability and cycling performance. Distinctively, it can 
release reversible discharge capacities of 98.7, 89.3, 85.2, 
83.2, 80.5, and 78.9 mAh  g−1 at 0.1, 1, 2, 4, 6, and 10 C 
rates. A high capacity retention of 81% is obtained after 
500 cycles at 2 C. Thus, the strategy of combining with 
conductive carbon-based matrix materials is a new mode 
for the development of cathode with enhanced electro-
chemical performance in SIBs.
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