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Abstract
In this study, the innovative and multi-functional chitosan-based hydrogel beads were immobilized with silver nanoparticles 
(AgNPs) via polydopamine coating to simultaneously enhance antimicrobial and adsorption activity. The morphological 
observation under scanning electron microscopy along with elemental mapping by energy disperse X-ray spectrometer 
indicated that AgNPs were successfully synthesized and immobilized not only on the surface but also the interior of PDA-
coated chitosan beads. The covalent silver–carboxylate linkage along with hydrophobic and Van der Waals forces was 
evidenced by Fourier transform infrared spectroscopy to further confirm the in situ synthesis of AgNPs on the surface of 
beads. The equilibrium swelling rate of the prepared hydrogel beads decreased as pH increased, being 160%, 100%, and 
80% at pH 5, 7, and 9, respectively. The adsorption performance of the hydrogel beads was investigated for the removal 
of an anionic dye and a metal ion (Cu (II)). The presence of AgNPs enhanced the adsorption capacity of the beads for the 
above-mentioned adsorbates. The antimicrobial activities were determined against potential human pathogens including 
Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. The antimicrobial activity of the obtained beads 
on the Gram-negative bacteria was higher than on the Gram-positive bacteria. The obtained hydrogel beads could be used 
for simultaneously controlling chemical and biological contaminants in wastewater.
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1 Introduction

Recently, intensive industrial and urban development, large 
population growth, and climate change have subjected water 
resources to severe pressure, from both quality and availabil-
ity perspectives, increasing the need to find sustainable solu-
tions to this compelling problem. One of the most promising 

practices to be explored is the reuse of wastewater. Waste-
water reuse, also known as water recycling or water recla-
mation, reclaims water from a variety of sources then treats 
and reuses it for beneficial purposes such as agriculture and 
irrigation [1].

Depending on the source, wastewater could contain 
noxious dyes and heavy metal ions, as well as pathogenic 
microbes. Water reuse is not a new technique or concept; 
knowledge of wastewater treatment has been accumulated 
over the history of humankind. Thus far, a variety of waste-
water treatment technologies have been developed include 
adsorption [2–4], membrane separation [5], chemical and 
biological degradation [6, 7], and electrochemical method 
[8]. Among them, physical adsorption is the most viable 
technology for wastewater management, due to its ease of 
operation with scalable facility for translational applications 
in industry. For several decades, activated carbons have been 
the most studied adsorbents as filtration devices for treating 
water to remove various types of chemical pollutants, par-
ticularly dyes and heavy metals [9, 10]. However, concerns 
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regarding their disadvantages such as high cost and incon-
sistent efficacy of carbons prepared from different sources 
have restricted their widespread applications in wastewater 
treatment [11]. Besides chemical pollutants, microbial con-
taminants including bacterial, viral, and protozoan pathogens 
have escalated the health hazards of untreated or improp-
erly treated wastewater. Among various water disinfection 
methods, chlorination is the most widely used because it is 
inexpensive yet effective in disinfecting many microbial con-
taminants. However, chlorination can generate various dis-
infection byproducts, which may have severe harmful effect 
on water bodies [12, 13]. In order to remove both chemical 
and biological contaminants, traditional wastewater treat-
ment technologies usually involve multiple-stage approaches, 
which are associated with high cost, poor efficiency, and 
require complicated processes and sophisticated mainte-
nance [14]. Rapid population and economic growth has 
stimulated perpetually increasing demand for low-cost and 
high-efficiency wastewater treatment technologies. However, 
few studies have focused on the design of multifunctional 
wastewater treatment devices. Thus, it is expedient to explore 
simple and low-cost systems that can simultaneously control 
chemical quality and microbial safety of recycled wastewater.

Hydrogel is a three-dimensional (3D), flexible, and porous 
network of hydrophilic polymer chains that swell in water [15]. 
It has great potential in wastewater treatment due to its high 
adsorption capacity, rapid adsorption rate, and good reproduc-
ibility [16, 17]. Compared with traditional adsorbents (e.g., 
activated carbons), hydrogel can be more easily separated from 
water and reused. Chitosan, a derivative from chitin which is 
the second most abundant biopolymer in nature after cellulose, 
has a unique chemical structure, rich in reactive hydroxyl and 
amino groups, making it an excellent biomaterial for fabrica-
tion of hydrogel with high adsorption efficiency [16]. As a 
cationic biopolymer, chitosan exhibits intrinsic antimicrobial 
activity owing to its electrostatic interactions with negatively 
charged microbial cell membranes, which cause leakage of 
intracellular constituents [18–20]. To further enhance its 
adsorption and antimicrobial performance, several modifica-
tion techniques like cross-linking, grafting, and combining 
with other materials have been reported [21]. Oxidized dextran 
(OD) is a dialdehyde polymer obtained from the oxidation of 
native dextran [22]. The abundant aldehyde groups on OD 
could react with amino groups of chitosan through Schiff base 
linkage to enhance the stability of chitosan hydrogel. Polydo-
pamine (PDA), the final oxidation product of dopamine, has 
attracted much attention as versatile coatings that can be used 
to cover the surface of either organic or inorganic substrates 
with a conformal layer of adjustable thickness [23]. Silver 
nanoparticles (AgNPs) are well-known as the most universal 
antimicrobial substances due to their strong biocidal effect 
against microorganisms [24, 25]. Besides, AgNPs are also 
known for their anti-fungal, anti-inflammatory, and anti-viral 

properties, as well as electromagnetic properties [26–28]. In a 
recent study, Kodoth et al. synthesized AgNP-embedded pec-
tin-based hydrogel as effective adsorbents for the removal of 
divalent metal ions and cationic dyes from aqueous solutions 
[29]. The presence of AgNPs was observed to enhance the 
adsorption capacity of the hydrogel, and the resultant hydrogel 
could absorb the maximum of 1950 mg/g crystal violet, 111 
mg/g Cu(II), and 130 mg/g Pb(II). Chitosan/AgNP-bentonite 
prepared by ion-exchange method displayed a high antibac-
terial activity against Staphylococcus aureus (SA), with an 
inhibition zone with a diameter of about 35 mm [30].

In this study, we aimed at developing an innovative, sim-
ple, and multi-functional water treatment device to simulta-
neously control chemical property and microbial safety of 
recycled wastewater. The chitosan hydrogel beads, prepared 
using a coagulation technique, were first cross-linked and 
stabilized by OD via Schiff base linkage. To further enhance 
the disinfection performance, AgNPs were introduced on the 
surface of OD-crosslinked chitosan beads with the assistance 
of PDA. Specifically, the PDA coating, which was employed 
on the surface of OD-crosslinked chitosan beads, provided 
multiple sites for silver ion binding and phenolic hydroxyl 
structure for reduction of silver ions to AgNPs. Since it 
combines the excellent adsorption capability of chitosan 
hydrogel beads with the outstanding disinfection properties 
of AgNPs and chitosan, we hypothesized that the obtained 
water treatment device could simultaneously control chemi-
cal and biological contaminants in wastewater.

2  Materials and methods

2.1  Materials

Low molecular weight chitosan (75–85% deacetylated), 
sodium periodate  (NaIO4), dopamine hydrochloride, and 
Tris base were purchased from Sigma-Aldrich (St. Louis, 
MO, USA). Dextran (40 kDA) was obtained from Alfa 
Aesar (Ward Hill, MA, USA). Silver nitrate (0.25 N) was 
purchased from RICCA chemical company (Arlington, TX,  
USA). Hydrochloric acid (HCl), sodium hydroxide (NaOH), 
methanol, congo red, and copper sulfate  (CuSO4) were 
obtained from Fisher Scientific Co. (Norcross, GA, USA). 
Unless otherwise noted, all of the chemicals were of analyti-
cal grade and were used without further purification.

2.2  Preparation of OD cross‑linked chitosan 
hydrogel beads

Chitosan solution (2%, w/v) was prepared by dissolving chi-
tosan in 1% (v/v) acetic acid at room temperature overnight 
with gentle stirring for complete hydration. The chitosan 
solution was sonicated for 3 min before bead preparation to 
eliminate gas bubbles. Chitosan beads were prepared using 
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a Chemyx Fusion 4000 Syringe Pump (Stafford, TX, USA) 
to extrude chitosan solution dropwise through tubing con-
nected to a 200-µL pipette tip and into a beaker containing 
coagulation solution  (H2O/methanol/NaOH = 4:5:1, w/w). 
The obtained chitosan beads were solidified in coagulation 
solution for 2 h while stirring at 150 rpm. Then, the alka-
line solution was slowly decanted, and the chitosan beads 
were collected using filtration. The beads were successively 
washed with ultrapure water until the eluted water was neu-
tral. Chitosan hydrogel beads were then directly added into 
a solution of OD to initiate the cross-linking via a Schiff 
base reaction between the amino groups of the chitosan and 
aldehyde groups of the OD for 24 h under gentle stirring. 
The OD was prepared as described previously [22]. The 
OD cross-linked chitosan beads were washed with ultrapure 
water to remove excessive OD. The obtained OD cross-
linked chitosan beads were named OD-beads.

2.3  Preparation of AgNPs‑PDA‑coated chitosan 
hydrogel beads (Ag@beads)

Dopamine solution (2 mg/mL) was prepared by dissolving 
dopamine powder in Tris buffer (10 mM, pH 8.5). The OD-
beads were soaked directly into the freshly prepared dopa-
mine solutions under continuous stirring for 5 h at room 
temperature. After reaction, the products were taken out and 
washed with water until the rinse-water became clear. The 
chitosan hydrogel beads treated with dopamine were denoted 
as PDA-beads in the subsequent discussion. The PDA-beads 
were then immersed into  AgNO3 solution (50 mM) at room 
temperature for 6 h. The samples were rinsed with flowing 
water for 5 min and designated as Ag@beads in the subse-
quent discussion. The preparation procedure of Ag@beads 
is schematically shown in Fig. 1.

2.4  Characterization of Ag@beads

The prepared beads (chitosan beads, OD-beads, PDA-beads, 
Ag@beads) were placed on aluminum plates and dried in the 
oven for 2 h at 40 °C. After drying, the Fourier-transform infra-
red spectrophotometry (FTIR, NicoletTM iSTM5, Thermo 
Scientific, Waltham, MA, USA) was used to study the interac-
tion between coating materials and chitosan. The FTIR spectra 
of dried beads were measured in the range of 500–4000  cm−1. 
The results were analyzed using OMNIC software, version 8.0.

For scanning electron microscope (SEM) observation, 
the oven-dried bead samples were placed on double-sided 
carbon tape. Before observation by SEM (JSM-6335F, JEOL 
Ltd., Tokyo, Japan), all of the samples were coated with 
gold using a sputter coater. The chemical composition of 
samples’ surface and intersection was determined by energy 
dispersive x-ray spectroscopy (EDS, X-Max 80 Silicon Drift 
Detector, Oxford Instruments, UK).

The swelling rate of Ag@beads was measured under 
phosphate-buffered saline (PBS) at pH 5, 7, and 9. The oven-
dried Ag@beads were immersed into PBS at 37 °C for 6 h. 
During incubation, the Ag@beads were taken out from the 
PBS at predetermined time points, 1, 2, 3, 4, 5, and 6 h, and 
the surface fluids were carefully and completely removed by 
filter paper before weighing. The swelling rate was calcu-
lated based on the following equation:

Here, Ws and WD represent the weight of dried Ag@beads 
and the weight of Ag@beads after swelling in PBS, respec-
tively. The swelling rate is defined as the fractional increase 
in the weight of the hydrogel due to water absorption.

Swelling rate (%) =
W

S
−W

D

W
D

× 100

Fig. 1  Schematic diagram of the 
preparation of the Ag@beads
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2.5  Adsorption studies

A solution of congo red (CR) was prepared in water at con-
centration of 1 mg/mL, and experimental solutions of CR 
concentrations were obtained by successive dilutions. The 
concentration of CR in experimental solution was deter-
mined from the calibration curve prepared by measuring 
absorbance of different predetermined concentrations of CR 
solutions at 497 nm using UV/Vis spectroscopy. Cu (II) ion 
stock solution (1 mg/mL) was prepared and diluted to give 
the appropriate concentrations.

The adsorption study was carried out in a water bath 
shaker at 150 rpm and 30 °C using 20-mL glass vials con-
taining 0.2 g of hydrated Ag@beads or chitosan beads as 
control and 10 mL of CR or Cu (II) solutions of pH 5 at 0.5 
mg/mL concentration. Different time intervals of up to 8 h 
were used for this study. The residual CR concentration in 
the experimental solution at each predetermined time point 
was analyzed using a UV/Vis spectrophotometer at 497 nm. 
The residual Cu (II) ions were analyzed at a wavelength 
of 325 nm using an inductively coupled plasma spectrom-
eter (ICPMS). The amount of CR or Cu (II) ions adsorbed 
(mg/g) was calculated based on the following mass balance 
equation:

Here, qt is the amount of CR or Cu (II) ions adsorbed on 
the beads at a predetermined time per gram dry weight of 
the adsorbent, mg/g; C0 is the initial concentration of CR or 
Cu (II) in the solution, mg/L; Ct is the concentration of CR 
or Cu (II) in the solution at time t, mg/L; V is the volume of 
the solution, L; and W is the weight of the hydrogel beads, g.

An elemental analysis of the samples before and after 
adsorption was performed by EDS (X-Max 80 Silicon Drift 
Detector, Oxford Instruments, UK).

2.6  Antibacterial studies

The antimicrobial efficacy of Ag@beads was evaluated 
against Escherichia coli ATCC BAA 2196 (EC) and Staphy-
lococcus aureus ATCC 12600 (SA). All bacteriological 
media used in the study were procured from Difco (Difco 
Becton, MD, USA). EC and SA were grown in tryptic soy 
broth (TSB) at 37 °C overnight. After incubation, the cul-
tures were centrifuged (3000 ×g, 12 min, 4 ºC) and washed 
twice with phosphate-buffered saline (PBS; pH 7.0). The 
pellet was then resuspended in PBS and used as the inocu-
lum. Bacterial counts were confirmed following serial dilu-
tion and plating on Tryptic Soy agar (TSA). The hydro-
gel bead samples were soaked and washed with sterilized 
ultrapure water for 24 h to remove any existing bacteria, and 

qt(mg∕g) =
(C

0
− Ct)

W
× V

then the beads were plated on TSA to verify absence of any 
bacterial growth. The antibacterial activity of the Ag@beads 
was tested at two (0.2 and 0.5 g/mL) and at two tempera-
tures [optimum (37°C) and ambient (24°C)]. The washed 
overnight culture was appropriately diluted in TSB to obtain 
an inoculum of  106 CFU/mL. This resuspended culture was 
then treated with the specified concentrations of Ag@beads 
and incubated at their respective temperatures with continu-
ous shaking for 24 h. Another batch of inoculum that was 
not exposed to the Ag@beads (control) was also included in 
the study. At different intervals (0, 1.5, 3, 6, 12, and 24 h), 
the surviving bacterial population was determined by dilu-
tion and plating on TSA [31]. The assay for each bacterial 
species and treatment was run in duplicate, and the entire 
experiment was repeated three times.

2.7  Statistical analysis

All of the results were presented as the mean ± standard 
deviation (SD) of at least triplicate determinations. The data 
were analyzed using one-way analysis of variance (ANOVA) 
with Tukey’s multiple-comparison test to compare the sig-
nificance among the samples. The p was set at 0.05. For the 
antibacterial assay, bacterial counts at different time periods 
were log transformed and tested for significance at a p value 
of <0.05 using the PROC GLIMMIX procedure of SAS 
(version 9.2; SAS Institute Inc., Cary, NC).

3  Results and discussion

3.1  Physicochemical characterization

3.1.1  Morphological observation

The digital photographs of freshly prepared chitosan beads, 
PDA-beads, and Ag@beads are shown in Fig.  2A, B,  
and C, respectively. As evident from the photographs, the 
beads were spherical in shape with approximate diameter 
of 2.5 mm. The prepared chitosan beads were pearl white 
in appearance (Fig. 2A). Upon PDA surface functionaliza-
tion, the PDA-beads turned brown in color (Fig. 2B) and 
ultimately dark brown after immobilization of silver nano-
particles (Ag@beads: Fig. 2C). Based on previous literature, 
the polymerization of dopamine and formation of PDA is 
initiated through a solution oxidation method under basic 
conditions, during which the oxygen serves as an oxidant 
and dopamine serves as the monomeric unit that can be oxi-
dized and spontaneously self-polymerized [32]. Thus, the 
obtained PDA-beads exhibited a typical brownish color due 
to the presence of PDA [33]. After reduction of  AgNO3, 
the Ag@beads showed a dark brown color, indicating the 
synthesis of silver nanoparticles [34]. The morphology and 
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surface details of the oven-dried beads were then viewed 
under SEM (Fig. 3). As can be seen from Fig. 3A, the dried 
chitosan beads had an oval shape with smooth surface, while 
the Ag@beads exhibited a more robust polymer network and 
spherical shape with a diameter of about 600 μm and could 
free-stand after drying (Fig. 3D). A smooth and uniform 
surface morphology was observed for the chitosan beads 
(Fig. 3B), while the surface of the Ag@beads was relatively 
rough and covered with particles/granules of sizes ranging 
from 50 nm to several hundred nanometers (Fig. 3E), which 
was similar to AgNPs observed in previous studies [35, 36]. 
Figure 3C and F show the cross-sectional morphology of 
chitosan beads and Ag@beads. The chitosan beads presented 
a typical hydrogel morphology with porous and highly net-
worked structure (Fig. 3C). After modifications, the Ag@
beads maintained the hydrogel porous structure of chitosan 
beads, and many nano-sized particles were observed that 
were well dispersed in the polymer matrix (Fig. 3F). The 
presence of those particles could be caused by diffusion of 

AgNPs from the surface to the interior of the hydrogel beads. 
EDS spectra of the Ag@beads were recorded to further con-
firm the presence of AgNPs within the system (Fig. 4). The 
EDS results showed that the AgNPs were uniformly dis-
tributed over the entire surface as well as embedded inside 
of the Ag@beads as can be seen from the cross-sectional 
view. Therefore, it was concluded that PDA was capable of 
reducing silver ions to AgNPs and the AgNPs were able to 
migrate into the hydrogel beads.

3.1.2  FTIR analysis

To study the possible interactions between chitosan and other 
components in the formation of the Ag@beads, FTIR spec-
troscopy was employed to monitor the transformation of the 
chemical bonds in chitosan, OD-chitosan, PDA-chitosan, and 
Ag@beads, as exhibited in Fig. 5. Chitosan beads showed 
the typical bands of chitosan polymer, a typical spectrum 
with three characteristic peaks at 3357, 1653, and 1590  cm−1, 

Fig. 2  Digital photos of (A) 
chitosan beads; (B) PDA-beads; 
and (C) Ag@beads

Fig. 3  SEM images of chitosan 
beads and Ag@beads. Overview 
of chitosan beads (A) and Ag@
beads (D). Surface morphology 
of chitosan beads (B) and Ag@
beads (E). Cross-sectional view 
of beads from chitosan beads 
(C) and Ag@beads (F)
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being O–H stretching, C=O stretching from amide I, N–H 
bending, and C–N stretching from amide II, respectively [37] 
(Fig. 5A). After crosslinking with OD, the absorption peaks 
corresponding to imine bonds appeared at 1613–1631  cm−1, 
which were caused by the reaction occurring between the 
amino groups of the chitosan and the aldehyde groups of 
the OD. However, it is difficult to identify this peak in the 
spectra of the OD-chitosan beads, which might be obscured 
by the overlay of the imine bond with the amide bond from 
chitosan [38] (Fig. 5B). After adsorption of the PDA coat-
ing, the FTIR spectrum of the hydrogel beads exhibited 
some characteristic peaks of PDA at 1600  cm−1 and 1504 
 cm−1 corresponding to the C=C resonance vibration of the 

aromatic group [39]. However, both of them overlapped 
with the peak at 1644  cm−1 (C=O stretching from amide 
I in chitosan) (Fig. 5C). Upon the reduction of silver ions 
into nanoparticles, the C=O stretching bands at about 1644 
 cm−1 shifted to 1636  cm−1 accompanied by a decrease in 
intensity in the case of Ag@beads (Fig. 5D). These changes 
suggest the existence of a covalent link between carboxylic 
anions and silver ions, forming silver–carboxylate bonds that 
might interact with the polymeric backbone chains through 
hydrophobic and Van der Waals forces [40]. Simultaneously, 
the absorption band at 3350  cm−1 shifted to 3272  cm−1, pos-
sibly indicating that AgNPs bind to the –OH groups and are 
stabilized by hydrogen bonding in the hydrogel matrices [41].

Fig. 4  EDS results of Ag@
beads

Fig. 5  FTIR spectra of (A) 
chitosan; (B) OD-chitosan; (C) 
PDA-chitosan; and (D) Ag@
beads
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3.2  Swelling behavior

The swelling behavior of Ag@beads at different pHs is 
shown in Fig. 6. Within the first 1 h, the hydrogel beads dis-
played rapid swelling, and then gradually reached an equi-
librium value of 160%, 100%, and 80%, which was observed 
after 3, 2, and 1 h for pH 5, 7, and 9, respectively. Swelling 
occurs when water molecules are absorbed by the hydrogel 
beads. Initially, the water molecules form hydrogen bonds 
with hydrophilic functional groups (e.g., hydroxyl groups) 
present in the polymer chains of chitosan. As swelling pro-
gresses, more water molecules become orientated around 
bound water to form network-like structures or clusters. 
Finally, excess water enters freely into the gel network 
resulting in a greater degree of swelling [42]. The equilib-
rium swelling rate of Ag@beads decreased as pH increased 
from 5 to 9, which is consistent with findings in previous 
studies [43, 44]. Such swelling behavior has been attributed 

to the changes in gel structure in acidic medium brought 
about by the protonation of chitosan amino groups, which 
leads to the dissociation of the hydrogen bonding between 
amino and other groups within Ag@beads [44]. A previ-
ous study reported that as the pH increased from 4 to 9, the 
swelling rate of bare chitosan beads decreased from 468% 
to 247% [43], which showed higher swelling capacity as 
compared to Ag@beads. This might be due to the fact that 
binding of AgNPs with functional groups of chitosan result-
ing in highly cross-linked structure which in turn lowers its 
swelling capacity and water absorption ability [45].

3.3  Adsorption properties

Adsorption experiments using organic dye (i.e., CR) and 
heavy metal (i.e., Cu (II)) were carried out to determine the 
adsorption capacity of Ag@beads with chitosan hydrogel 
beads functioning as a control. The adsorption kinetics of 
CR (A) and Cu (II) (B) in solution with an initial concentra-
tion of 200 ppm by the Ag@beads and chitosan hydrogel 
beads are illustrated in Fig. 7. The adsorption of CR on chi-
tosan beads and Ag@beads was rapidly increased through 
the first 4 h, and then the adsorption capacity at equilibrium 
state was reached at about 4 and 7 mg/g, respectively, as 
displayed in Fig. 7A. As shown in Fig. 7B, the adsorption of 
Cu (II) on chitosan beads and Ag@beads increased sharply 
within the first 1 h and then slowly increased until 6 h. The 
adsorption capacity at equilibrium state was reached at 7 and 
9 mg/g, respectively. The rapid adsorption in the initial stage 
was ascribed to the film formation on the exterior surface 
of hydrogel network, while the following slow adsorption 
process was due to the intraparticle diffusion process [46].

To further confirm the adsorption capacity of hydrogel 
beads, EDS was used to detect the S and Cu (II) originat-
ing from CR and  CuSO4, respectively. As shown in Fig. 8, 
the Ag@beads (3.27 ± 0.81%) exhibited significantly higher 
surface S content compared to chitosan beads (1.88 ± 
0.24%), indicating higher CR adsorption efficacy. Similarly, 
a significantly higher Cu (II) content in Ag@beads (8.09 

Fig. 6  Swelling test results of Ag@beads under different pHs

Fig. 7  Plots of  qt vs. contact 
time for CR (A) and Cu (II) (B) 
adsorption onto the chitosan 
beads (control) and Ag@beads. 
Initial CR and Cu (II) concen-
tration: 200 ppm
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± 0.49%) was detected after the  CuSO4 absorption test in 
comparison to chitosan beads (3.56 ± 1.29). In summary, the 
presence of PDA and silver nanoparticle layers could signifi-
cantly increase the adsorption capacity of hydrogel beads. It 
is well known that chitosan hydrogel beads are regarded as a 
potential adsorbent for effective removal of dyes and heavy 
metals in wastewater treatment due to the presence of abun-
dant amino (–NH2) and hydroxyl (–OH) groups, as well as a 
highly connected network structure [47–49]. The immobili-
zation of AgNPs resulted in significantly enhanced adsorp-
tion capacity and performance of Ag@beads for CR and Cu 
(II) due to ion exchange and metal complexation mecha-
nisms [21, 50]. The ion exchange mechanism might occur 
as Cu (II) substitutes the silver ions in hydrogel beads. The 
metal complexation mechanism may occur via the coordina-
tion of the –NH2 and –OH groups of chitosan with Cu (II). 
Each of amino group’s nitrogen as well as hydroxyl group’s 
oxygen has a pair of electrons, which could be accepted by 
metal cation. It has been reported that the ability of amino 
group’s nitrogen to donate its electron is stronger than the 
hydroxyl group’s oxygen [51].

3.4  Antibacterial assessment

The antibacterial performance of Ag@beads against EC 
and SA at two dosages of 0.2 and 0.5 g beads in 1 mL of 
bacterial culture at 37 °C and room temperature is shown in 
Fig. 9. Untreated bacteria (control) grew from ~6 log CFU/
mL to 9 log CFU/mL by the end of the 24-h incubation at 
37 °C (Fig. 9A and B) and room temperature (Fig. 9C and  
D). At 37 °C, Ag@beads at 0.2 and 0.5 g could completely 
inhibit EC after 12 and 1.5 h of incubation, respectively 
(Fig. 9A). However with SA, exposure to Ag@beads (0.2 
and 0.5 g/mL) did not result in a complete inactivation. How-
ever, when compared to the control, Ag@beads resulted in 
greater than 6 log reduction in SA population (Fig. 9B). At  

room temperature, 0.2 g of Ag@beads treatment reduced 
EC populations to 4.5 log CFU/mL after 24 h, whereas 
Ag@beads at 0.5 g could completely inhibit EC after 6 h 
(Fig. 9C). Exposure to 0.2 g beads resulted in a bacteriostatic 
effect on SA with no significant increase in population at 
the end of the 24-h study, while 0.5 g of beads was suffi-
cient to decrease bacterial number to 4 log CFU/mL at the 
end of the study (Fig. 9D). In both cases, approximately 9 
log CFU/mL of SA was recovered from the control samples 
at room temperature. Considering that the chitosan beads, 
OD-beads, and PDA-beads showed no antibacterial activity 
(data not shown), antibacterial activity was directly related 
to the AgNPs and silver ions. It has been proposed that the 
antibacterial mechanisms of AgNPs and silver ions include 
cell wall and membrane damage, intracellular penetration 
and damage, and oxidative stress [52, 53].

The antimicrobial activity on the Gram-negative bacteria 
(EC: Fig. 9A and C) was slightly higher than that on the 
Gram-positive bacteria (SA: Fig. 9B and D), in agreement 
with previous studies on silver and chitosan-silver compos-
ites [54]. It has been reported that the minimum inhibitory 
concentrations (MICs) of AgNPs with the particle size of 
13.5 nm at 37 °C were 6.6 and 33 nM for Escherichia coli 
ATCC 43886 and Staphylococcus aureus ATCC 19636, 
respectively [55]. Another study indicated that the MIC of 
myramisin-capped AgNPs with the particle size of 10 nm 
at 37 °C was < 1 and 5 μg/mL for Escherichia coli ATCC 
25922 and Staphylococcus aureus FDA 209P, respectively 
[56]. The peptidoglycan layer in the Gram-positive bacterial 
cell wall provides a natural barrier which prevents penetra-
tion of the nanoparticles, while Gram-negative bacteria have 
thinner cell wall and less peptidoglycan [53, 55]. Moreover, 
the antibacterial activity of Ag@beads was more effective 
at 37 °C (Fig. 9A and B) than at room temperature (Fig. 9C  
and D). A number of studies have revealed that the silver ions 
released from AgNPs have inhibitory effects by targeting a 

Fig. 8  EDS results of Ag@
beads and chitosan beads sur-
face after adsorption
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broad spectrum of microorganisms [57–59], and silver ions 
release rates increase with temperature in the range 0–37 °C 
[60]. Therefore, the Ag@beads exhibited strong antibacterial 
property, owing to the AgNP contribution.

4  Conclusions

In conclusion, the results of this study suggest that the chi-
tosan hydrogel beads can be successfully immobilized with 
AgNPs with the assistance of a PDA coating after cross-
linking with OD in order to simultaneously enhance anti-
microbial and adsorption activity. The obtained fresh Ag@
beads exhibited dark brown color and spherical shape with 
an average size of 2.5 mm, and the dried beads had a size of 
about 600 μm. The prepared hydrogel beads showed pH sen-
sitivity with the highest swelling degree at low pH, probably 
because the protonation of chitosan amino groups caused the 
dissociation of hydrogen bonds between amino and other 
groups within Ag@beads. Moreover, the results of dye and 
metal adsorption studies showed that AgNPs improved the 
adsorption performance of the chitosan hydrogel beads 
through ion exchange and metal complexation mechanisms. 
In addition, the Ag@beads exhibited strong antibacterial 
activity, owing to the AgNP contribution, and exhibited 

higher antibacterial activity against Gram-negative bacteria 
than Gram-positive bacteria. Therefore, Ag@beads are good 
candidates to employ in an integrative approach to efficiently 
control both the microbial and chemical quality of waste-
water. More studies on their cytotoxicity and environmental 
toxicity are required to accurately assess their impact on the 
environment and public health.
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