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Abstract
Traditional Fe-based oxide with poor intrinsic conductivity, severe volume expansion, and structure destruction exhibits 
the poor cyclic performance for anode materials of lithium ion batteries (LIBs). Heteroatomic doping Fe-based oxide with 
nanoarchitectures is deemed to settle the above problems effectively. Herein, with sulfur (S) doping, three-dimensional porous 
flower-like Fe2O3 (denoted as S- Fe2O3) prepared via ordinary solvothermal reaction and calcining process was ingeniously 
designed as anode materials for LIBs. The S doping changed the morphology, improved the electrical conductivity, and pro-
vided more active sites for lithium storage. The flower-like S-Fe2O3 made up of plentiful carbon encapsulated nanoparticles 
not only relieved the volume expansion but also provided the connected conductive network. The as-prepared flower-like 
S-Fe2O3 electrode delivered a high discharge/charge capacity (1570.8 mAh g−1 at 0.1 A g−1 after 100 cycles) and the excellent 
long-cycle performance (521.3 mAh g−1 at 2.0 A g−1 after 1000 cycles). S doping and nanoarchitectures engineering in this 
work provide rational preparation strategies for composites containing transition metal oxides toward energy storage system.
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1  Introduction

Lithium ion batteries (LIBs), the new secondary energy 
storage equipment, are applied in portable electronic equip-
ment and large‐scale electrical vehicle markets due to high 
energy density, environment-friendly, and low self-discharge 
[1–10]. However, the commercial graphite anode materials, 
with low specific capacity (372 mAh g−1) and inferior secu-
rity, could not satisfy the large demand for energy storage 
[11–13]. The task for exploring a high-energy density anode 
material to replace the traditional graphite is extremely chal-
lenging. In recent years, traditional Fe-based oxides with 
low cost, abundant raw materials, and non-toxic materials 
have been prospect and industrialization of anode materials 
[14–16]. Nevertheless, the poor intrinsic electrical conduc-
tivity and volume expansion immensely restrict the lithium 
storage performance of traditional Fe-based oxides.

Doping and nanoarchitectures engineering are promis-
ing methods in order to settle above unsatisfied problems 
[17–27]. The strategies of constructing nanoarchitectures 
and compositing with carbon materials can effectively guar-
antee the structural stability, shorten the diffusion distance 
of lithium ions, relieve volume expansion, and increase 
the conductivity [28–32]. Wu et al. reported the γ-Fe2O3 
nanoparticles stabilized by holey reduce graphene oxide via 
using in situ etching route, which delivered a high revers-
ible capacity of 1141 mAh g−1 at 0.5 A g−1 after 230 cycles 
[33]. Ju and co-workers reported composites of reduced 
graphene oxide and MoS2 nanosheets modified by Fe2O3 
nanoparticles, which delivered the capacity of 906 mAh g−1 
at 0.2 A g−1 after 100 cycles [34]. Although the researchers 
have paid tremendous efforts, it cannot solve the problem 
fundamentally.

It is worth noting that doping engineering (cations and 
anions) has been used to regulate the morphology, enhance 
the electrical conductivity, and provided more active sites 
to improve the performance of LIBs [14, 35, 36]. Surface 
doping of cationic atoms can enhance the synergistic effect 
of metals and increase more active sites [36]. For exam-
ple, Pan et al. prepared Cr-doped Fe2O3/reduced graphene 
oxide nanocomposites with high capacity of 1062 mAh g−1 
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at 0.1 g−1 over 180 cycles [14]. Ni and Co co-doped yolk-
shell–type Fe2O3@TiO2 hollow microspheres were synthe-
sized by Qi et al., delivering the capacity of 562 mAh g−1 
at 0.2 A g−1 after 200 cycles [37]. Anion atom doping can 
alter the distribution of charge within a crystal for electrode 
materials, improve the conductivity, and provide more Li 
adsorption sites [14, 35]. Due to the radius of sulfur (S) 
atoms higher than that of oxygen atoms, more space in tra-
ditional Fe-based oxide after S doping is conducive to better 
transfer of lithium ions and maintains the structure stability. 
The literature on S-doped Fe2O3 for LIBs has been rarely 
reported. For instance, Yang et al. constructed self-standing 
S-doped Fe2O3 for rechargeable NiCo-Fe batteries with high 
energy storage capacity [38].

Herein, with S doping, the three-dimensional porous 
flower-like Fe2O3 (denoted as S-Fe2O3) composites were 
prepared via oversimplified solvothermal method and calcin-
ing process for LIBs. This specific structure offered plenti-
ful benefits: first, S doping modulated the inner electronic 
structure of Fe2O3, improved the intrinsic conductivity, pro-
vided more active sites, and facilitated the diffusion rate of 
Li ions. Second, the carbon shell–coated nanoparticles were 
anchored on micron flowers to form the original morphol-
ogy. Benefit by the distinctive morphology, ultra-small nano-
particles decreased the diffusion distances; the interwoven 
carbon shell increased the electrical conductivity, impeded 
the agglomeration of particles, and relieved the volume 
expansion. As we expected, the flower-like S-Fe2O3 elec-
trode delivered the excellent electrochemical performances.

2 � Experimental

2.1 � Chemical and reagents

Ferric chloride hexahydrate (FeCl3·6H2O, AR), ethanol 
absolute (C2H6O, AR), and ethylene glycol (EG, C2H6O2, 
AR) were purchased by Shanghai Sinopsin Group Chemical 
Reagent Co. LTD. Hexamethylenetetramine (C6H12N4, ACS, 
99%) was acquired from Shanghai Aladdin Industrial Com-
pany. Thiourea (H2NCSNH2, 99%) was bought from Tianjin 
Guangfu Science and Technology Development Co. LTD.

2.2 � Preparation of flower‑like S‑Fe2O3

In the typical synthesis process, 0.27 g FeCl3·6H2O and 1 g 
C6H12N4 were dissolved in 30-ml EG with stirring for 1 h 
to form the yellow clarification solution. Then, the mixed 
solution was transferred into 50-ml Teflon-lined stainless 
autoclave at 160 ºC for 8 h. The dark yellow precipitate was 
gathered with washing three times with anhydrous ethanol 
and deionized water after cooling to room temperature. Next, 
the as-prepared precipitate was dried at 60 ºC overnight 

(denoted as flower-Fe). The flower-Fe samples were heated 
up to 500 ºC for 2 h with the heating rate of 3 ºC/min to 
obtain the flower-like Fe2O3.

One hundred twenty milligrams thiourea was dissolved 
in 35 ml ethanol absolute with stirring for 30 min to get 
the transparent solution. Subsequently, 40 mg flower-like 
Fe2O3 was added into the above solution with ultrasound for 
30 min. Later, the solution was loaded into the 50-ml Teflon-
lined stainless autoclave at 180 ºC for 4 h. The sample was 
collected after cooling to room temperature via washing 
several times with ethanol absolute. Finally, the flower-like 
S-Fe2O3 was received by vacuum drying at 60 ºC for 8 h.

2.3 � Characterization and apparatus

The phase analysis and composition of flower-like Fe2O3 and 
S-Fe2O3 were measure by X-ray diffraction (XRD, Miniflex 
600, Japan, λ = 1.5406 Å). Field emission scanning electron 
microscope (FESEM, Hitachi SU-70, Tokyo, Japan) and 
transmission electron microscope (TEM, JEOL JEM-2100 
F, Japan) were employed to characterize the morphology 
and structure of flower-like Fe2O3 and S-Fe2O3. X-ray pho-
toelectron spectroscopy (XPS) was conducted with Thermo 
ESCALAB 250XI (USA). The specific surface area and 
pore structure of flower-like Fe2O3 and S-Fe2O3 materials 
were performed by N2 adsorption/desorption isotherms with 
Micromeritics Instrument Corp ASAP2460.

2.4 � Electrochemical measurements

Electrochemical performances of flower-like Fe2O3 and 
S-Fe2O3 samples were gained by assembling the 2032-
type coin cells in glove box replenished with Ar gas. The 
cathode of half-cell was loaded with 70% active materi-
als (flower-like Fe2O3 or S-Fe2O3), 20% super-P, and 10% 
polyvinylidene fluoride. The weight of active materials was 
1.1 ± 0.2 mg. The lithium foils were picked as reference 
anode. The mixture of 1 M LiPF6 in ethylene carbonate 
(EC) and diethyl carbonate (DEC) (1:1 in mass ratio) was 
used as electrolyte. The charge/discharge curves, rate, and 
cycle performances of flower-like Fe2O3 and S-Fe2O3 were 
measured by LAND CT2001A (China). The cyclic voltam-
metry (CV) and electrochemical impedance spectroscopy 
(EIS) curves of Fe2O3 and S-Fe2O3 hybrids were tested by 
CHI660D (China).

3 � Results and discussion

3.1 � Structural and morphological characterization

Figure 1 shows the synthesis process of the obtained flower-
like S-Fe2O3 composite. First, the flower-Fe was prepared 
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via sample solvothermal reaction. Then, the flower-Fe 
sample was transformed into Fe2O3 by annealing process. 
Finally, the Fe2O3 product was doped by S atoms by hydro-
thermal reaction with thiourea.

The phase composition of as-prepared samples was char-
acterized by XRD. Figure 2a monitors the XRD patterns of 
flower-like Fe2O3 and S-Fe2O3 hybrids. As you can see, all 
the sharp diffraction peaks located at 30.3, 35.7, 43.3, 53.8, 
57.4, and 63.0 could be indexed to the lattice planes of (2 0 
6), (1 1 9), (0 0 12), (2 2 12), (1 1 15), and (4 0 12), match-
ing with the standard card (PDF no. 25–1402) of tetragonal 
γ-Fe2O3. N2 adsorption–desorption isotherms were acquired 
to analyze the specific surface area and porosity of S-Fe2O3 
hybrids. In Fig. 2b, N2 adsorption–desorption isotherms 
were ascribed to the type IV hysteresis loop, revealing the 
mesoporous properties of S-Fe2O3 hybrids. The specific sur-
face area of flower-like S-Fe2O3 was about 51.98 m2 g−1. The 

pore-size distribution curves of flower-like S-Fe2O3 exhib-
ited the pore size range of 1.57 to 25 nm and average pore 
diameter of 16.7 nm based on the Barrett-Joyner-Halenda 
(BJH) way (Fig. 2c). The large specific surface area and 
a mass of pore channels provided the more contacted area 
between the electrode and electrolyte. The valence states of 
elements on the sample surface were performed by XPS. 
Fig. S1a shows the survey spectrum of flower-like S-Fe2O3, 
indicating the existence of C, N, O, S, and Fe elements. The 
C 1s spectrum of flower-like S-Fe2O3 in Fig. S1b was fitted 
with four peaks at 284.6, 285.5, 286.4, and 288.7 eV cor-
responding to C = C, C–N, C–O, and O–C = O bonds [39, 
40]. As shown in Fig. S1c, the N 1s spectrum of flower-
like S-Fe2O3 exhibited that the peaks at 398.6, 399.9, and 
401.2  eV were ascribed to the pyridinic-N, pyrrolic-N, 
and graphitic-N [41, 42]. In high-resolution Fe 2p spectra 
(Fig. 2d), the peaks situated at 710.8, 712.8, and 724.6 were 

Fig. 1   Synthesis process of the 
flower-like S-Fe2O3 composites
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Fig. 2   XRD patterns of Fe2O3 and S-Fe2O3 (a); N2 adsorption/desorption isotherms of S-Fe2O3 (b); the corresponding BJH pore size distribu-
tion of S-Fe2O3 (c); the high-resolution XPS spectra of S-Fe2O3: Fe 2p (d), O 1 s (e), and S 2p (f)

718 Advanced Composites and Hybrid Materials  (2021) 4:716–724



attributed to the main valence state (Fe 2p3/2, C–O–Fe, and 
Fe 2p3/2) [33, 43, 44]. The two satellites peaks were posi-
tioned at 718.8 and 730.5 eV. The O 1s spectrum of flower-
like S-Fe2O3 displayed the peaks at 529.6 and 530.5 eV 
related to the Fe–O and C = O bonds (Fig. 2e) [34, 45, 46]. 
The S 2p spectrum of flower-like S-Fe2O3 demonstrated 
three typical peaks at 162.9, 164.2, and 167.5 eV (Fig. 2f), 
which were affiliated to the S 2p3/2, S 2p1/2 states and S = O 
bond, respectively [36, 38]. The XPS results proved that S 
atoms were successfully doped into Fe2O3.

The morphology and internal structure of as-synthesized 
samples were carried out by FESEM and TEM. As shown in 
Fig. S2a, the acquired flower-Fe was highly similar uniform 
morphology. The size of flower-Fe was about 2 μm, loaded 
with abundant nanosheets with the thickness of 30–40 nm 
(Fig. 3a). After annealing, the Fe2O3 samples still maintained 
the morphology of flower, and the nanosheets were wrin-
kled (Figs. 3b and S2b). Treated with thiourea, the obtained 
S-Fe2O3 samples could maintain a faint flower shape, and the 
thickness of the nanosheets became thicker (Figs. 3c, d and 
S2c), proving that the morphology of Fe2O3 was controlled 
by S doping. In Fig. 3e, the low-magnification TEM images 
of S-Fe2O3 sample confirmed the flower-like morphology 
with porous structure. And the flower-like S-Fe2O3 sample 
contained many homogeneous nanoparticles with the diam-
eter of 15–20 nm (Fig. 3f). The high-resolution transmis-
sion electron microscopy (HRTEM) image of S-Fe2O3 is 
shown in Fig. 3g. The interplanar spacings of 0.25, 0.29, 
and 0.48 nm were associated to the lattice planes of (119), 
(206), and (113), corresponding to XRD patterns (Fig. 2a). 
Subsequently, the lattice distortion may be considered as 
the effect of S doping. Moreover, it was observed that the 

nanoparticles were uniformly coated by carbon shell. The 
selected area electron diffraction (SAED) image of flower-
like S-Fe2O3 is shown in Fig. 3h. The diffraction rings of 
S-Fe2O3 were index to the lattice planes of (6 2 6), (4 0 12), 
(1 1 15), (1 1 9), (2 0 6), and (1 1 6) consistent with the XRD 
results and HRTEM images.

3.2 � Electrochemical characterization

The lithium storage properties of flower-like Fe2O3 and 
S-Fe2O3 electrodes were evaluated with the coin-type half-
cell. Figure 4a exhibits the first three CV curves of flower-
like S-Fe2O3 anode at 0.2 mV s−1. In the first cathode scan-
ning process, the peaks at 1.41 and 0.88 V were associated 
with intercalation of Li+ into the Fe2O3 to form LixFe2O3 
and the transformation of Fe3+ to Fe2+, respectively [5, 33]. 
And the peak at 0.68 V was ascribed to the formation of 
the solid electrolyte interface (SEI) films and the reduc-
tion of Fe2+ to Fe0 [13, 15]. During the anodic scanning 
process, the peaks located at 1.63 and 1.8 V were attrib-
uted to the oxidation of Fe0 to Fe2+ and further conversion 
of Fe2+ to Fe3+ [13, 45]. In the second cathode scanning 
process, the peaks were shifted to 0.79 and 0.96 V, corre-
sponding to the transformation of Fe3+ to Fe2+ and Fe2+ to 
Fe0. A well-coincident last two CV curves indicated a sta-
ble lithiation/delithiation process. The galvanostatic charge/
discharge profiles of flower-like S-Fe2O3 for 1st, 3rd, 5th, 
20th, 50th, and 100th cycle at the current density of 0.1 A 
g−1 are shown in Fig. 4b. The S-Fe2O3 electrode delivered 
the discharge/charge capacity of 1298.5/938.1 mAh g−1 for 
the first cycle with Coulombic efficiency of 72.3% higher 
than that of Fe2O3 electrode (68.5%). And the capacity loss  

Fig. 3   FESEM images of flower-Fe (a), Fe2O3 (b) and S-Fe2O3 (c, d); TEM images of S-Fe2O3 (e, f); HRTEM images of S-Fe2O3 (g); SAED 
pattern of S-Fe2O3 (h)
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was attributed to the formation of solid electrolyte inter-
phase (SEI) films [43, 46]. In addition, the voltage plat-
forms were also corresponding to the peaks of CV curves 
(Fig. 4a). The cycle performances of Fe2O3 and S-Fe2O3 
electrodes at 0.1 A g−1 after 100 cycles are shown in 

Fig. 4c, and the specific capacity of S-Fe2O3 electrode was 
obviously better than that of Fe2O3 electrode. In addition, 
the S-Fe2O3 electrode maintains the capacities of 1570.8 
mAh g−1 after 100 cycles, demonstrating the remarkable 
lithium storage properties. The reason for capacity increase 
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Fig. 4   CV curves for the first three cycles of S-Fe2O3 at 0.2 mV s−1 
(a); galvanostatic charge/discharge profiles of S-Fe2O3 at the 1st, 3rd, 
5th, 20th, 50th, and 100th at 0.1 A g−1 (b); cycle performance of 

Fe2O3 and S-Fe2O3 at 0.1 A g−1 (c); rate performances of Fe2O3 and 
S-Fe2O3 (d); long-cyclic performance of Fe2O3 and S-Fe2O3 at 2.0 A 
g−1 (e)
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of S-Fe2O3 and Fe2O3 electrodes possibly was attributed 
to intercalation/de-intercalation process in high-voltage, 
conversion reaction in low voltage and electrode activa-
tion [47–50]. Figure 4d displays the rate performances of 
Fe2O3 and S-Fe2O3 electrodes at various current densities. 
It was found that the S-Fe2O3 electrode delivered the higher 
capacities of 1099 (10th), 1063.7 (20th), 977.1 (30th), 734.6 
(40th), 619.8 (50th), and 468.4 mAh g−1 at the current den-
sity of 0.1, 0.2, 0.5, 1.0, 2.0, and 5.0 A g−1. The capacity 
still could recover to initial value when the current dropped 
down to 0.1 A g−1, confirming the excellent rate perfor-
mance. Figure 4e displays the long-term cycling perfor-
mance of flower-like Fe2O3 and S-Fe2O3 electrode at 2.0 A 
g−1 after 1000 cycles. The S-Fe2O3 electrode delivered the 
higher capacity of 521.3 mAh g−1 than that of 424.0 mAh 
g−1 (Fe2O3), revealing good cyclic stability.

Figure 5a shows the electrochemical impedance spec-
troscopy (EIS) and the fitting curves of Fe2O3 and S-Fe2O3 
hybrids. Obviously, according to circuit diagram (R(QR)
(Q(RW))), the fitted results are shown in Table S1. And the 
Rct value of S-Fe2O3 was lower than that of Fe2O3, exhibiting 
the higher charge transfer capacity owing to the existence of 
S doping. To further pursue the sources of high-rate perfor-
mance, the CV curves of S-Fe2O3 and Fe2O3 electrodes at 
various scanning rates from 0.2 to 1.0 mV s−1 are identified 
in Figs. 5b and S3a. The high capacities of S-Fe2O3 and 
Fe2O3 electrodes were related to the pseudo-capacitance and 
diffusion behaviors according to the Randles–Sevcik Eq. (1) 
[11, 17]:

(1)i = av
b

Fig. 5   Electrochemical imped-
ance spectra of Fe2O3 and 
S-Fe2O3 (a); CV curves of 
S-Fe2O3 electrode at different 
scan rates of 0.2–1.0 mV s−1 
(b); fitting curves of the 
b-values of S-Fe2O3 (c); 
capacitive contributions under 
purple shaded areas of S-Fe2O3 
electrode at the scanning rate of 
1.0 mV s−1 (d); the contribution 
ratio of capacitive capacities for 
Fe2O3 and S-Fe2O3 electrode at 
different scan rates (e)
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Herein, the b = 0.5 represents the diffusion process, 
and the b = 1.0 is on behalf of pseudo-capacitance behav-
ior. However, the value of b between 0.5 and 1.0 indicates 
that the electrochemical reactions are controlled by both 
pseudo-capacitance and diffusion behaviors. According to 
CV curves of S-Fe2O3 and Fe2O3 electrodes during different 
sweeping speed (Figs. 5b and S3a), the b values of peak1 
and peak2 were obtained and are shown in Figs. 5c and S3b. 
All the b values were between 0.5 and 1.0, which declared 
the influence of two kinds of behaviors. The specific pseudo-
capacitance and diffusion contributions of S-Fe2O3 and 
Fe2O3 electrodes were also calculated by Eq. (2) [12, 18]:

Herein, k1v is interrelated to the pseudo-capacitance 
contribution, and k2v1/2 is attached to the diffusion process. 
In Figs. 5d and S3c, the higher pseudo-capacitance contri-
bution of 68.2% (S-Fe2O3) than that of 65.8% (Fe2O3) at 
the scanning rate of 1.0 mV s−1 was obtained. In Fig. 5e, 
the pseudo-capacitance contribution of S-Fe2O3 electrode 
increased from 47.5 to 68.2% with the scanning rate increas-
ing from 0.2 to 1.0 mV s−1, which was higher than that of 
Fe2O3 electrode (43.3 to 62.6%), ascribed to more active 
sites induced by S doping. Fig. S4 shows the FESEM images 
of S-Fe2O3 electrode at 0.1 A g−1 after 100 cycles. Clearly, 
the S-Fe2O3 electrode maintained the original shape, dem-
onstrating a stable structure.

4 � Conclusions

In this paper, the three-dimensional porous flower-like 
S-doped Fe2O3 composites were fabricated successfully by 
solvothermal method and high-temperature annealing pro-
cess. The composition and microstructures of S-Fe2O3 com-
posites were conducted by XRD, TEM, XPS, and FESEM. 
Doping of S atoms changed the electron structure of Fe2O3 
and provided the more active sites for lithium storage. A 
micron flower composed of plentiful carbon shell–coated 
nanoparticles enhanced electrical conductivity, relieved the 
volume change, and provided a variety of diffusion channels 
of Li ions. As expected, the flower-like S-Fe2O3 electrode 
delivered the high specific capacity (1570.8 mAh g−1 after 
100 cycles at 0.1 A g−1) and outstanding long-cycle perfor-
mance (521.3 mAh g−1 at 2.0 A g−1 after 1000 cycles). The 
synergistic control of morphology and doping is a reason-
able way to fabricate high-performance TMO composites.
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