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Abstract
FeNb11O29 has a high theoretical capacity as a potential anode material for lithium-ion batteries; however, the practical capac-
ity of FeNb11O29 reported was unsatisfactory. In this study, a simple and efficient Al3+-doping technique was demonstrated 
to improve the electrochemical performance of FeNb11O29 successfully. The influences of the Al3+ doping amount were 
investigated. It was found that the crystal structure of FeNb11O29 could be preserved when a suitable amount of Al3+ was 
added, and that Al0.2Fe0.8Nb11O29 demonstrated better electrochemical performance than FeNb11O29 because the structure 
of Al0.2Fe0.8Nb11O29 is more stable. At 0.1C, Al0.2Fe0.8Nb11O29 possessed a high reversible capacity of 318 mAh g−1 with an 
initial-cycle Coulombic efficiency of 95.0%. Al0.2Fe0.8Nb11O29 exhibited outstanding cycling stability with capacity retention 
of 92.9% at 10C over after 1000 cycles. Moreover, A LiFePO4/Al0.2Fe0.8Nb11O29 full cell was prepared successfully with a 
discharge capacity of 206 mAh g−1. The full cell exhibited good cycling stability showing the capacity retention of 84.2% 
over after 200 cycles at 1C and 89.8% over after 1000 cycles at 5C, respectively. This work suggests that Al0.2Fe0.8Nb11O29 
has great application prospects in lithium-ion batteries.
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1  Introduction

Lithium-ion batteries (LIBs) are regarded as a kind of green 
power with good cycling performance and high energy den-
sity [1–5], which have become one of the hottest research 
topics these years. At present, the LIB anodes are normally 
composed of graphite-like materials because of their inex-
pensive and high theoretical capacity (372 mAh g−1) [6]. 
However, due to the relatively low rate capability, it is easy 

to cause the formation of thick solid electrolyte interface 
(SEI) layers and the growth of lithium dendrites which are 
hindering the application of graphite-anode materials [7]. 
Li4Ti5O12 has been explored to overcome these disadvan-
tages [8–10], which could avoid the formation of thick SEI 
layers and display good safety performance. However, the 
low theoretical capacity of Li4Ti5O12 (175 mAh g−1) limits 
its practical application. Therefore, it is necessary to explore 
novel anode material substitutes with similar advantages to 
Li4Ti5O12 but much higher theoretical capacities.

Recently, niobium oxide-based materials have attracted 
great attention due to their high theoretical capacities 
(374–403 mAh g−1) which are benefitted from the Nb4+/
Nb5+ and Nb3+/Nb4+ multi-electron redox couples. To date, 
a series of niobium oxide-based anode materials have been 
explored by our group, such as Nb25O62 [11], MoNb12O33 
[12], AlNb11O29 [13], Al0.5Nb24.5O62 [14], CrNb11O29 [15], 
Mg2Nb34O87 [16], GaNb11O29 [17], TiNb24O62 [18], and 
ZrNb24O62 [19]. FeNb11O29 [20], W3Nb14O44 [21], and 
K2Nb8O21 [22] were also found by other researchers to be 
good anode material candidates. In particularly, FeNb11O29 
has a theoretical capacity of 400 mAh g−1 owing to the 
existence of three Fe2+/Fe3+, Nb4+/Nb5+, and Nb3+/Nb4+ 
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redox couples (each formula unit of FeNb11O29 could 
transfer 23 electrons) [20]. However, the practical capaci-
ties of FeNb11O29 reported were only 168–273 mAh g−1 at 
0.1C [20, 23–25]. Therefore, it is of great significance to 
enhance the specific capacity of FeNb11O29 for practical 
applications.

Currently, rare works were reported for improving the 
electrochemical performance of FeNb11O29. Zheng et al. 
increased the specific capacity of FeNb11O29 from 226 to 
273 mAh g−1 at 0.1C by fabricating FeNb11O29 nanotubes, 
and the initial-cycle Coulombic efficiency was improved 
from 75.9 to 90.1% [20]. Lou et al. prepared Cr3+-doped 
FeNb11O29 (Cr0.2Fe0.8Nb11O29) with a specific capacity of 
254 mAh g−1 [24]. Lou et al. further enhanced the specific 
capacity of FeNb11O29 to 270 mAh g−1 through generat-
ing oxygen vacancies [25]. In electrochemical experiments, 
there are common methods used to improve the electrochem-
ical performance of electrode materials, such as carbon com-
posite [26–28], plasmonization [29, 30], surfactant-assisted 
process [31], and nanosizing [32, 33]. It is believed that dop-
ing is also a common and efficient method to improve the 
cycling performance and rate capability of electrode mate-
rials because of its easy operation, low-consumption, and 
large-scale production [34–45]. Aluminum (Al) has been 
paid more and more attention as a substitute for various 
electrode materials owning to its abundant in earth, non-
toxic and light characteristics [46, 47]. It has been found 
that Al doping could enhance the electrochemical perfor-
mance of anode materials significantly because the strong 
Al–O bonds favor the structural stability [48–50]. There-
fore, in this study, FeNb11O29 materials were also modified 
by doping with Al. The experimental results showed that 
Al3+ successfully and partically replaced Fe3+ and that the 
obtained Al0.2Fe0.8Nb11O29 materials preserved the crystal 
structure, grain size and morphology of FeNb11O29. Bet-
ter structural stability was achieved due to the strong Al–O 
bonds, which greatly enhanced the electrochemical perfor-
mance of FeNb11O29.

2 � Experimental

2.1 � Material synthesis

The AlxFe1-xNb11O29 (x = 0.1, 0.2, and 0.3) materials 
were synthesized via a simple solid-state reaction method 
by using Nb2O5 (Sinopharm, 99.9%), Al2O3 (Aladdin, 
99.0%), and Fe2O3 (Aladdin, 99.0%) as the raw materi-
als. Nb2O5, Fe2O3, and different contents of Al2O3 were 
mixed in ethanol, which were then ground in a high-energy 
ball-milling machine (SPEX 8000 M, USA) for 4 h. After 
drying, the ball-milled mixtures were sintered in a muffle 
furnace at 1300 °C in air for 4 h, forming AlxFe1-xNb11O29 

materials (x = 0.1, 0.2, and 0.3). For comparison, undoped 
FeNb11O29 counterpart was also fabricated with a similar 
procedure and without the use of Al2O3.

2.2 � Material characterization

The crystalline structures of the obtained samples were 
characterized by X-ray diffraction (XRD) on an X-ray dif-
fractometer (German Bruker D8). The phase purity and 
lattice parameters were determined by Rietveld refine-
ments, which were conducted by using the GSAS pro-
gram with the EXPGUI interface [51, 52]. Morphologies, 
particle sizes, and microstructures of synthesized samples 
were recorded by scanning electron microscopy (SEM, 
S-4800), high-resolution transmission electron microscopy 
(HRTEM, Tecnai G2 F20 S-TWIN, FEI), and energy dis-
persive X-ray spectrometer (EDX) mapping. The specific 
surface areas of the samples were determined by nitrogen 
adsorption/desorption device (ASAP 2460).

2.3 � Half‑cell measurement

The electrochemical performance of AlxFe1-xNb11O29/Li 
(x = 0, 0.1, and 0.2) was evaluated by employing CR2016-
type coin cells. Firstly, the working electrodes were prepared 
by mixing 70 wt% of AlxFe1-xNb11O29 (active material) pow-
der, 20 wt% of conductive carbon (Super P, battery level), 
and 10 wt% of polyvinylidene fluoride (PVDF) binder, 
thoroughly mixed in N-methylpyrrolidone (NMP) to form 
a homogeneous slurry. After stirring the slurry for 8 h, the 
slurry was coated onto a copper foil evenly. The mass load-
ing of AlxFe1-xNb11O29 was ~ 1.0 mg cm−2. Then, the coated 
foils were dried in a vacuum oven at 120 °C for 10 h and 
were cut into a circular plate with a diameter of 10 mm. The 
CR2016 coin cells were assembled in a glove box filled with 
argon gas (O2/H2O < 0.1 ppm) and consisted of an above as-
prepared electrode, a Li foil that acted as counter and refer-
ence electrodes, a microporous polypropylene film (Celgard 
2325) and electrolyte containing 1 M LiPF6 (DAN VEC) 
in a mixed solvent of ethylene carbonate (EC), dimethyl 
carbonate (DMC), and diethylene carbonate (DEC) with a 
volume ratio of 1:1:1. Galvanostatic discharge–charge meas-
urements and galvanostatic intermittent titration technique 
(GITT) tests were performed on a Neware battery tester. 
Cyclic voltammetry (CV) measurements were conducted 
on a CHI660E electrochemical workstation. The electro-
chemical performance was examined within 3.0–0.8 V. To 
prepare the AlxFe1-xNb11O29 electrodes for ex situ XRD, the 
half cells at different states of discharge/charge were disas-
sembled in the glove box, followed by washing the obtained 
AlxFe1-xNb11O29 electrodes by dimethyl carbonate.

734 Advanced Composites and Hybrid Materials (2021) 4:733–742



1 3

2.4 � Full‑cell measurement

Full cells (CR2032-type coin cells) were assembled with the 
as-prepared Al0.2Fe0.8Nb11O29 as the anode and commercial 
LiFePO4 as the cathode. Similarly, LiFePO4 powder, con-
ductive carbon (Super P), and PVDF with a weight ratio of 
7:2:1 were thoroughly mixed in N-methylpyrrolidone (NMP) 
to form a homogeneous slurry. Then, the slurry was spread 
evenly on an Al foil and made into a circular plate with a 
diameter of 10 mm. The LiFePO4:Al0.2Fe0.8Nb11O29 weight 
ratio was fixed to be 2:1. Galvanostatic discharge–charge 
measurements were performed within 1.0–2.5 V.

3 � Results and discussion

Figure  1 shows the XRD patterns of FeNb11O29 and 
AlxFe1-xNb11O29 (x = 0.1, 0.2, and 0.3), and the correspond-
ing Rietveld-refined data are demonstrated in Table S1. 
It can be seen that the XRD patterns of AlxFe1-xNb11O29 
(x = 0.1 and 0.2) completely match those of FeNb11O29 with 
an orthorhombic shear ReO3 crystal structure and Amma 
space group (JCPDS#22–0352; Fig. S1). No other phases 
(such as NbxOy or Fe2O3) are observed. Table S1 shows that 

the weighted profile residual (Rwp) values of the samples 
are small (about 10%), revealing that the Rietveld refine-
ment results are credible. The fractional atomic parameters 
of FeNb11O29 and Al0.2Fe0.8Nb11O29 are shown in Tables  
S2 and S3, respectively. Since the ionic radius of Al3+ is  
smaller than Fe3+, it is reasonable that the lattice parameters 
get smaller [45, 53]. It is noteworthy that the b values of 
AlxFe1-xNb11O29 (x = 0.1 and 0.2) are larger than that of the 
previous Ti2Nb10O29 (b = 3.805 Å) reported [54], suggesting 
the existence of larger gap sites in AlxFe1-xNb11O29 that are 
more conducive to Li+ diffusion. However, when the Al3+ 
doping amount further increases (x = 0.3), the crystal struc-
ture of orthorhombic shear ReO3 changes, indicating that 
the allowable Al3+ doping amount is limited (i.e., x ≤ 0.2; 
Fig. 1) [53, 55].

Figure 2 illustrates the SEM images of FeNb11O29 and 
AlxFe1-xNb11O29 (x = 0.1, 0.2, and 0.3). It can be observed 
that all the samples consist of grains which possess a 
platelet morphology. The BET-specific surface area of 
Al0.2Fe0.8Nb11O29 is 0.27 m2 g−1 (Fig. S2b), which is slightly 
smaller than FeNb11O29 (0.24 m2 g−1; Fig. S2a), verifying 
that Al0.2Fe0.8Nb11O29 and FeNb11O29 have similar particle 
sizes. Thus, there are almost little influences on the grain 
morphology and size of FeNb11O29 through the Al3+ doping.

Fig. 1   XRD patterns and Rietveld refinement results of FeNb11O29 and AlxFe1-xNb11O29 (x = 0.1, 0.2, and 0.3) materials
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Figure  3 depicts the HRTEM images of FeNb11O29 
(Fig. 3a) and Al0.2Fe0.8Nb11O29 (Fig. 3b), revealing their 
lattice fringes of 0.351 and 0.349 nm, respectively, which 
correspond to (311) planes. The interplanar spacing contrac-
tion in Al0.2Fe0.8Nb11O29 may be due to the smaller ionic 
radius of Al3+ in comparison with Fe3+. The results fur-
ther verify that the crystal structure of FeNb11O29 does not 
change after doping with a suitable amount of Al3+, which 
are also consistent with the XRD characterization. The EDS 
elemental mapping images shown in Fig. 3c, d indicate that 
Fe, Nb, and O elements, and Al, Fe, Nb, and O elements, are 
uniformly distributed in FeNb11O29 and Al0.2Fe0.8Nb11O29 
materials, respectively, further confirming the successful 
doping of Al3+ into FeNb11O29.

In order to understand the electrochemical mechanism 
of FeNb11O29 and Al0.2Fe0.8Nb11O29, CV tests with differ-
ent scanning speeds were carried out on the FeNb11O29 and 

Al0.2Fe0.8Nb11O29-made electrodes under a potential win-
dow of 3.0–0.8 V. Figure 4a, b show the first four-cycle CV 
curves of these two electrodes tested at 0.2 mV s−1. The 
redox peak of the FeNb11O29 electrode can be attributed to 
Nb3+/Nb4+, Nb4+/Nb5+, and Fe2+/Fe3+ redox pairs (Fig. 4a). 
In particular, the Nb3+/Nb4+ peak is at ~ 1.10/1.30 V, the 
Nb4+/Nb5+ peak is at ~ 1.53/1.72 V, and the Fe2+/Fe3+ peak 
is at ~ 2.36 V. The average working potential of FeNb11O29 
is calculated to be ~ 1.61 V. For the Al0.2Fe0.8Nb11O29 elec-
trode (Fig. 4b), the Nb3+/Nb4+ peak is at ~ 1.10/1.30 V, 
the Nb4+/Nb5+ peak is at ~ 1.59/1.72  V, and the Fe2+/
Fe3+ peak is at ~ 2.35 V. The average working potential of 
Al0.2Fe0.8Nb11O29 is also ~ 1.61 V. Clearly, Al0.2Fe0.8Nb11O29 
and FeNb11O29 have a very similar CV characteristic, hinting 
the similar reaction kinetics.

Figure 4c, d illustrate the CV curves of FeNb11O29 and 
Al0.2Fe0.8Nb11O29 electrodes at different scanning speeds, 
respectively. It can be seen that with the increase of the scan-
ning speeds, the current values of the redox front increase in 
both FeNb11O29 and Al0.2Fe0.8Nb11O29 electrodes. However, 
compared with FeNb11O29, Al0.2Fe0.8Nb11O29 has a stronger 
redox front, revealing that Al3+ doping enables better elec-
trochemical-kinetics behavior.

The constant current discharge–charge curves of the 
FeNb11O29 and Al0.2Fe0.8Nb11O29 electrodes are demon-
strated in Fig. 5a, b, respectively. Each discharge–charge 
curve was divided into three regions: a short slope at 
3.0–1.7 V, a short platform at 1.7–1.6 V, and a long slope 
at 1.6–0.8 V. Solid solution reactions occur in the first and 
third regions, and a two-phase reaction occurs in the second 
region. It can be found that the FeNb11O29 electrode has 
a reversible capacity of 262 mAh g−1 with an initial-cycle 
Coulombic efficiency of 91.1%, while the Al0.2Fe0.8Nb11O29 
electrode has an enhanced reversible capacity of 318 mAh 
g−1 with an initial-cycle Coulombic efficiency of 95.0%. 
Table  1 lists the electrochemical performance of the 
Al0.2Fe0.8Nb11O29 and M-Nb–O materials reported in lit-
eratures. It is clear that the capacity of Al0.2Fe0.8Nb11O29 
is higher than those of most reported M-Nb–O materials 
(except for MoNb12O33 and Mg2Nb34O87), and the initial-
cycle Coulombic efficiency is only lower than GaNb11O29. 
It is believed that the relatively high working potential of 
Al0.2Fe0.8Nb11O29 (~ 1.61 V) results in the less formation 
of SEI layer during the electrochemical reaction process, 
which reduces the consumption of lithium ions and leads to 
the high initial-cycle Coulombic efficiency [7].

Figure 5c, d show the discharge–charge curves of the 
FeNb11O29 and Al0.2Fe0.8Nb11O29 electrodes at differ-
ent current density, respectively. When the current den-
sity increases from 0.1 to 10C, the specific capacity of 
FeNb11O29 decreases from 262 to 104 mAh g−1, while that 
of Al0.2Fe0.8Nb11O29 electrode decreases from 318 to 134 
mAh g−1. Figure 5e demonstrates the rate capabilities of 

Fig. 2   SEM images of a FeNb11O29, b Al0.1Fe0.9Nb11O29, c 
Al0.2Fe0.8Nb11O29, and d Al0.3Fe0.7Nb11O29

Fig. 3   HRTEM images of a FeNb11O29 and b Al0.2Fe0.8Nb11O29. 
EDX elemental mapping images of c FeNb11O29 and d 
Al0.2Fe0.8Nb11O29
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the FeNb11O29 and Al0.2Fe0.8Nb11O29 electrodes at vari-
ous current densities. Both the specific capacities of the 
FeNb11O29 and Al0.2Fe0.8Nb11O29 electrodes reduce with 
increasing the current density. It can also be found that the 
specific capacity of the Al0.2Fe0.8Nb11O29 electrode at 10C 
is even higher than the FeNb11O29 electrode at 5C. There-
fore, the Al0.2Fe0.8Nb11O29 electrode has achieved a better 
rate capability. This high rate capability is due to the fact 
that Al0.2Fe0.8Nb11O29 has a stronger redox front. Moreo-
ver, Fig. S3a, b illustrate the discharge–charge curves of the 
Al0.1Fe0.9Nb11O29 electrode. The Al0.1Fe0.9Nb11O29 elec-
trode also exhibits an improved specific capacity (272 mAh 
g−1) in comparison with the undoped FeNb11O29 electrode, 
but lower than that of the Al0.2Fe0.8Nb11O29 electrode. This 
result indicates that more Al3+ doping has a more significant 
effect on improving the reversible capacity of FeNb11O29.

Figure  5f illustrates the cycling performance of the 
FeNb11O29 and Al0.2Fe0.8Nb11O29 electrodes at a current den-
sity of 10C. After 1000 cycles, the capacity retention rate of 
Al0.2Fe0.8Nb11O29 is 92.9%, which is obviously higher than 
that of FeNb11O29 (85.8%), proving that Al3+ doping is very 
beneficial to the cycling stability of FeNb11O29. The excel-
lent cycling stability is due to the fact that Al0.2Fe0.8Nb11O29 
owns excellent structural stability.

To study the Li+ diffusivity of the FeNb11O29 and 
Al0.2Fe0.8Nb11O29 electrodes, the GITT tests were employed 
at room temperature (Fig. 6). Figure 6a, b record the ini-
tial GITT curves of the FeNb11O29 and Al0.2Fe0.8Nb11O29 

electrodes at 0.1C, respectively. The diffusion coefficient of 
Li+(D

Li+
) can be calculated according to Fick’s second law 

(Eq. (1)):

where MB and mB are the molar mass and unit mass of the 
active material, respectively; Vm stands the molar volume of 
the active material; S stands the polar area; τ is titration time; 
L stands for the diffusion length; and ΔES and ΔEτ repre-
sent the change of equilibrium potential and the change in 
potential during a single-step titration (Fig. S4a, b), respec-
tively. Since there is a linear relationship between τ0.5 and 
the potential during the single-step titration (Fig. S4c, d), 
Eq. (1) can be simplified as Eq. (2). Figure 6c, d describe 
how the calculated D

Li
+ values vary with the potential. Dur-

ing the Li+ insertion process, the calculated D
Li

+ values of 
the FeNb11O29 electrode are 8.03 × 10−13–3.71 × 10−11cm2 
s−1 with an average value of 1.47 × 10−11 cm2 s−1, while 
the Al0.2Fe0.8Nb11O29 electrode has calculated D

Li
+ values 

of 1.67 × 10−12–3.41 × 10−11 cm2 s−1 with an average value 
of 1.76 × 10−11 cm2  s−1. For the Li+ extraction process, 
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Fig. 4   The first four CV cycles 
of a FeNb11O29 electrode and 
b Al0.2Fe0.8Nb11O29 electrode 
at 0.2 mV s−1. The CV curves 
of c FeNb11O29 electrode and d 
Al0.2Fe0.8Nb11O29 electrode at 
different scan rates
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the calculated D
Li

+ values of the FeNb11O29 electrode are 
3.95 × 10−12–1.83 × 10−11 cm2 s−1 with an average value 
of 1.28 × 10−11 cm2 s−1, while the Al0.2Fe0.8Nb11O29 elec-
trode has calculated D

Li
+ values of 7.24 × 10−12–2.60 × 10−11 

cm2 s−1 with an average value of 1.64 × 10−11 cm2 s−1. These 
similar Li+ diffusivity can be explained by the similar lat-
tice parameters and unit-cell volumes of the two materials 
(Table S1).

Fig. 5   Electrochemical per-
formance of FeNb11O29 and 
Al0.2Fe0.8Nb11O29 electrodes: 
a, b discharge–charge curves 
at 0.1C, c, d discharge–charge 
curves at 0.1–10C, e rate 
capabilities, and f cycling stabil-
ity at 10C after 1000 cycles 
and Coulombic efficiency of 
Al0.2Fe0.8Nb11O29

Table 1   Electrochemical 
performance of 
Al0.2Fe0.8Nb11O29 compared 
with M-Nb–O materials 
reported

Material Initial-cycle reversible capac-
ity (mAh g−1)

Initial-cycle Coulombic 
efficiency (%)

Reference

Nb12O29 289 / [11]
Nb25O62 287 / [11]
MoNb12O33 321 91.5 [12]
AlNb11O29 266 94 [13]
CrNb11O29 286 94.7 [15]
Mg2Nb34O87 338 94.8 [16]
GaNb11O29 255 96.1 [17]
FeNb11O29 nanotubes 273 90.1 [20]
FeNb11O27.9 270 90.6 [25]
FeNb11O29 262 91.1 This work
Al0.2Fe0.8Nb11O29 318 95.0 This work

738 Advanced Composites and Hybrid Materials (2021) 4:733–742



1 3

The structural stability of Al0.2Fe0.8Nb11O29 dur-
ing Li+ insertion-extraction processes was studied by 
XRD. Figure 7 demonstrates the XRD results of the fresh 
Al0.2Fe0.8Nb11O29 electrode and the Al0.2Fe0.8Nb11O29 elec-
trodes after discharged to 0.8 V as well as charged to 3.0 V 
in 1st cycle and 10th cycles at 0.1C. It can be found that 
after the discharge–charge process, no impurity phases 
(such as Al2O3, Fe2O3, or NbxOy) appear in the XRD pat-
terns, and no obvious changes are observed in the peak 
intensities. The XRD patterns of the FeNb11O29 electrodes 
after the similar discharge–charge process are shown in 
Fig. S5. Very similar results are obtained. Therefore, Al3+ 
doping does not change the crystal structure of FeNb11O29 
material indeed, and the Al0.2Fe0.8Nb11O29 framework is 
very stable during the electrochemical reaction.

To assess Al0.2Fe0.8Nb11O29 practical application value, 
we prepared a LiFePO4/Al0.2Fe0.8Nb11O29 full cell with 
LiFePO4 as the cathode material and Al0.2Fe0.8Nb11O29 as 
the anode material. Figure 8a shows the discharge–charge 
curves of the full cell at 0.1C. It delivered initial-cycle 
charge/discharge capacities of 241/206 mAh g−1, 
respectively. Its initial-cycle Coulombic efficiency was 
85%. This result is better than the previously reported 
LiNi0.5Mn1.5O4/AlNb11O29 full cell with charge/discharge 
capacities of only 238/195 mAh g−1 and an initial-cycle 
Coulombic efficiency of 82% [13]. Figure 8b, c show 
the discharge–charge curves and rate capability of the 

LiPFeO4/Al0.2Fe0.8Nb11O29 full cell at different current 
density from 0.5 to 5C. The discharge capacities are 172, 
152, 125, and 83 mAh g−1 at 0.5, 1, 2, and 5C, respec-
tively. In particular, compared with the original current 
density at 0.5C, there is no significant decrease appeared 

Fig. 6   GITT initial curves of 
a FeNb11O29 electrode and b 
Al0.2Fe0.8Nb11O29 electrode 
tested at 0.1C. Calculated 
D

Li+
 from GITT curves of c 

FeNb11O29 electrode and d 
Al0.2Fe0.8Nb11O29 electrode

Fig. 7   Ex situ XRD patterns of fresh Al0.2Fe0.8Nb11O29 electrode and 
Al0.2Fe0.8Nb11O29 electrodes after discharged to 0.8  V in 1st cycle, 
charged to 3.0 V in 1st and 10th cycles at 0.1C
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in the rate-capability curve when the current density is 
from 5C back to 0.5C (Fig. 8c). It indicates that the full 
cell has good electrochemical reversibility. Figure 8d, e 
show that the capacity retention of the full cell reaches 
84.2% after 200 cycles at 1C, and 89.8% after 1000 cycles 
at 5C, respectively, demonstrating good cycling stability.

4 � Conclusions

In summary, the electrochemical performance (especially 
the specific capacity) of FeNb11O29 is improved signifi-
cantly by doping with Al3+. A reasonable doping amount can 

preserve the crystal structure, grain size, and morphology of 
FeNb11O29. Al0.2Fe0.8Nb11O29 shows improved electrochemi-
cal performance, with a reversible capacity of 318 mAh g−1 at 
0.1 C, high initial-cycle Coulombic efficiency of 95.0%, and 
relatively high and safe working potential of about 1.61 V. 
Al0.2Fe0.8Nb11O29 further possesses excellent cycling stabil-
ity with capacity retention of 92.9% over after 1000 cycles. 
In addition, we assembled a LiFePO4/Al0.2Fe0.8Nb11O29 full 
cell, which also show excellent electrochemical performance. 
The discharge capacity is up to 206 mAh g−1 at 0.1C. The 
capacity retention of the full cell reaches 84.2% after 200 
cycles at 1C, and 89.8% after 1000 cycles at 5C. Therefore, 
Al0.2Fe0.8Nb11O29 may find practical applications in LIBs.

Fig. 8   Electrochemical 
performance of the LiFePO4/
Al0.2Fe0.8Nb11O29 full cell: a 
discharge–charge curves at 
0.1C, b discharge–charge curves 
at 0.1-5C, c rate capabilities, 
d cycling stability at 1C over 
200 cycles and Coulombic 
efficiency, and e cycling stabil-
ity at 10C over 1000 cycles and 
Coulombic efficiency
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