ORIGINAL RESEARCH

AI^{3+} -doped FeNb₁₁O₂₉ anode materials with enhanced lithium-storage performance

Jinping Huang¹ · Qing Chen¹ · Shuaifeng Chen¹ · Lijie Luo¹ · Jianbao Li¹ · Chunfu Lin² · Yongjun Chen¹

Received: 13 April 2021 / Revised: 16 June 2021 / Accepted: 17 June 2021 / Published online: 26 June 2021 © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021

Abstract

FeNb₁₁O₂₉ has a high theoretical capacity as a potential anode material for lithium-ion batteries; however, the practical capacity of FeNb₁₁O₂₉ reported was unsatisfactory. In this study, a simple and efficient Al³⁺-doping technique was demonstrated to improve the electrochemical performance of FeNb₁₁O₂₉ successfully. The influences of the Al³⁺ doping amount were investigated. It was found that the crystal structure of FeNb₁₁O₂₉ could be preserved when a suitable amount of Al³⁺ was added, and that Al_{0.2}Fe_{0.8}Nb₁₁O₂₉ demonstrated better electrochemical performance than FeNb₁₁O₂₉ because the structure of Al_{0.2}Fe_{0.8}Nb₁₁O₂₉ is more stable. At 0.1C, Al_{0.2}Fe_{0.8}Nb₁₁O₂₉ possessed a high reversible capacity of 318 mAh g⁻¹ with an initial-cycle Coulombic efficiency of 95.0%. Al_{0.2}Fe_{0.8}Nb₁₁O₂₉ exhibited outstanding cycling stability with capacity retention of 92.9% at 10C over after 1000 cycles. Moreover, A LiFePO₄/Al_{0.2}Fe_{0.8}Nb₁₁O₂₉ full cell was prepared successfully with a discharge capacity of 206 mAh g⁻¹. The full cell exhibited good cycling stability showing the capacity retention of 84.2% over after 200 cycles at 1C and 89.8% over after 1000 cycles at 5C, respectively. This work suggests that Al_{0.2}Fe_{0.8}Nb₁₁O₂₉ has great application prospects in lithium-ion batteries.

Keywords $\operatorname{FeNb}_{11}O_{29} \cdot \operatorname{Al}^{3+} \operatorname{doping} \cdot \operatorname{Anode} \operatorname{material} \cdot \operatorname{Lithium-ion} \operatorname{battery} \cdot \operatorname{Electrochemical} \operatorname{performance}$

1 Introduction

Lithium-ion batteries (LIBs) are regarded as a kind of green power with good cycling performance and high energy density [1–5], which have become one of the hottest research topics these years. At present, the LIB anodes are normally composed of graphite-like materials because of their inexpensive and high theoretical capacity (372 mAh g⁻¹) [6]. However, due to the relatively low rate capability, it is easy

Lijie Luo luolijie4567@163.com

- Chunfu Lin linchunfu@qdu.edu.cn
- ⊠ Yongjun Chen chenyj99@163.com

¹ School of Materials Science and Engineering, Key Lab of Advanced Materials of Tropical Island Resources, Ministry of Education, Hainan University, Haikou 570228, China

² Institute of Materials for Energy and Environment, School of Materials Science and Engineering, Qingdao University, Qingdao 266071, China to cause the formation of thick solid electrolyte interface (SEI) layers and the growth of lithium dendrites which are hindering the application of graphite-anode materials [7]. $Li_4Ti_5O_{12}$ has been explored to overcome these disadvantages [8–10], which could avoid the formation of thick SEI layers and display good safety performance. However, the low theoretical capacity of $Li_4Ti_5O_{12}$ (175 mAh g⁻¹) limits its practical application. Therefore, it is necessary to explore novel anode material substitutes with similar advantages to $Li_4Ti_5O_{12}$ but much higher theoretical capacities.

Recently, niobium oxide-based materials have attracted great attention due to their high theoretical capacities $(374-403 \text{ mAh g}^{-1})$ which are benefitted from the Nb^{4+/} Nb⁵⁺ and Nb³⁺/Nb⁴⁺ multi-electron redox couples. To date, a series of niobium oxide-based anode materials have been explored by our group, such as Nb₂₅O₆₂ [11], MoNb₁₂O₃₃ [12], AlNb₁₁O₂₉ [13], Al_{0.5}Nb_{24.5}O₆₂ [14], CrNb₁₁O₂₉ [15], Mg₂Nb₃₄O₈₇ [16], GaNb₁₁O₂₉ [17], TiNb₂₄O₆₂ [18], and ZrNb₂₄O₆₂ [19]. FeNb₁₁O₂₉ [20], W₃Nb₁₄O₄₄ [21], and K₂Nb₈O₂₁ [22] were also found by other researchers to be good anode material candidates. In particularly, FeNb₁₁O₂₉ has a theoretical capacity of 400 mAh g⁻¹ owing to the existence of three Fe²⁺/Fe³⁺, Nb⁴⁺/Nb⁵⁺, and Nb³⁺/Nb⁴⁺

redox couples (each formula unit of $\text{FeNb}_{11}\text{O}_{29}$ could transfer 23 electrons) [20]. However, the practical capacities of $\text{FeNb}_{11}\text{O}_{29}$ reported were only 168–273 mAh g⁻¹ at 0.1C [20, 23–25]. Therefore, it is of great significance to enhance the specific capacity of $\text{FeNb}_{11}\text{O}_{29}$ for practical applications.

Currently, rare works were reported for improving the electrochemical performance of FeNb₁₁O₂₉. Zheng et al. increased the specific capacity of FeNb₁₁O₂₉ from 226 to 273 mAh g^{-1} at 0.1C by fabricating FeNb₁₁O₂₉ nanotubes, and the initial-cycle Coulombic efficiency was improved from 75.9 to 90.1% [20]. Lou et al. prepared Cr³⁺-doped FeNb₁₁O₂₉ (Cr_{0.2}Fe_{0.8}Nb₁₁O₂₉) with a specific capacity of 254 mAh g^{-1} [24]. Lou et al. further enhanced the specific capacity of FeNb₁₁O₂₉ to 270 mAh g⁻¹ through generating oxygen vacancies [25]. In electrochemical experiments, there are common methods used to improve the electrochemical performance of electrode materials, such as carbon composite [26–28], plasmonization [29, 30], surfactant-assisted process [31], and nanosizing [32, 33]. It is believed that doping is also a common and efficient method to improve the cycling performance and rate capability of electrode materials because of its easy operation, low-consumption, and large-scale production [34–45]. Aluminum (Al) has been paid more and more attention as a substitute for various electrode materials owning to its abundant in earth, nontoxic and light characteristics [46, 47]. It has been found that Al doping could enhance the electrochemical performance of anode materials significantly because the strong Al–O bonds favor the structural stability [48–50]. Therefore, in this study, FeNb₁₁O₂₉ materials were also modified by doping with Al. The experimental results showed that Al^{3+} successfully and partically replaced Fe^{3+} and that the obtained Al_{0.2}Fe_{0.8}Nb₁₁O₂₉ materials preserved the crystal structure, grain size and morphology of FeNb₁₁O₂₉. Better structural stability was achieved due to the strong Al-O bonds, which greatly enhanced the electrochemical performance of FeNb₁₁O₂₉.

2 Experimental

2.1 Material synthesis

The $Al_xFe_{1-x}Nb_{11}O_{29}$ (x = 0.1, 0.2, and 0.3) materials were synthesized via a simple solid-state reaction method by using Nb₂O₅ (Sinopharm, 99.9%), Al₂O₃ (Aladdin, 99.0%), and Fe₂O₃ (Aladdin, 99.0%) as the raw materials. Nb₂O₅, Fe₂O₃, and different contents of Al₂O₃ were mixed in ethanol, which were then ground in a high-energy ball-milling machine (SPEX 8000 M, USA) for 4 h. After drying, the ball-milled mixtures were sintered in a muffle furnace at 1300 °C in air for 4 h, forming Al_xFe_{1-x}Nb₁₁O₂₉ materials (x = 0.1, 0.2, and 0.3). For comparison, undoped FeNb₁₁O₂₉ counterpart was also fabricated with a similar procedure and without the use of Al₂O₃.

2.2 Material characterization

The crystalline structures of the obtained samples were characterized by X-ray diffraction (XRD) on an X-ray diffractometer (German Bruker D8). The phase purity and lattice parameters were determined by Rietveld refinements, which were conducted by using the GSAS program with the EXPGUI interface [51, 52]. Morphologies, particle sizes, and microstructures of synthesized samples were recorded by scanning electron microscopy (SEM, S-4800), high-resolution transmission electron microscopy (HRTEM, Tecnai G2 F20 S-TWIN, FEI), and energy dispersive X-ray spectrometer (EDX) mapping. The specific surface areas of the samples were determined by nitrogen adsorption/desorption device (ASAP 2460).

2.3 Half-cell measurement

The electrochemical performance of Al_xFe_{1-x}Nb₁₁O₂₉/Li (x=0, 0.1, and 0.2) was evaluated by employing CR2016type coin cells. Firstly, the working electrodes were prepared by mixing 70 wt% of Al_xFe_{1-x}Nb₁₁O₂₉ (active material) powder, 20 wt% of conductive carbon (Super P, battery level), and 10 wt% of polyvinylidene fluoride (PVDF) binder, thoroughly mixed in N-methylpyrrolidone (NMP) to form a homogeneous slurry. After stirring the slurry for 8 h, the slurry was coated onto a copper foil evenly. The mass loading of Al_xFe_{1-x}Nb₁₁O₂₉ was ~ 1.0 mg cm⁻². Then, the coated foils were dried in a vacuum oven at 120 °C for 10 h and were cut into a circular plate with a diameter of 10 mm. The CR2016 coin cells were assembled in a glove box filled with argon gas $(O_2/H_2O < 0.1 \text{ ppm})$ and consisted of an above asprepared electrode, a Li foil that acted as counter and reference electrodes, a microporous polypropylene film (Celgard 2325) and electrolyte containing 1 M LiPF₆ (DAN VEC) in a mixed solvent of ethylene carbonate (EC), dimethyl carbonate (DMC), and diethylene carbonate (DEC) with a volume ratio of 1:1:1. Galvanostatic discharge-charge measurements and galvanostatic intermittent titration technique (GITT) tests were performed on a Neware battery tester. Cyclic voltammetry (CV) measurements were conducted on a CHI660E electrochemical workstation. The electrochemical performance was examined within 3.0-0.8 V. To prepare the $Al_xFe_{1-x}Nb_{11}O_{29}$ electrodes for ex situ XRD, the half cells at different states of discharge/charge were disassembled in the glove box, followed by washing the obtained $Al_xFe_{1-x}Nb_{11}O_{29}$ electrodes by dimethyl carbonate.

2.4 Full-cell measurement

Full cells (CR2032-type coin cells) were assembled with the as-prepared $Al_{0.2}Fe_{0.8}Nb_{11}O_{29}$ as the anode and commercial LiFePO₄ as the cathode. Similarly, LiFePO₄ powder, conductive carbon (Super P), and PVDF with a weight ratio of 7:2:1 were thoroughly mixed in N-methylpyrrolidone (NMP) to form a homogeneous slurry. Then, the slurry was spread evenly on an Al foil and made into a circular plate with a diameter of 10 mm. The LiFePO₄:Al_{0.2}Fe_{0.8}Nb₁₁O₂₉ weight ratio was fixed to be 2:1. Galvanostatic discharge–charge measurements were performed within 1.0–2.5 V.

3 Results and discussion

Figure 1 shows the XRD patterns of $\text{FeNb}_{11}\text{O}_{29}$ and $\text{Al}_x\text{Fe}_{1-x}\text{Nb}_{11}\text{O}_{29}$ (x=0.1, 0.2, and 0.3), and the corresponding Rietveld-refined data are demonstrated in Table S1. It can be seen that the XRD patterns of $\text{Al}_x\text{Fe}_{1-x}\text{Nb}_{11}\text{O}_{29}$ (x=0.1 and 0.2) completely match those of $\text{FeNb}_{11}\text{O}_{29}$ with an orthorhombic shear ReO₃ crystal structure and *Amma* space group (JCPDS#22–0352; Fig. S1). No other phases (such as Nb_xO_y or Fe₂O₃) are observed. Table S1 shows that

the weighted profile residual (R_{wp}) values of the samples are small (about 10%), revealing that the Rietveld refinement results are credible. The fractional atomic parameters of FeNb₁₁O₂₉ and Al_{0.2}Fe_{0.8}Nb₁₁O₂₉ are shown in Tables S2 and S3, respectively. Since the ionic radius of Al³⁺ is smaller than Fe³⁺, it is reasonable that the lattice parameters get smaller [45, 53]. It is noteworthy that the *b* values of Al_xFe_{1-x}Nb₁₁O₂₉ (*x*=0.1 and 0.2) are larger than that of the previous Ti₂Nb₁₀O₂₉ (*b*=3.805 Å) reported [54], suggesting the existence of larger gap sites in Al_xFe_{1-x}Nb₁₁O₂₉ that are more conducive to Li⁺ diffusion. However, when the Al³⁺ doping amount further increases (*x*=0.3), the crystal structure of orthorhombic shear ReO₃ changes, indicating that the allowable Al³⁺ doping amount is limited (i.e., *x*≤0.2; Fig. 1) [53, 55].

Figure 2 illustrates the SEM images of FeNb₁₁O₂₉ and $Al_xFe_{1-x}Nb_{11}O_{29}$ (x=0.1, 0.2, and 0.3). It can be observed that all the samples consist of grains which possess a platelet morphology. The BET-specific surface area of $Al_{0.2}Fe_{0.8}Nb_{11}O_{29}$ is 0.27 m² g⁻¹ (Fig. S2b), which is slightly smaller than FeNb₁₁O₂₉ (0.24 m² g⁻¹; Fig. S2a), verifying that $Al_{0.2}Fe_{0.8}Nb_{11}O_{29}$ and FeNb₁₁O₂₉ have similar particle sizes. Thus, there are almost little influences on the grain morphology and size of FeNb₁₁O₂₉ through the Al³⁺ doping.

Fig. 1 XRD patterns and Rietveld refinement results of $FeNb_{11}O_{29}$ and $Al_xFe_{1-x}Nb_{11}O_{29}$ (x=0.1, 0.2, and 0.3) materials

Fig. 2 SEM images of a $FeNb_{11}O_{29}$, b $Al_{0.1}Fe_{0.9}Nb_{11}O_{29}$, c $Al_{0.2}Fe_{0.8}Nb_{11}O_{29}$, and d $Al_{0.3}Fe_{0.7}Nb_{11}O_{29}$

Figure 3 depicts the HRTEM images of $FeNb_{11}O_{29}$ (Fig. 3a) and $Al_{0.2}Fe_{0.8}Nb_{11}O_{29}$ (Fig. 3b), revealing their lattice fringes of 0.351 and 0.349 nm, respectively, which correspond to (311) planes. The interplanar spacing contraction in $Al_{0.2}Fe_{0.8}Nb_{11}O_{29}$ may be due to the smaller ionic radius of Al^{3+} in comparison with Fe^{3+} . The results further verify that the crystal structure of $FeNb_{11}O_{29}$ does not change after doping with a suitable amount of Al^{3+} , which are also consistent with the XRD characterization. The EDS elemental mapping images shown in Fig. 3c, d indicate that Fe, Nb, and O elements, and Al, Fe, Nb, and O elements, are uniformly distributed in $FeNb_{11}O_{29}$ and $Al_{0.2}Fe_{0.8}Nb_{11}O_{29}$ materials, respectively, further confirming the successful doping of Al^{3+} into $FeNb_{11}O_{29}$.

In order to understand the electrochemical mechanism of $FeNb_{11}O_{29}$ and $Al_{0.2}Fe_{0.8}Nb_{11}O_{29}$, CV tests with different scanning speeds were carried out on the $FeNb_{11}O_{29}$ and

Fig.3 HRTEM images of **a** FeNb₁₁O₂₉ and **b** Al_{0.2}Fe_{0.8}Nb₁₁O₂₉. EDX elemental mapping images of **c** FeNb₁₁O₂₉ and **d** Al_{0.2}Fe_{0.8}Nb₁₁O₂₉

Al_{0.2}Fe_{0.8}Nb₁₁O₂₉-made electrodes under a potential window of 3.0–0.8 V. Figure 4a, b show the first four-cycle CV curves of these two electrodes tested at 0.2 mV s⁻¹. The redox peak of the FeNb₁₁O₂₉ electrode can be attributed to Nb³⁺/Nb⁴⁺, Nb⁴⁺/Nb⁵⁺, and Fe²⁺/Fe³⁺ redox pairs (Fig. 4a). In particular, the Nb³⁺/Nb⁴⁺ peak is at ~ 1.10/1.30 V, the Nb⁴⁺/Nb⁵⁺ peak is at ~ 1.53/1.72 V, and the Fe²⁺/Fe³⁺ peak is at ~ 2.36 V. The average working potential of FeNb₁₁O₂₉ electrode (Fig. 4b), the Nb³⁺/Nb⁴⁺ peak is at ~ 1.10/1.30 V, the Nb⁴⁺/Nb⁵⁺ peak is at ~ 1.59/1.72 V, and the Fe²⁺/Fe³⁺ peak is at ~ 2.35 V. The average working potential of Al_{0.2}Fe_{0.8}Nb₁₁O₂₉ is also ~ 1.61 V. Clearly, Al_{0.2}Fe_{0.8}Nb₁₁O₂₉ and FeNb₁₁O₂₉ have a very similar CV characteristic, hinting the similar reaction kinetics.

Figure 4c, d illustrate the CV curves of $FeNb_{11}O_{29}$ and $Al_{0.2}Fe_{0.8}Nb_{11}O_{29}$ electrodes at different scanning speeds, respectively. It can be seen that with the increase of the scanning speeds, the current values of the redox front increase in both $FeNb_{11}O_{29}$ and $Al_{0.2}Fe_{0.8}Nb_{11}O_{29}$ electrodes. However, compared with $FeNb_{11}O_{29}$, $Al_{0.2}Fe_{0.8}Nb_{11}O_{29}$ has a stronger redox front, revealing that Al^{3+} doping enables better electrochemical-kinetics behavior.

The constant current discharge-charge curves of the FeNb₁₁O₂₉ and Al_{0.2}Fe_{0.8}Nb₁₁O₂₉ electrodes are demonstrated in Fig. 5a, b, respectively. Each discharge-charge curve was divided into three regions: a short slope at 3.0-1.7 V, a short platform at 1.7-1.6 V, and a long slope at 1.6–0.8 V. Solid solution reactions occur in the first and third regions, and a two-phase reaction occurs in the second region. It can be found that the $FeNb_{11}O_{29}$ electrode has a reversible capacity of 262 mAh g^{-1} with an initial-cycle Coulombic efficiency of 91.1%, while the $Al_{0.2}Fe_{0.8}Nb_{11}O_{29}$ electrode has an enhanced reversible capacity of 318 mAh g^{-1} with an initial-cycle Coulombic efficiency of 95.0%. Table 1 lists the electrochemical performance of the Al_{0.2}Fe_{0.8}Nb₁₁O₂₉ and M-Nb–O materials reported in literatures. It is clear that the capacity of $Al_{0.2}Fe_{0.8}Nb_{11}O_{29}$ is higher than those of most reported M-Nb-O materials (except for MoNb₁₂O₃₃ and Mg₂Nb₃₄O₈₇), and the initialcycle Coulombic efficiency is only lower than $GaNb_{11}O_{29}$. It is believed that the relatively high working potential of $Al_{0.2}Fe_{0.8}Nb_{11}O_{29}$ (~1.61 V) results in the less formation of SEI layer during the electrochemical reaction process, which reduces the consumption of lithium ions and leads to the high initial-cycle Coulombic efficiency [7].

Figure 5c, d show the discharge–charge curves of the $FeNb_{11}O_{29}$ and $Al_{0.2}Fe_{0.8}Nb_{11}O_{29}$ electrodes at different current density, respectively. When the current density increases from 0.1 to 10C, the specific capacity of $FeNb_{11}O_{29}$ decreases from 262 to 104 mAh g⁻¹, while that of $Al_{0.2}Fe_{0.8}Nb_{11}O_{29}$ electrode decreases from 318 to 134 mAh g⁻¹. Figure 5e demonstrates the rate capabilities of

the FeNb₁₁O₂₉ and Al_{0.2}Fe_{0.8}Nb₁₁O₂₉ electrodes at various current densities. Both the specific capacities of the FeNb₁₁O₂₉ and Al_{0.2}Fe_{0.8}Nb₁₁O₂₉ electrodes reduce with increasing the current density. It can also be found that the specific capacity of the Al_{0.2}Fe_{0.8}Nb₁₁O₂₉ electrode at 10C is even higher than the FeNb₁₁O₂₉ electrode at 5C. Therefore, the Al_{0.2}Fe_{0.8}Nb₁₁O₂₉ electrode has achieved a better rate capability. This high rate capability is due to the fact that Al_{0.2}Fe_{0.8}Nb₁₁O₂₉ has a stronger redox front. Moreover, Fig. S3a, b illustrate the discharge-charge curves of the $Al_{0.1}Fe_{0.9}Nb_{11}O_{29}$ electrode. The $Al_{0.1}Fe_{0.9}Nb_{11}O_{29}$ electrode also exhibits an improved specific capacity (272 mAh g^{-1}) in comparison with the undoped FeNb₁₁O₂₉ electrode, but lower than that of the Al_{0.2}Fe_{0.8}Nb₁₁O₂₉ electrode. This result indicates that more Al³⁺ doping has a more significant effect on improving the reversible capacity of $FeNb_{11}O_{29}$.

Figure 5f illustrates the cycling performance of the $FeNb_{11}O_{29}$ and $Al_{0.2}Fe_{0.8}Nb_{11}O_{29}$ electrodes at a current density of 10C. After 1000 cycles, the capacity retention rate of $Al_{0.2}Fe_{0.8}Nb_{11}O_{29}$ is 92.9%, which is obviously higher than that of $FeNb_{11}O_{29}$ (85.8%), proving that Al^{3+} doping is very beneficial to the cycling stability of $FeNb_{11}O_{29}$. The excellent cycling stability is due to the fact that $Al_{0.2}Fe_{0.8}Nb_{11}O_{29}$ owns excellent structural stability.

To study the Li⁺ diffusivity of the $\text{FeNb}_{11}O_{29}$ and $Al_{0.2}\text{Fe}_{0.8}\text{Nb}_{11}O_{29}$ electrodes, the GITT tests were employed at room temperature (Fig. 6). Figure 6a, b record the initial GITT curves of the $\text{FeNb}_{11}O_{29}$ and $Al_{0.2}\text{Fe}_{0.8}\text{Nb}_{11}O_{29}$

electrodes at 0.1C, respectively. The diffusion coefficient of $\text{Li}^{+(D_{Li^{+}})}$ can be calculated according to Fick's second law (Eq. (1)):

$$D_{Li^{+}} = \frac{4}{\pi} \left(\frac{m_B V_m}{M_B S}\right)^2 \left(\frac{\Delta E_s}{\tau \left(dE_{\tau}/d\sqrt{\tau}\right)}\right)^2 (\tau \ll \frac{L^2}{D^2})$$
(1)

$$D_{Li^+} = \frac{4}{\pi\tau} \left(\frac{m_B V_m}{M_B S}\right)^2 \left(\frac{\Delta E_s}{\Delta E_\tau}\right)^2 (\tau \ll \frac{L^2}{D^2}) \tag{2}$$

where $M_{\rm B}$ and $m_{\rm B}$ are the molar mass and unit mass of the active material, respectively; $V_{\rm m}$ stands the molar volume of the active material; S stands the polar area; τ is titration time; L stands for the diffusion length; and ΔE_{S} and ΔE_{τ} represent the change of equilibrium potential and the change in potential during a single-step titration (Fig. S4a, b), respectively. Since there is a linear relationship between $\tau^{0.5}$ and the potential during the single-step titration (Fig. S4c, d), Eq. (1) can be simplified as Eq. (2). Figure 6c, d describe how the calculated D_{Li^+} values vary with the potential. During the Li⁺ insertion process, the calculated D_{Li^+} values of the FeNb₁₁O₂₉ electrode are $8.03 \times 10^{-13} - 3.71 \times 10^{-11} \text{cm}^2$ s^{-1} with an average value of 1.47×10^{-11} cm² s⁻¹, while the Al_{0.2}Fe_{0.8}Nb₁₁O₂₉ electrode has calculated D_{Li^+} values of $1.67 \times 10^{-12} - 3.41 \times 10^{-11}$ cm² s⁻¹ with an average value of 1.76×10^{-11} cm² s⁻¹. For the Li⁺ extraction process,

Fig. 5 Electrochemical performance of FeNb₁₁O₂₉ and $Al_{0.2}Fe_{0.8}Nb_{11}O_{29}$ electrodes: **a**, **b** discharge–charge curves at 0.1C, **c**, **d** discharge–charge curves at 0.1–10C, **e** rate capabilities, and **f** cycling stability at 10C after 1000 cycles and Coulombic efficiency of $Al_{0.2}Fe_{0.8}Nb_{11}O_{29}$

the calculated D_{Li^+} values of the FeNb₁₁O₂₉ electrode are 3.95×10^{-12} – 1.83×10^{-11} cm² s⁻¹ with an average value of 1.28×10^{-11} cm² s⁻¹, while the Al_{0.2}Fe_{0.8}Nb₁₁O₂₉ electrode has calculated D_{Li^+} values of 7.24×10^{-12} – 2.60×10^{-11}

 $cm^2 s^{-1}$ with an average value of $1.64 \times 10^{-11} cm^2 s^{-1}$. These similar Li⁺ diffusivity can be explained by the similar lattice parameters and unit-cell volumes of the two materials (Table S1).

Material	Initial-cycle reversible capacity (mAh g^{-1})	Initial-cycle Coulombic efficiency (%)	Reference
Nb ₁₂ O ₂₉	289	/	[11]
Nb ₂₅ O ₆₂	287	/	[11]
MoNb ₁₂ O ₃₃	321	91.5	[12]
AlNb ₁₁ O ₂₉	266	94	[13]
CrNb ₁₁ O ₂₉	286	94.7	[15]
$Mg_2Nb_{34}O_{87}$	338	94.8	[16]
GaNb ₁₁ O ₂₉	255	96.1	[17]
FeNb ₁₁ O ₂₉ nanotubes	273	90.1	[20]
FeNb ₁₁ O _{27.9}	270	90.6	[25]
FeNb ₁₁ O ₂₉	262	91.1	This work
Al _{0.2} Fe _{0.8} Nb ₁₁ O ₂₉	318	95.0	This work

Table 1Electrochemicalperformance ofAl_{0.2}Fe_{0.8}Nb₁₁O₂₉ comparedwith M-Nb–O materialsreported

The structural stability of $Al_{0.2}Fe_{0.8}Nb_{11}O_{29}$ during Li⁺ insertion-extraction processes was studied by XRD. Figure 7 demonstrates the XRD results of the fresh $Al_{0.2}Fe_{0.8}Nb_{11}O_{29}$ electrode and the $Al_{0.2}Fe_{0.8}Nb_{11}O_{29}$ electrodes after discharged to 0.8 V as well as charged to 3.0 V in 1st cycle and 10th cycles at 0.1C. It can be found that after the discharge–charge process, no impurity phases (such as Al_2O_3 , Fe_2O_3 , or Nb_xO_y) appear in the XRD patterns, and no obvious changes are observed in the peak intensities. The XRD patterns of the FeNb₁₁O₂₉ electrodes after the similar discharge–charge process are shown in Fig. S5. Very similar results are obtained. Therefore, Al^{3+} doping does not change the crystal structure of FeNb₁₁O₂₉ material indeed, and the $Al_{0.2}Fe_{0.8}Nb_{11}O_{29}$ framework is very stable during the electrochemical reaction.

To assess $Al_{0.2}Fe_{0.8}Nb_{11}O_{29}$ practical application value, we prepared a LiFePO₄/Al_{0.2}Fe_{0.8}Nb₁₁O₂₉ full cell with LiFePO₄ as the cathode material and Al_{0.2}Fe_{0.8}Nb₁₁O₂₉ as the anode material. Figure 8a shows the discharge–charge curves of the full cell at 0.1C. It delivered initial-cycle charge/discharge capacities of 241/206 mAh g⁻¹, respectively. Its initial-cycle Coulombic efficiency was 85%. This result is better than the previously reported LiNi_{0.5}Mn_{1.5}O₄/AlNb₁₁O₂₉ full cell with charge/discharge capacities of only 238/195 mAh g⁻¹ and an initial-cycle Coulombic efficiency of 82% [13]. Figure 8b, c show the discharge–charge curves and rate capability of the

LiPFeO₄/Al_{0.2}Fe_{0.8}Nb₁₁O₂₉ full cell at different current density from 0.5 to 5C. The discharge capacities are 172, 152, 125, and 83 mAh g⁻¹ at 0.5, 1, 2, and 5C, respectively. In particular, compared with the original current density at 0.5C, there is no significant decrease appeared

Fig. 7 Ex situ XRD patterns of fresh $Al_{0.2}Fe_{0.8}Nb_{11}O_{29}$ electrode and $Al_{0.2}Fe_{0.8}Nb_{11}O_{29}$ electrodes after discharged to 0.8 V in 1st cycle, charged to 3.0 V in 1st and 10th cycles at 0.1C

Fig. 8 Electrochemical performance of the LiFePO₄/ $Al_{0.2}Fe_{0.8}Nb_{11}O_{29}$ full cell: a discharge–charge curves at 0.1C, b discharge–charge curves at 0.1-5C, c rate capabilities, d cycling stability at 1C over 200 cycles and Coulombic efficiency, and e cycling stability at 10C over 1000 cycles and Coulombic efficiency

in the rate-capability curve when the current density is from 5C back to 0.5C (Fig. 8c). It indicates that the full cell has good electrochemical reversibility. Figure 8d, e show that the capacity retention of the full cell reaches 84.2% after 200 cycles at 1C, and 89.8% after 1000 cycles at 5C, respectively, demonstrating good cycling stability.

4 Conclusions

In summary, the electrochemical performance (especially the specific capacity) of $\text{FeNb}_{11}\text{O}_{29}$ is improved significantly by doping with Al^{3+} . A reasonable doping amount can

FeNb₁₁O₂₉. Al_{0.2}Fe_{0.8}Nb₁₁O₂₉ shows improved electrochemical performance, with a reversible capacity of 318 mAh g⁻¹ at 0.1 C, high initial-cycle Coulombic efficiency of 95.0%, and relatively high and safe working potential of about 1.61 V. Al_{0.2}Fe_{0.8}Nb₁₁O₂₉ further possesses excellent cycling stability with capacity retention of 92.9% over after 1000 cycles. In addition, we assembled a LiFePO₄/Al_{0.2}Fe_{0.8}Nb₁₁O₂₉ full cell, which also show excellent electrochemical performance. The discharge capacity is up to 206 mAh g⁻¹ at 0.1C. The capacity retention of the full cell reaches 84.2% after 200 cycles at 1C, and 89.8% after 1000 cycles at 5C. Therefore, Al_{0.2}Fe_{0.8}Nb₁₁O₂₉ may find practical applications in LIBs.

preserve the crystal structure, grain size, and morphology of

Supplementary information The online version contains supplementary material available at https://doi.org/10.1007/s42114-021-00291-4.

Funding The work is supported by the Natural Science Foundation of Hainan Province (No. 518MS021), High Level Talents Project of Basic and Applied Basic Research Plan of Hainan Province (in Natural Science) (No. 2019RC029), and National Natural Science Foundation of China (No. 51702072).

Declarations

Conflict of interest The authors declare no competing interests.

References

- Armand M, Tarascon JM (2018) Building better batteries. Nature 451:652–657
- Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935
- Ashish AG, Arunkumar P, Babu B, Manikandan P, Sarang S, Shaijumon MM (2015) TiNb₂O₇/graphene hybrid material as high performance anode for lithium-ion batteries. Electrochim Acta 176:285–292
- Augustyn V, Come J (2013) High-rate electrochemical energy storage through Li⁺ intercalation pseudocapacitance. Nat Mater 12:518–522
- Karthick SN, Gnanakan SRP, Subramania A, Kim HJ (2010) Nanocrystalline LiMn₂O₄ thin film cathode material prepared by polymer spray pyrolysis method for Li-ion battery. J Alloys Compd 89:674–677
- Liu Z, Guo RT, Meng JS, Liu X, Wang XP, Li Q, Mai LQ (2017) Facile electrospinning formation of carbon-confined metal oxide cube-in-tube nanostructures for stable lithium storage. Chem Commun 53:8284–8287
- Zheng SS (2006) The effect of the charging protocol on the cycle life of a Li-ion battery. J Power Sources 161:1385–1391
- Capsoni D, Bini M, Massarotti V, Mustarelli P, Ferrari S, Chiodelli G, Mozzati MC, Galinetto P (2009) Cr and Ni doping of Li₄Ti₅O₁₂: cation distribution and functional properties. J Phys Chem C 113:19664–19671
- Capsoni D, Bini M, Massarotti V, Mustarelli P, Chiodelli G, Azzoni CB, Mozzati MC, Linati L, Ferrari S (2008) Cations distribution and valence states in Mn-substituted Li₄Ti₅O₁₂ structure. Chem Mater 20:4291–4298
- Zhao XC, Yang P, Ding T, Yang LJ, Mai XM, Chen HY, Wang G, Ma Y, Wang XJ, Murugadoss V, Angaiah S, Wang YP, Liu H, Guo ZH (2019) Hydrothermally synthesized Li₄Ti₅O₁₂ nanotubes anode material with enhanced Li-ion battery performances. J Nanosci Nanotechnol 19:7387–7391
- Li RJ, Qin Y, Liu X, Yang L, Lin CF, Xia R, Lin SW, Chen YJ, Li JB (2018) Conductive Nb₂₅O₆₂ and Nb₁₂O₂₉ anode materials for use in high-performance lithium-ion storage. Electrochim Acta 266:202–211
- Zhu XZ, Xu J, Luo YP, Fu QF, Liang GS, Luo LJ, Chen YJ, Lin CF, Zhao XS (2019) MoNb₁₂O₃₃ as a new anode material for high-capacity, safe, rapid and durable Li⁺ storage: structural characteristics, electrochemical properties and working mechanisms. J Mater Chem A 7:6522–6532
- Lou XM, Li RJ, Zhu XZ, Luo LJ, Chen YJ, Lin CF, Li HL, Zhao XS (2019) New anode material for lithium-ion batteries: aluminum niobate (AlNb₁₁O₂₉). ACS Appl Mater Interfaces 11:6089–6096

- Fu QF, Li RJ, Zhu XZ, Liang GS, Luo LJ, Chen YJ, Lin CF, Zhao XS (2019) Design synthesis and lithium-ion storage capability of Al_{0.5}Nb_{24.5}O₆₂. J Mater Chem A 7 19862–19871
- Fu QF, Liu X, Hou JR, Pu YR, Lin CF, Yang L, Zhu XZ, Hua L, Lin SW, Luo LJ, Chen YJ (2018) Highly conductive CrNb₁₁O₂₉ nanorods for use in high-energy, safe, fast-charging and stable lithium-ion batteries. J Power Sources 379:231–239
- Zhu XZ, Fu QF, Tang LF, Lin CF, Xu J, Liang GS, Li RJ, Luo LJ, Chen YJ (2018) Mg₂Nb₃₄O₈₇ porous microspheres for use in high-energy, safe, fast-charging, and stable lithium-ion batteries. ACS Appl Mater Interfaces 10:23711–23720
- Lou XM, Fu QF, Xu J, Liu X, Lin CF, Han JX, Luo YP, Chen YJ, Fan XY, Li JB (2018) GaNb₁₁O₂₉ nanowebs as high-performance anode materials for lithium-ion batteries. ACS Appl Nano Mater 1:183–190
- Yang C, Deng SJ, Lin CF, Lin SW, Chen YJ, Li JB, Wu H (2016) Porous TiNb₂₄O₆₂ microspheres as high-performance anode materials for lithium-ion batteries of electric vehicles. Nanoscale 8:18792–18799
- Yang C, Zhang YL, Lv F, Lin CF, Liu Y, Wang K, Feng JR, Wang XH, Chen YJ, Li JB, Guo SJ (2017) Porous ZrNb₂₄O₆₂ nanowires with pseudocapacitive behavior achieve high-performance lithiumion storage. J Mater Chem A 5:22297–22304
- Zheng RT, Qian SS, Cheng X, Yu HX, Peng N, Liu TT, Zhang JD, Xia MT, Zhu HJ, Shu J (2019) FeNb₁₁O₂₉ nanotubes: Superior electrochemical energy storage performance and operating mechanism. Nano Energy 58:399–409
- Yan L, Shu J, Li CX, Cheng X, Zhu HJ, Yu HX, Zhang CF, Zheng Y, Xie Y, Guo ZP (2019) W₃Nb₁₄O₄₄ nanowires: ultrastable lithium storage anode materials for advanced rechargeable batteries. Energy Storage Mater 16:535–544
- Cheng X, Zhu HJ, Yu HX, Ye WQ, Zheng RT, Liu TT, Peng N, Shui M, Jie S (2018) K₂Nb₈O₂₁ nanotubes with superior superior electrochemical performance for ultrastable lithium storage. J Mater Chem A 6:8620–8632
- Pinus I, Catti M, Ruffo R, Salamone MM, Mari CM (2014) Neutron diffraction and electrochemical study of FeNb₁₁O₂₉/ Li₁₁FeNb₁₁O₂₉ for lithium battery anode applications. Chem Mater 26:2203–2209
- 24. Lou XM, Xue ZH, Luo ZB, Lin CF, Yang Y, Zhao H, Zheng P, Li JB, Wang N, Chen YJ, Wu H (2017) Exploration of Cr_{0.2}Fe_{0.8}Nb₁₁O₂₉ as an advanced anode material for lithium-ion batteries of electric vehicles. Electrochim Acta 245 482–488
- Lou XM, Lin CF, Luo Q, Zhao JB, Wang B, Li JB, Shao Q, Guo XK, Wang N, Guo ZH (2017) Crystal structure modification enhanced FeNb₁₁O₂₉ anodes for lithium-ion batteries. ChemElectroChem 4:3171–3180
- Zhao ZC, Hu ZQ, Jiao RS, Tang ZH, Dong P, Li YD, Li SD, Li HS (2019) Tailoring multi-layer architectured FeS₂@C hybrids for superior sodium-, potassium- and aluminum-ion storage. Energy Storage Mater 22:228–234
- 27. Xu BH, Guan XG, Zhang LY, Liu XW, Jiao ZB, Liu XH, Hu XQ, Zhao XS (2018) A simple route to preparing γ -Fe₂O₃/RGO composite electrode materials for lithium ion batteries. J Mater Chem A 6:4048–4054
- Wu D, Wang C, Wu H, Wang S, Wang F, Chen Z, Zhao T, Zhang Z, Zhang LY, Li CM (2020) Synthesis of hollow Co₃O₄ nanocrystals in situ anchored on holey graphene for high rate lithium-ion batteries. Carbon 163:137–144
- Li GL, Wang YT, Guo H, Liu ZL, Chen PH, Zheng XY, Sun JL, Chen H, Zheng J, Li XG (2020) Direct plasma phosphorization of Cu foam for Li ion batteries. J Mater Chem A 8:16920–16925
- 30. Li GL, Wu XQ, Guo H, Guo YR, Chen H, Wu Y, Zheng J, Li XG (2020) Plasma transforming Ni(OH)₂ Nanosheets into porous nickel nitride sheets for alkaline hydrogen evolution. ACS Appl Mater Interfaces 12 5951–5957

- Yang M, Pang MY, Chen JY, Gao FH, Li HL, Guo PZ (2021) Surfactant-assisted synthesis of palladium nanosheets and nanochains for the electrooxidation of ethanol. ACS Appl Mater Interfaces 13:9830–9837
- Ma N, Wang SQ, Liu XH, Sun YC, Yin YR, Zhang LY, Guo PH (2020) PdPb bimetallic nanowires as electrocatalysts for enhanced ethanol electrooxidation. Sci China Mater 63 2040–2049
- 33. Li Q, Li HS, Xia QT, Hu ZQ, Zhu Y, Yan SS, Ge C, Zhang QH, Wang XX, Shang XT, Fan ST, Long YZ, Gu L, Miao GX, Yu GH, Moodera JS (2021) Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry. Nat Mater 20:76–83
- 34. Li XY, Lin BN, Li HB, Yu Q, Ge Y, Jin X, Liu XH, Zhou YH, Xiao JP (2018) Carbon doped hexagonal BN as a highly efficient metal-free base catalyst for Knoevenagel condensation reaction. Appl Catal B 239:254–259
- 35. Li Z, Wang C, Chen XZ, Wang XX, Li XY, Yamauchi Y, Xue XJ, Wang J, Lin CF, Luo D, Wang XF, Zhao XS (2020) MoO_x nanoparticles anchored on N-doped porous carbon as Li-ion battery electrode. Chem Eng J 381 122588
- Subramania A, Angayarkanni N, Vasudevan T (2006) Synthesis of nano-crystalline LiSr_xMn_{2-x}O₄ powder by a novel sol-gel thermolysis process for Li-ion polymer battery. J Power Sources 158:1410–1413
- 37. Subramania A, Angayarkanni N, Gangadharan R, Vasudevan T (2006) Synthesis of nanocrystalline LiCd_xMn_{2-x}O₄ cathode materials by using a new combustion fuel for Li-ion polymer battery. Synth React Inorg M 36:203–207
- Subramania A, Angayarkanni N, Lakshmidevi S, Lakshmidevi R, Gangadharan R, Vasudevan T (2005) A microwave-induced combustion method for the synthesis of nano-crystalline Ni-and Mndoped LiCoO₂ for Li-ion battery. Bull Electrochem 21:411–413
- Zhao XC, Yang P, Yang LJ, Cheng Y, Guo Z (2018) Enhanced electrochemical performance of Cu²⁺ doped TiO₂ nanoparticles for lithium-ion battery. ES Mater Manuf 1:67–71
- 40. Yang C, Yu S, Ma Y, Lin CF, Xu ZH, Zhao H, Wu SQ, Zheng P, Zhu ZZ, Li JB, Wang N (2017) Cr³⁺ and Nb⁵⁺ co-doped Ti₂Nb₁₀O₂₉ materials for high-performance lithium-ion storage. J Power Sources 360:470–479
- Wang MX, Wang K, Huang XB, Zhou T, Xie HS, Ren YR (2020) Improved sodium storage properties of Zr-doped Na₃V₂(PO₄)₂F₃/C as cathode material for sodium ion batteries. Ceram Int 46:28490–28498
- 42. Liang GS, Jin XX, Huang CH, Luo LJ, Chen YJ, Lin CF (2020) Cr³⁺-doped Li₃VO₄ for enhanced Li⁺ storage. Funct Mater Lett 2:2050005

- Liu Y, Gu YJ, Luo GY, Chen ZI, Wu FZ, Dai XY, Mai Y, Li JQ (2020) Ni-doped LiFePO₄/C as high-performance cathode composites for Li-ion batteries. Ceram Int 46 14857–14863
- Bin M, Quinzeni I, Spada D (2019) The doping of FeNb₁₁O₂₉ as a way to improve its electrochemical performance. ChemistrySelect 4:5656–5661
- 45. Niu C (2018) Al-doped VO₂ (B) nanobelts as cathode material with enhanced electrochemical properties for lithium-ion batteries. Funct Mater Lett 11:1850068
- Madhavi S, Rao GS, Chowdari B, Li S (2001) Effect of aluminium doping on cathodic behaviour of LiNi_{0.7}Co_{0.3}O₂ J Power Sources 93 156–162
- 47. Wang JL, Li ZH, Yang J, Tang JJ, Yu JJ, Nie WB, Lei GT, Xiao QZ (2012) Effect of Al-doping on the electrochemical properties of a three-dimensionally porous lithium manganese oxide for lithium-ion batteries. Electrochim Acta 75:115–122
- Ding Y, Xie J, Cao G, Zhu T, Yu H, Zhao X (2011) Enhanced elevated-temperature performance of Al-doping single-crystalline LiMn₂O₄ nanotubes as cathodes for lithium-ion batteries. J Phys Chem C 115:9821–9825
- Jang YI, Moorehead WD, Chiang YM (2002) Synthesis of the monoclinic and orthorhombic phases of LiMnO₂ in oxidizing atmosphere. Solid State Ionics 149:201–207
- 50. Zhan D, Liang Y, Cui P, Xiao Z (2015) Al-doped Li Mn_2O_4 single crystalline nanorods with enhanced elevated-temperature electrochemical performance via a template-engaged method as a cathode material for lithium-ion batteries. RSC Adv 5:6372–6377
- Larson AC and Von Dreele RB (2004) General Structure Analysis System (GSAS), Los Alamos National Laboratory report LAUR. 86–748
- Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213
- 53. Li X, Huang YY, Li YY, Sun SX, Liu Y, Luo JH, Han JT (2017) Al doping effects on LiCrTiO_4 as an anode for lithium-ion batteries. RSC Adv 7:4791–4797
- Wadsley AD (1961) Mixed oxides of titanium and niobium. II. The crystal structures of the dimorphic forms Ti₂Nb₁₀O_{29.} J Acta Crystallogr 14 664–670
- Do SJ, Santhoshkumar P, Kang SH, Prasanna K, Jo YN, Lee CW (2019) Al-doped Li[Ni_{0.78}Co_{0.1}Mn_{0.1}Al_{0.02}]O₂ for high performance of lithium ions batteries. Ceram Int 45 6972–6977

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.