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Abstract
In this paper, pure  SnO2 and Ce-doped  SnO2 nanosheets were synthesized through a facile hydrothermal method. The synthe-
sized materials were characterized by different techniques for their physico-chemical properties. The XRD data indicated the 
characteristic tetragonal rutile crystal phase for  SnO2. Ce doping was ascertained by the presence of the diffraction peaks of 
 CeO2 in all the doped samples of the  SnO2 nanosheets. FESEM images revealed highly rough surfaces as well as the agglom-
eration of a large number of small nanoparticles of multiple shapes to form nanosheets like morphologies for pure  SnO2 and 
Ce-doped  SnO2. Electrochemical techniques like cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), 
and chronoamperometry were applied to demonstrate the electrochemical performances of the pure  SnO2 and Ce-doped 
 SnO2 nanosheets/Nafion-modified glassy carbon electrode (GCE). The 3% Ce-doped  SnO2 nanosheet/Nafion-modified GCE 
showed a remarkable sensitivity of 0.9986 μA μM−1  cm−2 over a linear dynamic range of 0.5–20.3 µM. The corresponding 
linear regression equation was Ip (μA) = 0.0709 [2-nitroaniline (μM)] + 0.1385 with R2 = 0.99325. The LOD of the modified 
sensor was found to be 6.3 ± 0.1 nM at the signal-to-noise ratio of S/N = 3. The newly developed sensor electrode exhibited 
good selectivity toward 2-nitroaniline in the presence of common interfering species.
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1 Introduction

Tin dioxide  (SnO2) due to its excellent optical and electrical 
properties has been reported for applications such as super-
capacitors [1], gas and chemical sensors [2], lithium-ion bat-
teries [3], dye-sensitized solar cells [4], antimicrobial agents 
[5], electrochemical biosensors [6], and electrocatalysis [7]. 
A wide variety of applications associated with  SnO2 nano-
structures are due to the ease of synthesis of  SnO2 nano/
microstructures with versatile morphologies, n-type semi-
conducting nature, a wide-band gap of 3.6 eV, high carrier 
density, and excellent chemical and thermal stabilities [8]. 
However, for further improvement for specific applications, 
many methods have been adopted. Among the various meth-
ods adopted, doping is considered as one of the best methods 
for altering the microstructural, surface morphology, elec-
tronic, optical, and bandgap properties of the  SnO2 nano/
microstructures [9].

Cerium-a lanthanide element has received extensive 
attention as a dopant material for semiconductor metal 
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oxides due to its mixed valences of +3 and +4, availability 
of vacant 4f orbitals, redox characteristics  (Ce4+  ↔  Ce3+), 
rapid oxygen ion mobility, and electrocatalytic properties 
[10–13]. The reduction of  Ce4+ to  Ce3+ ion has been found 
to initiate the generation of lattice mobile oxygen, which 
in turn results in the formation of surface oxygen vacancy 
defects. These defects act as hot spots for the synergistic 
binding of other nanomaterials especially the metal oxides 
[14, 15]. Ce-doped metal oxides such as Ce-doped ZnO nan-
oparticles [16, 17], Ce-doped  SnO2 thin films [18], Ce-doped 
NiO nanoparticles [19], Ce-doped  In2O3 nanostructure [20], 
Ce-doped hierarchical flower-like  In2O3 microspheres [21], 
Ce-doped  Fe3O4 magnetic particles [22], Ce-doped NiO 
micro-flowers [23], Ce-doped  TiO2 nanoparticles [24], Ce-
doped  WO3 with raspberry-like architecture [25], Ce-doped 
CuO nanoparticles [26], and many more have been explored 
and reported for a variety of applications.

Among the various applications, the electrochemical 
sensors based on Ce-doped semiconductor metal oxide 
nanomaterials have extensively been fabricated to detect 
hazardous and toxic chemicals. One such class of hazard-
ous materials is of nitroanilines which are the derivatives of 
aniline and exist in different isomeric forms. These chemi-
cals are widely used as raw materials in industries such 
as dyes, pharmaceuticals, polymers, developing agents, 
gasoline, insecticides, pesticides, rubber, photo-stabiliz-
ers, antioxidants, explosives, anti-aging agents, and paints 
[27, 28]. Excess release of these chemicals as effluents into 
the water bodies has a devastating effect not only on the 
environment but also on human health. In living beings, 
these chemicals can potentially cause damage to the liver, 
kidneys, DNA mutations upon inhalation, and even skin 
diseases. As far as environmental effects are concerned, 
nitroanilines are non-biodegradable and hence are consid-
ered as typical organic pollutants [29]. Many metal oxide 
semiconductor materials have been explored as transduc-
ers for the sensing of nitro-anilines. Bitter gourd–shaped 
 Yb2O3-doped ZnO nanostructures [30], ZnO nanoflower 
 CeO2 nanoparticles [31], ZnO nanorods on fluorine-doped 
 SnO2 [27],  Sm2O3-doped ZnO beech fern hierarchical 
structures [32], novel sphere-like  Co2SnO4 [33],  K+ inter-
calated  MnO2-rGO composite [34], Yb-doped ZnO nan-
opencils [35], CdO-ZnO hexagonal nanocones [36], etc. 
have been reported as electrochemical sensor materials 
towards nitroaniline isomers. Since Ce-doped  SnO2 nano-
materials show improved electric and electronic properties 
as compared to pure  SnO2, they can be potential materials 
for electrochemical sensing applications. Further, limited 
studies have been conducted to use Ce-doped  SnO2 nano-
materials for 2-nitroaniline detection.

Therefore, the main focus of the present research con-
ducted herein was to synthesize pure  SnO2 and Ce-doped 
 SnO2 nanosheets with different Ce- concentrations through 

a facile hydrothermal method. As-synthesized materials 
were characterized through different techniques to confirm 
the composition, morphology, crystallinity, and optical and 
vibrational properties. The electrochemical sensing behavior 
of Ce-doped  SnO2 nanosheets was compared with that of 
pure  SnO2 nanosheets for 2-nitroaniline. It was found that 
the 3% Ce-doped  SnO2 nanosheets/Nafion-modified GCE 
exhibited.

2  Experimental details

2.1  Materials

To synthesize Ce-doped  SnO2 nanosheets, all chemi-
cals of AR grade were procured from Sigma-Aldrich and 
used as obtained without any further purification. For the 
synthesis, various chemicals, i.e., stannous chloride dihy-
drate  [SnCl2·2H2O], cerium(III) chloride heptahydrate 
 [CeCl3·7H2O], hexamethylenetetramine [HMTA;  C6H12N4,], 
and ammonium hydroxide  [NH4OH], were used. For the 
sensing purpose, 2-nitroaniline (2-NA) was also procured 
from Sigma-Aldrich and used as obtained. To prepare all 
solutions for the synthesis and sensing applications, deion-
ized (DI) water was used.

2.2  Synthesis of pure  SnO2 and Ce‑doped  SnO2 
nanosheets

A facile hydrothermal process was used to synthesize 
pure and Ce-doped  SnO2 nanosheets. For the synthesis of 
 SnO2 nanosheets, 100 mM equimolar aqueous solutions 
of  SnCl2·2H2O and HMTA (40 mL each) were mixed well 
under stirring for 30 min. Consequently, several drops of 
 NH4OH were added, to maintain the solution pH = 11, into 
the resultant mixture and stirred again for further 30 min. 
After vigorous stirring, the obtained solution was trans-
ferred to a Teflon-lined stainless steel autoclave which was 
sealed and heated at 160 °C for 8 h. After the desired reac-
tion time, the autoclave was cooled to room temperature and 
the obtained precipitate was centrifuged and washed several 
times with DI water and ethanol. Finally, the obtained white 
precipitate was dried at room temperature and annealed at 
450 °C for 3 h.

Ce-doped  SnO2 nanosheets were prepared following the 
same synthetic procedure of  SnO2 nanosheets; however, for 
Ce doping, different concentrations of  CeCl3·7H2O (1 mM 
for 1%, 3 mM for 3% and 5 mM for 5%), made in 20 mL DI 
water, were added in the mixture of  SnCl2·2H2O and HMTA, 
then completed the same hydrothermal procedure of  SnO2 
nanosheets as described above.
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2.3  Characterizations

The synthesized pure  SnO2 and Ce-doped  SnO2 materials 
were analyzed by several techniques to examine the mor-
phologies, crystal structures and phases, composition, and 
optical and vibrational properties. Morphology, composi-
tion, purity, and elemental distribution in the material matrix 
were analyzed through field-emission scanning electron 
microscopy (FESEM: JEOL-JSM-7600F, Hitachi, Japan) 
attached with EDS for elemental mapping and composition. 
The crystallinity, crystal size, and crystal phases were deter-
mined by X-ray diffractometer (XRD; PANalyticalX’Pert 
PRO; Cu-Kα radiations source with λ = 0.1542 nm) in the 
range of 20–80° with a scan speed of 2°/min. Bandgap 
energies were determined by UV–vis spectroscopy (Perkin 
Elmer-UV/VIS, Lambda 950). Vibrational properties were 
examined by FTIR spectroscopy (Perkin Elmer-FTIR Spec-
trum-100). FTIR analysis of the synthesized nanomaterials 
was carried out by initially mixing the product homogene-
ously with powdered KBr (1% by weight of the sample) fol-
lowed by palletization at high pressure. The scattering prop-
erties of the synthesized nanomaterials were investigated by 
Raman scattering (Perkin Elmer-Raman Station-400 series) 
at room temperature. Raman analysis was carried out by 
directly placing the dry powders of the synthesized nano-
materials below the probe.

2.4  Fabrication of 2‑nitroaniline chemical sensors

Initially, the glassy carbon electrode (GCE) with apparent 
surface area 0.071  cm2 (BAS Inc. Japan) was thoroughly 
polished with a 1-μm polishing diamond followed by pol-
ishing with 0.05 μm alumina slurry. After that, the polished 
electrode was washed several times with distilled water and 
dried in an air oven at 100 °C for 1 h. The surface of the 
GCE was coated with a thin layer of hydrothermally synthe-
sized sensor materials. A homogeneous suspension from the 
sensor materials was made using Nafion solution as a con-
ducting binder to provide stability and firmness to the coated 
material on the surface of the electrode. Typically, 5.0 mg of 
active material was dispersed in 0.45 mL of propan-2-ol con-
taining 0.05 mL of 5% Nafion, followed by ultra-sonication 
for 20 min to get a homogeneous suspension. Of this suspen-
sion, 1.5 μl was gently coated onto a clean GCE surface and 
dried at ambient conditions for 5 min, followed by drying at 
60 °C for 20 min to get a homogeneous layer of active mate-
rial on the GCE surface. A three-electrode electrochemical 
cell connected to an electrochemical workstation (Zahner 
Zennium, Germany) was used for various electro-analytical 
measurements. A Pt wire as a counter electrode, modified 
GCE as a working electrode, and an Ag/AgCl (saturated 
KCl) electrode as a reference electrode were used. All the 
electro-analytical observations were recorded in 0.1 M 

phosphate-buffered solution (PBS) of pH 7.0 at room tem-
perature. The sensitivity of the fabricated sensor was deter-
mined from the slope of the calibration curve divided by the 
active area of the modified electrode.

3  Results and discussion

3.1  Properties of the pure  SnO2 and Ce‑doped  SnO2 
nanosheets

The diffraction peaks of the  SnO2 lattice planes are shown 
in the form of an XRD spectrum in Fig. 1. Well-defined dif-
fraction peaks corresponding to (110), (101), (200), (111), 
(211), (220), (002), (310), (112), (301), (202), and (321) dif-
fraction planes are well-matched with the reported literature 
[37–39] and JCPDS: 41–1445. The XRD data indicated the 
characteristic tetragonal rutile crystal phase of  SnO2. The 
presence of  CeO2 in all the prepared doped samples of the 
 SnO2 nanosheets is confirmed by the presence of a small but 
well-defined peak corresponding to (111) diffraction plane 
which indicated the cubic fluorite phase of  CeO2(JCPDS 
card no. 81–0792) [40, 41]. No other peak was detected, 
except for  SnO2 and  CeO2 in the XRD spectra of un-doped 
and doped samples which further confirmed the high purity 
of the samples. The crystallite size was calculated using the 
Scherrer equation (Eq. 1) [42, 43].

Here, λ = wavelength of X-rays (1.542 Å), β = full width 
half maximum (FWHM), and θ = Bragg angle of diffraction. 
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Fig. 1  XRD spectra of the pure  SnO2, 1%, 3%, and 5% Ce-doped 
 SnO2 nanosheets
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For analysis, the three most intense peaks corresponding 
to (110), (101), and (211) diffraction planes were consid-
ered. The resulting parameters are tabulated in Table 1. The 
average crystallite sizes for pure  SnO2, 1%, 3%, and 5% 
Ce-doped  SnO2 nanosheets were found to be 31.07, 30.19, 
32.10, and 33.86 nm, respectively. Nominal change in the 
diffraction angles for Ce-doped  SnO2 nanosheets as com-
pared to pure  SnO2 further confirmed the replacement of 
the  Sn4+ ions by  Ce4+ ions from some of the lattice points 
from the tetragonal rutile crystal phase of  SnO2. However, 
for pure  SnO2 and 1% Ce-doped  SnO2 nanosheet diffraction 
angles were almost the same due to the very low concentra-
tion of the dopant. With the increase in dopant concentration 
diffraction angles were found to increase.

The FESEM images of the pure  SnO2 and Ce-doped  SnO2 
nanosheets are shown in Fig. 2a–p. Panoramic images reveal 
highly rough surfaces and illustrate that the pure, as well as 
Ce-doped  SnO2 nanosheets, are formed by the agglomera-
tion of a large number of small nanoparticles of multiple 
shapes. High-resolution FESEM images showed that the 
thickness of the 3% Ce-doped  SnO2 nanosheets (Fig. 2j–l) 
was more as compared to 5% Ce-doped  SnO2 nanosheets 
(Fig. 2n–p). The cross-edge sections FESEM image of pure 
 SnO2 and Ce-doped  SnO2 nanosheets displayed a dense 
distribution and close packing of the nanoparticles to form 
layered nanosheets. For 3% Ce-doped  SnO2 nanosheets, a 
comb-like morphology was also observed from cross-edged 
FESEM images. Such small nanoparticle-layered nanosheets 
of pure  SnO2 and Ce-doped  SnO2 provide a large surface 
area for the chemisorption of analytes, required as an impor-
tant pre-requisite to perform the role of electron mediator, 
by synthesized nanosheets for efficient and reliable electro-
chemical sensing.

EDS-selected area and the corresponding EDS spectrum of 
pure  SnO2 are shown in Fig. 3a and  (a1), respectively. The EDS 

spectrum showed peaks for Sn and O only. The EDS spectrum 
without any other peaks corresponding to any impurities con-
firms the fact that the synthesized  SnO2 nanosheets have appre-
ciable purity. To further confirm the EDS results, the com-
position and element distribution of the constituent elements 
of  SnO2 nanosheets were studied by the FESEM-elemental 
mapping technique (Fig. 3  (a2,  a3)). The uniform distribution 
of Sn and O content in the entire structure of the nanosheets 
lattice can be seen. Similar to pure  SnO2 nanosheets, the Ce-
doped  SnO2 nanosheets were also analyzed by EDS selected 
area, EDS spectra, and FESEM-elemental mapping technique. 
The doping of the  Ce4+ into the crystal lattices of the  SnO2 
nanosheets was confirmed for all the doped samples. The EDS 
spectra for all the doped nanosheets exhibited peaks for Sn, O, 
and Ce only. The fact was further supported by the FESEM-
elemental mapping images as portrayed in Fig. 3  (b2–b4) 
for 1% Ce-doped, Fig. 3  (c2–c4) for 3% Ce-doped and Fig. 3 
 (d2–d4) for 5% Ce-doped  SnO2 nanosheets. The Sn, Ce, and O 
contents were uniformly distributed in doped  SnO2 nanosheets.

The molar ratio of  [Sn2+] and  [OH−], pH of the growth 
solution, and the presence of directing agents like HMTA sig-
nificantly affect the shape, size, and aspect ratio of the  SnO2 
nanomaterials [44].  NH4OH present in the reaction mixture 
provides a sufficient amount of  HO– ions which control the 
nucleation and crystal growth process which then controls the 
shape, size, and morphology of the  SnO2 nanostructures. The 
presence of the HMTA further adds to the concentration of 
 HO– ions by hydrolysis (Eqs. 2 and 3).

During the hydrothermal growth at 160 °C for 8 h, initially, 
there is the formation of different hydroxylated species like 

(2)(CH
2
)
6
N
4
+ 6H

2
O → 6 HCHO + 4NH

3

(3)NH
4
OH → NH

+

4
+ HO

−

Table 1  Various XRD 
parameters for pure  SnO2 
and different Ce-doped  SnO2 
nanosheets

Sensor Diffraction 
planes

Diffraction 
angles (°)

FWHM (β) Crystallite 
size (nm)

Average 
crystallite size 
(nm)

Pure  SnO2 (110) 26.57 0.23571 34.27 31.07
(101) 33.88 0.26106 31.48
(211) 51.79 0.31835 27.45

1% Ce- doped  SnO2 (110) 26.57 0.25033 32.27 30.19
(101) 33.87 0.26335 31.21
(211) 51.79 0.32264 27.09

3% Ce- doped  SnO2 (110) 26.61 0.2324 34.76 32.10
(101) 33.91 0.25423 32.33
(211) 51.82 0.29918 29.22

5% Ce- doped  SnO2 (110) 26.62 0.22554 35.82 33.86
(101) 33.93 0.23432 35.08
(211) 51.84 0.28507 30.67

1018 Advanced Composites and Hybrid Materials (2021) 4:1015–1026



1 3

Sn(OH)
−

3
 , Sn(OH)2−

4
 , and Sn(OH)2 in alkaline medium with 

pH 11 (Eqs. 4–6) [45, 46].

During the nucleation, these hydroxides are converted to 
SnO at high growth temperature and pressure conditions in 
the autoclave. High-temperature annealing in the presence 
of air at 450 °C for 3 h oxidizes SnO to  SnO2 nanoparticles 
which aggregate together to result in the formation of lay-
ered nanosheets like morphologies (Eqs. 7–9) [39].

(4)Sn
2+ + 3HO

−
→ Sn(OH)

−

3

(5)Sn
2+ + 4HO

−
→ Sn(OH)

2−

4

(6)Sn
2+ + 2HO

−
→ Sn(OH)

2

(7)Sn(OH)
−

3
→ SnO + HO

− + H
2
O

The presence of  CeCl3·7H2O, during the hydrothermal syn-
thesis of Ce-doped  SnO2 nanosheets, results in the formation 
of Ce(OH)3 and Ce(OH)−

4
 in strong alkaline medium (Eqs. 10, 

11). Due to electrostatic interactions, Ce(OH)3 and Ce(OH)−
4
 

are mixed easily with Sn(OH)−
3
 , Sn(OH)2−

4
 , and Sn(OH)2 in the 

alkaline medium during the nucleation and growth process. 
High-temperature annealing in the presence of air oxidizes 
Ce(OH)3 and Ce(OH)−

4
 hydroxides into  CeO2 (Eqs. 12,13).

(8)Sn(OH)
2−

4
→ SnO + 2 HO

− + H
2
O

(9)2SnO + O
2
→ 2SnO

2

(10)Ce
3+ + 3HO

−
→ Ce(OH)

3

(11)Ce
3+ + 4HO

−
→ Ce(OH)

−

4

Fig. 2  FESEM images for (a–d) pure  SnO2, (e–h) 1% Ce-doped  SnO2, (i–l) 3% Ce-doped  SnO2, and (m–p) 5% Ce-doped  SnO2 nanosheets
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Figure 4a represents the FTIR spectra of as-synthesized 
pure  SnO2 and Ce-doped  SnO2 nanosheets. The fingerprint 
region of pure as well as Ce-doped  SnO2 nanosheets showed 
vibrational peaks in the region 604–614  cm−1 which may be 
assigned to the vibration of constituent ionic species in the 
crystal lattices and are due to the M − O stretching vibra-
tions [47]. A large intensity band near 3430  cm−1 may be 
attributed to the stretching vibrational mode of O–H bonds 
of the  H2O molecules adsorbed on the surface of pure  SnO2 
and Ce-doped  SnO2 nanosheets during sample preparation.

Figure 4b shows the Raman spectra of the pure  SnO2 and 
Ce-doped  SnO2 nanosheets. The rutile phase crystal struc-
ture of  SnO2 consists of two  SnO2 formula units per unit 
cell. In a single unit cell, each Sn atom is surrounded by 
six O-atoms whereas each O-atom is surrounded by three 
Sn-atoms. Symmetry point group and space group of the 
rutile phase of  SnO2 are  D4h and p42/mnm, respectively, 
which have 15 optical phonons with symmetry symbols 
 A1g +  A2g +  A2u +  B1g +  B2g +  2B1u +  Eg +  3Eu. Among 

(12)2 Ce(OH)
3
+

1

2
O

2

→ 2 CeO
2
+ 3H

2
O

(13)2 Ce(OH)
−

4
+

1

2
O

2

→ 2 CeO
2
+ 2 HO

− + 3 H
2
O

these, only the  A1g,  B1g,  B2g, and  Eg optical phonons are 
Raman active, and the remaining are Raman inactive [48]. 
The Raman spectra for the pure, as well as Ce-doped  SnO2 
nanosheets, show three fundamental Raman-active peaks 
situated at 464, 630, and 766  cm−1.

The peak at 464 is assigned to the vibration of oxygen 
and corresponds to  Eg Raman active mode. Peaks centered 
at 630 and 766  cm−1 are assigned to the expansion and con-
traction vibrational modes of Sn–O bonds and correspond 
to the  A1g and  B2g optical Raman active modes, respectively 
[49, 50]. Since the main Raman active peak corresponding to 
the  F2g mode of  CeO2 cubic structure is ~ 463  cm−1 which is 
close to the  Eg Raman active mode of the  SnO2, no separate 
Raman active peak for  CeO2 in Ce-doped  SnO2 nanosheets 
was observed.

3.2  2‑Nitroaniline chemical sensor applications 
of pure  SnO2 and Ce‑doped  SnO2 nanosheets

Cyclic voltammograms (CV) were recorded and compared 
to analyze the electro-catalytic performance of bare GCE 
and modified GCE by pure  SnO2 and Ce-doped  SnO2 
nanosheets/Nafion towards 10 μM 2-nitroaniline within the 
potential range + 0.5 to + 1.5 V at a scan rate of 50 mV/s 
in PBS at 7.0 pH vs. Ag/AgCl (saturated KCl) (Fig. 5a). 

Fig. 3  EDS selected area, EDS spectra, and FESEM-elemental mapping images for (a,  a3) pure  SnO2, (b,  b3) 1% Ce-doped  SnO2, (c,  c3) 3% Ce-
doped  SnO2, and (d,  d3) 5% Ce-doped  SnO2 nanosheets
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As compared to bare GCE, the pure  SnO2 and Ce-doped 
 SnO2 nanosheets/Nafion modified GCE showed better elec-
trocatalytic performances as shown by distinct anodic peaks 
in different voltammograms. The well-shaped reversible 
2-nitroaniline oxidation peak appeared on bare as well as 
different modified GCEs. For bare GCE, pure  SnO2/GCE, 
1% Ce-doped  SnO2/GCE, 3% Ce-doped  SnO2/GCE, and 5% 
Ce-doped  SnO2/GCE oxidation peak currents of 0.6165, 
1.646, 1.704, 3.057, and 2.779 μA were observed at poten-
tials 1.291, 1.496, 1.335, 1.316, and 1.336 V, respectively for 
10.0 µM 2-nitroaniline at 50 mV/s in PBS. The Ce-doping 
into the crystal lattice of the  SnO2 nanosheets affects the 
microstructures, optical band gap energies, electrochemi-
cal, and redox properties of the Ce-doped  SnO2 nanosheets. 
Further, the unique two-dimensional sheet-like morphology, 
comprising very small nanoparticles, of the synthesized 
Ce-doped  SnO2 nanomaterials provides a large surface to 

volume ratio for the greater extent of adsorption of analyte 
species onto the surface.

Among all the modified GCEs, the electrode compris-
ing 3% Ce-doped  SnO2 nanosheets exhibited maximum 
electrocatalytic activity for 10 μM 2-nitroaniline. This can 
be attributed to the presence of comb-like nanoparticles in 
case of 3% Ce-doped  SnO2 nanosheets. Therefore, in the 
subsequent electrochemical analysis, only 3% Ce-doped 
 SnO2 nanosheet/Nafion-modified GCE was studied under 
different conditions. This 3% Ce-doped  SnO2 nanosheet/
Nafion-modified GCE showed no distinct anodic peaks in 
the absence of 2-nitroaniline, whereas, in the presence of 
10 μM 2-nitroaniline, amplified anodic current was observed 
at the modified active GCE at a scan rate of 50 mV/s in PBS 
(Fig. 5b). Thus, as fabricated 3% Ce-doped  SnO2 nanosheet/
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Fig. 5  (a) CV representing the electro-catalytic performance of bare 
GCE and modified GCE/Nafion electrodes based on pure  SnO2 and 
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with pH 7.0 and (b) CV for 3% Ce-doped  SnO2 nanosheets in the 
absence and presence of 10 μM 2-nitroaniline
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Nafion-modified GCE can potentially be used for electro-
catalytic oxidation/reduction and hence as electrochemical 
sensor towards 2-nitroaniline even at very low concentration 
of 10 μM.

The electro-catalytic sensing characterizations of the 
3% Ce-doped  SnO2 nanosheet/Nafion-modified GCE 
were analyzed as a function of scan rate through CV 
within the potential range + 0.5 to + 1.5 V. Figure 6a 
represents the effect of change of scan rates from 10 
to 60  mV/s on the electrochemical behavior toward 
5.0  μM 2-nitroaniline. With the increase in the scan 
rate, a continuous increase in anodic peak current was 
observed. A high determinant coefficient (R2) value 
of 0.9643 was observed from a linearized variation of 
anodic peak currents with scan rates which further indi-
cate the diffusion-controlled electrochemical oxidation 

of 2-nitroaniline [51] (Fig. 6b). The corresponding cali-
bration plot for the anodic current responses for 5.0 μM 
2-nitroaniline vs. (scan rate)1/2 with the determinant 
coefficient R2 = 0.99344 (Fig. 6c) and the plot repre-
senting the Ep vs. log scan rate with the determinant 
coefficient R2 = 0.99801 (Fig. 6d) for 3% Ce-doped  SnO2 
nanosheets/Nafion modified GCEs were also linear con-
firming the pure diffusion-controlled process.

To further investigate the electrochemical proper-
ties of the pure  SnO2 and Ce-doped  SnO2 nanosheets/
Nafion-modified GCE, a comparative study of EIS was 
also carried out. The EIS data was collected in 1.0 mM 
 K3Fe(CN)6/K4Fe(CN)6/0.1 M KCl solution at + 0.6 V. The 
AC signal amplitude was 10 mV and the frequency range 
was 0.1 Hz to 100 kHz. The corresponding Nyquist plots 
drawn between real variables (ZReal) and the negative value 
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of the imaginary impedance variable (ZImag) are shown in 
Fig. 7. The semicircle shape of the Nyquist plots for the 
modified electrodes represents the electron transfer resist-
ance, which resulted due to the electron transfer by the 
redox probe [Fe(CN)6]3−/4−. The diameter of the semicircle 
plot is correlated to the charge-transfer resistance  (Rct) 
which controls the rate of electron transfer kinetics of the 
[Fe(CN)6]3−/4− probe at the interface of the electrode. As 
revealed, the lowest semicircle’s diameter was obtained 
for the 3% Ce-doped  SnO2-modified GCE, indicating a 
decreased  Rct value for this active electrode than other 
modified working electrodes including pure  SnO2/GCE, 
1% Ce-doped  SnO2/GCE, or 5% Ce-doped  SnO2/GCE. 
This again confirmed an enhanced electron-transfer capa-
bility for the 3% Ce-doped  SnO2 modified GCE which is 
advantageous for the electrochemical sensing performance 
toward 2-nitroaniline, consistent with the above CV results 
of Fig. 5a.

The amperometric technique was also explored under 
constant stirring conditions in PBS at an applied poten-
tial of 1.3 V against Ag/AgCl (saturated KCl). Figure 8a 
displays the current real-time response of 3% Ce-doped 
 SnO2 nanosheets/Nafion-modified GCE in the presence 
of different 2-nitroaniline concentrations ranging from 
0.5 to 38.0 µM. In the absence of 2-nitroaniline, a stable 
background response was observed by the modified GCE. 
Amperometric current responses increased as soon as 
2-nitroaniline with different concentrations was added to 
the PBS.

To determine the sensitivity, LOD, and LDR, a cali-
bration plot of the amperometric response current vs. 
[2-nitroaniline] was plotted (Fig. 8b). The 3% Ce-doped 
 SnO2 nanosheet-modified/Nafion GCE showed a linear 

dynamic range of 0.5–20.3 µM. The corresponding linear 
regression equation was Ip (μA) = 0.0709[2-nitroaniline 
(μM)] + 0.1385 with R2 = 0.99325. The LOD of the modified 
sensor was found to be 6.3 ± 0.1 nM at the signal-to-noise 
ratio S/N = 3. The sensitivity of the sensor is estimated to be 
0.9986 μA μM−1  cm−2.

The effect of some interfering electro-active chemi-
cal species on the selectivity of the 3% Ce-doped  SnO2 
nanosheet/Nafion-modified GCE towards 2-nitroaniline 
was also examined. Figure 9 represents the variations of the 
amperometric current responses of modified GCE during the 
successive addition of 2-nitroaniline (5.0 μM), 4-nitroaniline 
(50 μM), 4-nitrophenol (50 μM), NaCl (50 μM), and  CaCl2 
(50 μM) after certain time intervals and at an applied poten-
tial of 1.3 V. Significant increase in current response upon 
the addition of even 5.0 μM 2-nitroaniline as compared to 
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negligible current changes on the additions of 4-nitroaniline, 
4-nitrophenol, NaCl, and  CaCl2, is undoubtedly confirming 
the excellent selectivity of the fabricated 3% Ce-doped  SnO2 
nanosheet based sensor for 2-nitroaniline.

3.3  Sensing mechanism

Figure 10 illustrates the proposed mechanism for the bet-
ter electrochemical sensing of the 2-nitroaniline by Ce-
doped  SnO2 nanosheets. The presence of  Ce4+ ions into 
the  SnO2 crystal lattice promotes the charge transfer from 

the conduction band of  SnO2 nanosheets to the surface-
adsorbed  O2 molecules which were present in the PBS. 
Additionally, Ce-doping also increases the density of 
oxygen vacancies and roughness on the surface of the 
nanosheets required to generate sufficiently more adsorp-
tion sites for  O2 molecules. Conduction band electrons 
reduce the adsorbed  O2 molecules to different oxygenated 
species like O− , O2− , and O−

2
 [30]. Further, the rates of 

intermolecular charge transfer process and adsorption of 
the 2-nitroaniline are facilitated on the surface of the Ce-
doped  SnO2 nanosheets due to the simultaneous presence 
of electron-rich amino (–NH2) group and an electron-defi-
cient nitro (–NO2) group [52, 53]. Different reactive oxy-
genated species on the surface of the nanosheets initially 
reduce 2-nitroaniline into 2-hydroxylamine aniline. The 
reduction process is followed by a fast reversible oxidation 
process which oxidizes the 2-hydroxylamine aniline into 
2-nitrosoaniline. The electrons released during the oxida-
tion process are transferred back to the conduction band 
of Ce-doped  SnO2 nanosheets which increases the current 
response and electrical conductivity [54].

Furthermore, there is significant potential for improving 
the sensitivity of this chemical sensor by applying exter-
nal photons, which could result in improving its behavior 
toward 2-nitroaniline [55–57].

4  Conclusions

Herein, a novel Ce-doped  SnO2 nanosheet/Nafion-modi-
fied GCE has been prepared to quantify the 2-nitroaniline 
in PBS at pH 7.0. Among the various modified elec-
trodes, the 3% Ce-doped  SnO2 nanosheets exhibited 
better electrochemical sensing behavior as compared to 
others. As-fabricated 3% Ce-doped  SnO2 nanosheets/
Nafion-modified GCE showed a linear dynamic range of 
0.5–20.3 µM, LOD 6.3 ± 0.1 nM at the signal-to-noise 
ratio S/N = 3 and a remarkable sensitivity of 0.9986 μA 
μM−1  cm−2. High sensitivity, very low detection limit, 
wide dynamic range, quick response time, and excellent 
selectivity of the fabricated sensor may be attributed to 
high surface area and easy diffusion of the 2-nitroaniline 
into the sensor matrix. Hence, the hydrothermal synthesis 
of Ce-doped  SnO2 nanosheets has great sensor poten-
tial and can be explored for future sensing applications 
towards toxic and harmful chemicals.
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Fig. 10  Proposed sensing mechanism for 2-nitroaniline by Ce-doped 
 SnO2 nanosheets
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