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Abstract
Excessive copper (as Cu(II)) in drinking water—in place through mining, farming, manufacturing operations, and municipal or
industrial wastewater releases—can be a threat to human health and ecosystem wellbeing. Some sources of drinking water are
remote; hence, the sensitive, selective, and portable detection of contaminated copper in drinking water sources is of great
importance. Through this work, a portable fabric amperometric nanosensor has been devised via a simple dip-coating method,
which is able to rapidly, sensitively, and selectively detect Cu(II) ions in a range of 0.65 to 39 ppm in real time. The prepared
Cu(II) nanosensor, which operates under a low voltage, consists of three layers: electrospun nylon-6 nanofibers, multi-walled
carbon nanotubes, and 2,2′:5′,2″-terthiophene molecules. Potential interfering metal ions, including Cd(II), Fe(II), Pb(II), Hg(II),
and Ag(I) ions, have no significant influence on the response of the Cu(II) nanosensor. This fabric sensor—that is able to be
placed in your pocket and carried about—is more portable than current technologies, while being able to detect Cu(II) on the
same level necessary for potable water. We anticipate our nanosensor to be a starting point for more sophisticated and compre-
hensive heavymetal assay. Furthermore, this nanosensor will aid in on-site detection of Cu(II) in potential drinkingwater sources,
lending itself well to third world and remote detection.
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1 Introduction

Potable water is vital to life, and that it is clean and safe to use
is of utmost importance. However, millions of people still

suffer from the threats of unhealthy drinking water around
the world, especially those living in third-world countries
and remote locations. Copper is a naturally occurring
metal—often classified as a heavy metal—found in rocks,
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soil, plant life, a number of organisms, and water [1]. Many of
these organisms’ diets—including humans—require copper in
trace amounts; however, excessive or certain forms of copper
have also been shown to cause gastrointestinal distress, liver
disease, and kidney damage [2–4]. The highest level of copper
in drinking water limited by the United States Environmental
Protection Agency (U.S. EPA) is 1.3 mg/L (1.3 ppm) [5–7].
Therefore, it is crucial to be able to identify and detect the
amount of copper in drinking water, if it is above the U.S.
EPA limit.

Many aqueous elemental detection techniques have been
developed previously. Conventional methods, including
atomic absorption spectroscopy (AAS), atomic emission spec-
troscopy (AES), inductively coupled plasma mass spectrom-
etry (ICP-MS), and inductively coupled plasma optical emis-
sion spectrometry (ICP-OES), have performances with excel-
lent sensitivity, accuracy, and selectivity [8–12]. However,
they require sophisticated instruments that are costly, time
consuming, require expertise, and lack portability. Many
new tools have occurred since the start of the twenty-first
century, such as colorimetric sensors [13–16], Bturn-on^ or
Bturn-off^ fluorescent probes [17–20], biosensors [21–23],
square wave anodic stripping voltammetry [24–26], differen-
tial pulse voltammetry [27–29], and potentiometric measure-
ments based on ion-selective electrodes [30–32]. They are not
only more economic, portable, sensitive, and selective but also
able to rapidly detect the concentrations of copper on site.
Nevertheless, the processes to fabricate them are usually te-
dious, and particular chromogenic and fluorescent receptors,
biological recognition elements, and electrode materials are
often required to prepare.

Here, we propose a simple dip-coating procedure to fabri-
cate a fabric amperometric sensor for the selective detection of
Cu(II) ions in drinking water for the first time. The prepared
Cu(II) sensor consists three layers. The bottom layer is nylon-
6 nanofibers that are used as scaffolds to support the other two
layers. The middle layer is composed of multi-walled carbon
nanotubes (MWCNTs) which are utilized to yield a conduc-
tive sensing platform due to their superb electronic properties.
The top layer is 2,2′:5′,2″-terthiophene molecules that have a
high adsorption and selectivity towards Cu(II) ions [33].
Figure 1 illustrates the schematic diagram (macroscopic top
view and nanoscale side view) of the Cu(II) sensor (2,2′:5′,2″-
terthiophene/MWCNTs/nylon-6 nanocomposites) and the
sensor response to the Cu(II) ions. When a voltage is applied
to the Cu(II) sensor, a baseline current will be detected as-
cribed to the movement of charge carriers (electrons) in
MWCNTs. As a tiny amount of water containing Cu(II) ions
being added, the Cu(II) ions will be captured by the 2,2′:5′,2″-
terthiophene molecules. Once that occurs, an impeded current
can be observed, and the current impedance correlates with
the concentration of Cu(II) ions in water. It is believed that the
impedance results from the attraction of positively charged

Cu(II) ions to the negative electrons in MWCNTs [34]. In this
work, the sensitivity and selectivity of the Cu(II) sensor are
carefully studied.

2 Material and methods

Materials Nylon-6 pellets (polycaprolactam, 3 mm), acetic
acid (ACS, ≥ 99.7%), formic acid (ACS, ≥ 98%), Triton X-
100 (4-(1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol,
625 g/mol), and silver nitrate (AgNO3, ACS, ≥ 99%) were
purchased from Sigma-Aldrich. Multi-walled carbon nano-
tubes (MWCNTs, outer diameter 10–20 nm, inside diameter
3–5 nm, length 10–30 μm, specific surface area 233 m2/g, >
95%) were supplied by Cheap Tubes, Inc. 2,2′:5′,2″-
terthiophene (≥ 98%) was obtained from Ark Pharm, Inc.
Tetrahydrofuran (THF, certified) was purchased from Fisher
Chemical. Copper chloride (CuCl2, 99%) and ferrous chloride
(FeCl2, 97%)were purchased fromAcros Organics. Cadmium
chloride (CdCl2, 99.9%), lead nitrate (Pb(NO3)2, reagent), and
mercury chloride (HgCl2, ACS) were purchased from Alfa
Aesar.

Sensor preparation The nylon-6 nanofibers were fabricated
via electrospinning. First, nylon-6 pellets were dissolved in
1: 1 (w/w) acetic acid:formic acid solution at 20 wt%. Then,
the nylon-6 solution was transferred into a 5-mL syringe and
loaded into the syringe pump. The nylon-6 nanofiber mat was
electrospun at a solution feed rate of 9.1μL/min for 4 h. A bias
of 30 kV was applied between the syringe needle and rotating
drum collector, between which was a distance of 8 cm. After
that, the electrospun nylon-6 nanofiber mat was dried under
vacuum at room temperature for 24 h.

A dip-coating procedure was employed to load
MWCNTs and 2,2′:5′,2′′-terthiophene molecules onto
the nylon-6 nanofibers [34, 35]. The fabricated nylon-6
nanofiber mat was cut into rectangular pieces with sizes
of 1 × 2 cm and dipped into a bath in which MWCNTs
were dispersed in a 0.3 wt% Triton X-100 aqueous so-
lution. Triton X-100 was used as a surfactant to stabi-
lize the MWCNTs in water. The concentration of
MWCNTs aqueous solution was optimized at 0.25 g/L
for the uniform dispersion on the surface of nylon-6,
according to our previous work [36]. After 30 s, the
nylon-6 nanofiber pieces were removed and placed in
a water bath for 1 min to remove the loosely bound
MWCNTs. The MWCNTs/nylon-6 nanocomposites were
dried under ambient conditions, and then immersed in a
2.5 g/L 2,2′:5′,2′′-terthiophene solution using THF as
the solvent for 24 h to ensure the fully load of mole-
cules. The Cu(II) sensors, MWCNTs/nylon-6 nanocom-
posites loaded with 2,2′:5′,2′′-terthiophene, were pre-
pared after they were dried under ambient conditions.
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Sensor evaluation All the electrochemical experiments were
carried out utilizing the Solartron Analytical CellTest System
which consisted of a 1470E multi-channel potentiostat unit
and multiple 1455A series frequency response analyzers.
The Cu(II) sensor was fixed on a glass slide with two nickel-
plated steel alligator clips (each at one short side of the 1 ×
2 cm sensor) connected to channel cables of the 1470E unit.
To measure the resistivity, 30 μL of deionized water was
dropped onto the Cu(II) sensor, and then a voltage ranging
from − 3 to 3 V in 2 min was applied to it. The changes in
current with voltage were collected.

To characterize the responses of Cu(II) sensors to Cu(II)
ions, CuCl2 aqueous solutions in which the concentrations of
Cu(II) ions were 0, 0.13, 0.65, 1.3, 6.5, 13, 39, and 65 ppm,
respectively, were prepared. A constant voltage of 1 V was
applied to the Cu(II) sensors, and 30 μL of those prepared
CuCl2 aqueous solutions were dropped after 30 s. The chang-
es in currents within 5 min were recorded.

Cd(II), Fe(II), Pb(II), Hg(II), and Ag(I) ions at their MCLs
(maximum contaminant levels in drinking water enforced by
the U.S. EPA)were employed to investigate their interferences
on the response of the Cu(II) sensor to Cu(II) ions. More
specifically, 1.3 ppm Cu(II) aqueous solutions containing
0.005 ppm Cd(II), 0.3 ppm Fe(II), 0.015 ppm Pb(II),
0.002 ppm Hg(II), and 0.1 ppm Ag(I), respectively, were pre-
pared. A constant voltage of 1 V was applied to the Cu(II)
sensors, and 30 μL of the prepared above solutions was
dropped after 30 s. The currents were compared with those
corresponding to 1.3 ppm pure Cu(II) aqueous solutions. The
MWCNTs/nylon-6 nanocomposites were used for controlled
experiments, and the procedures to investigate their resistance
and response to Cu(II) ions were the same.

Material characterization The prepared nylon-6 nanofibers,
MWCNTs/nylon-6 nanocomposites, and Cu(II) sensors
(2,2′:5′,2′′-terthiophene/MWCNTs/nylon-6 nanocompos-
ites) were imaged by a JEOL 6500F scanning electron
microscope (SEM). A thin layer of gold was sputter
coated on their surfaces and the accelerating voltage
was 15 kV. Fourier-transform infrared spectroscopy
(FT-IR) was performed on a Bruker ALPHA FT-IR
spectrometer. A resolution of 2 cm−1 in the range of
4000–500 cm − 1 w i t h 30 sc an s was app l i ed .
Thermogravimetric analysis (TGA) curves were acquired
at a heating rate of 10 °C/min from room temperature to
600 °C under a N2 atmosphere through a TA
Instruments Q500 thermogravimetric analyzer.

3 Results and discussion

The SEM images of the prepared nylon-6 nanofibers,
MWCNTs/nylon-6 nanocomposites, and Cu(II) sensors are
exhibited in Fig. 2. The nylon-6 nanofiber has a uniform di-
ameter of about 250 nm and smooth surface, as shown in Fig.
2a. This demonstrates the electrospinning process is steady
and consistent. The electrospun nylon-6 mat with non-
woven fibrous morphology is free of defects and can perform
as an ideal supportive scaffold. It can be seen from Fig. 2b that
the MWCNTs are successfully loaded and well dispersed onto
the surface of nylon-6 nanofibers. There is no obvious differ-
ence between the Fig. 2b, and c and d, which means that the
MWCNTs are still firmly anchored to the surface of nylon-6
nanofibers after the introduction of 2,2′:5′,2′′-terthiophene
through dip-coating process. The copper binding agent

Fig. 1 Mechanism of detecting Cu(II) ions by 2,2′:5′,2′′-terthiophene/MWCNTs/nylon-6 nanocomposites
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2,2′:5′,2′′-terthiophene molecules are in molecular level thus
cannot be observed in SEM images.

Figure 3 shows the FT-IR spectra of nylon-6 nanofibers,
MWCNTs/nylon-6 nanocomposites, Cu(II) sensors, and
2,2′:5′,2′′-terthiophene, respectively. The nylon-6 nanofibers
and MWCNTs/nylon-6 nanocomposites exhibit the same
spectra, which suggests the MWCNTs are bonded onto the
surface of nylon-6 electrospun fiber through physical

interactions (Van derWaals force) rather than covalent or ionic
bonds. (The overlapped spectra are shown in Fig. S1, as well
as the peak positions given in Table S1. The differences on
two spectra are negligible as the IR absorbances are well
matched and the peak shifts are within 2 cm−1.) Compared
with the samples without functional molecules, there are three
additional peaks within a range of 875 to 625 cm−1 for the
Cu(II) sensors. These are attributed to the carbon-hydrogen

Fig. 2 SEM images of a nylon-6
nanofibers, b MWCNTs/nylon-6
nanocomposites, and c, d Cu(II)
sensors

Fig. 3 FT-IR spectra of nylon-6
nanofibers, MWCNTs/nylon-6
nanocomposites, Cu(II) sensors,
and 2,2′:5′,2′′-terthiophene
molecules
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out-of-plane vibrations in thiophene rings, which are also ob-
served in the FT-IR spectrum of 2,2′:5′,2′′-terthiophene. Thus,
the 2,2′:5′,2′′-terthiophene molecules are successfully loaded
onto the MWCNTs/nylon-6 nanocomposites. By further cou-
pling with the previous SEM images, the successful fabrica-
tion of Cu(II) sensors containing MWCNTs and 2,2′:5′,2′′-
terthiophene are confirmed.

TGA is employed to investigate the amount of MWCNTs
and 2,2′:5′,2′′-terthiophene molecules adsorbed onto the
nylon-6 nanofibers, and their TGA curves under nitrogen at-
mosphere are exhibited in Fig. 4. It shows that the pure
electrospun nylon-6 nanofibers are thermally stable until
330 °C. Subsequently, from 330 through 460 °C is the degra-
dation stage of the polymer, leaving the carbonaceous residue
about 0.7 wt%. The observed thermogram of pure nylon-6
under nitrogen atmosphere in present study is consistent with
the literature [37]. Since MWCNTs are kept intact after the
pyrolysis process (as the MWCNTs are thermally stable up to
~ 1300 °C under the inert environment) [38], the MWCNTs/
nylon-6 nanocomposites and Cu(II) sensors have a slightly
greater weight percent on residue (see TGA curves of inset
in Fig. 4). The difference on residue weight percentages is
about 0.2 wt% which is ascribed to the intact MWCNTs.
Compared with nylon-6 nanofibers, a lower onset temperature
of the degradation is observed for MWCNTs/nylon-6 nano-
composites and Cu(II) sensors (280 °C as opposed to 330 °C
for pure nylon-6), which can be partially attributed to the high
thermal conductivity of MWCNTs (2 × 102 W/m K) [39]. The
faster and easier local heat transfer readily degrades the nylon-
6 through the breakages of amide bond in nylon-6 backbone
chains leading to a lower onset decomposition temperature
[40]. Other than the thermal conductivity, a trace amount of

water in the MWCNTs will also aid the hydrolysis and degra-
dation of the nylon-6 [41]. The defects and acid groups such as
–COOH on theMWCNTs caused by the acid treatment during
the synthesis process as well as the residual surfactant Triton
X-100 might also impair the thermal stability of nylon-6
which induces the degradation. There is a small weight loss
observed at 180 °C for the TGA curve of Cu(II) sensors,
which is relating to the evaporation of the 2,2′:5′,2′′-
terthiophenemolecules. The 2,2′:5′,2′′-terthiophene has a boil-
ing point of 160 °C, and it increases to some extent as a result
of the interactions with the nylon-6 and MWCNTs. These
TGA results further confirm that the MWCNTs and 2,2′:5′,2′
′-terthiophene are successfully loaded onto the nylon-6 nano-
fibers scaffold and the relative weight percentages are deter-
mined to be 0.2 wt% and 2 wt%, respectively.

Figure 5a shows the current-voltage characteristics of the
MWCNTs/nylon-6 nanocomposites and Cu(II) sensors in
contact of deionized water. The MWCNTs exhibit typically
semiconducting behaviors, as observed from the nonlinear
data points of the MWCNTs/nylon-6 nanocomposites, while
the Cu(II) sensors had more linear data points and metallic
characteristics due to the addition of 2,2′:5′,2′′-terthiophene.
In order to easily compare their resistances, an approximately
linear relationship between the current and voltage is assumed
for both the MWCNTs/nylon-6 nanocomposites (R2 = 0.97)
and Cu(II) sensors (R2 = 0.99), which means that their resis-
tances are considered stable and constant within a range of − 3
to 3 V as pure resistors. The slope of the current-voltage line
for the Cu(II) sensors is greater than that for the MWCNTs/
nylon-6 nanocomposites, which clearly indicates that the
Cu(II) sensors have a lower resistance and a higher electrical
conductivity than the MWCNTs/nylon-6 nanocomposites,

Fig. 4 TGA curves of nylon-6
nanofibers, MWCNTs/nylon-6
nanocomposites, and Cu(II) sen-
sors (heating rate 10 °C/min; at-
mosphere N2)
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which can be ascribed to the conductive nature of π stacking
molecular structure from the solid state 2,2′:5′,2′′-terthiophene
formed on MWCNTs [42–44].

The same amount of 30 μL Cu(II) aqueous solution at its
MCL (1.3 ppm) was dropped onto the MWCNTs/nylon-6
nanocomposites and Cu(II) sensor after 30 s, and the moni-
tored currents gradually became stable after 2 min. The final
current is determined by averaging the current readings from 2
to 5 min. As shown in Fig. 5b, the Cu(II) sensor has a signif-
icant response to Cu(II) ions. The current in the MWCNTs/
nylon-6 nanocomposites is about 1.27 times greater than that
of the Cu(II) sensor. Note that the Cu(II) has a higher electrical
conductivity in deionized water without Cu(II) ions than the
MWCNTs/nylon-6 nanocomposites. In other words, the mon-
itored stable current greatly decreases after replacing the
MWCNTs/nylon-6 nanocomposites with Cu(II) sensor. This
phenomenon is due to the binding of Cu(II) ions to the
2,2′:5′,2′′-terthiophene molecules on the surface of the Cu(II)
sensor which greatly hinders the mobility of carrier charges.

The effects of the Cu(II) concentrations on the responses of
the MWCNTs/nylon-6 nanocomposites and Cu(II) sensors

were further investigated. The currents both increase with
the increase of Cu(II) concentration due to the ionic nature
of Cu(II) ions in aqueous solution, as shown in Fig. 5c.
Moreover, there are two intersections between the current-
concentration curves of the Cu(II) sensor and MWCNTs/
nylon-6 nanocomposites. Since very few Cu(II) ions are pres-
ent at the ultralow Cu(II) concentrations (< 0.2 mg/L), the
current flow in the Cu(II) sensor is still greater than that in
the MWCNTs/nylon-6 nanocomposites attributed to the lower
inherent resistance of the Cu(II) sensor. More Cu(II) ions
forming complexes with 2,2′:5′,2′′-terthiophene molecules as
the Cu(II) concentration increases, and the current impedance
caused by those complexes gradually becomes the main
influencer. As a result, the current in the Cu(II) sensor gets
smaller than that of the MWCNTs/nylon-6 nanocomposites.
However, at high Cu(II) concentrations (> 40 mg/L), the
slopes of the current-concentration curves for the Cu(II) sen-
sor becomes higher than the MWCNTs/nylon-6 nanocompos-
ites again. This is because the maximum adsorption capacity
for Cu(II) ions of the Cu(II) sensor has been reached; thereaf-
ter the current is predominantly originated not from the

Fig. 5 a Current-voltage characteristics of MWCNTs/nylon-6 nanocom-
posites and Cu(II) sensors wetted by 30μL of deionizedwater (measuring
time 2 min). b Responses of MWCNTs/nylon-6 nanocomposites and
Cu(II) sensors wetted by 30 μL of Cu(II) aqueous solution at a concen-
tration of 1.3 ppm. c Responses of MWCNTs/nylon-6 nanocomposites
and Cu(II) sensors wetted by 30μL of Cu(II) aqueous solution at different

concentrations. dResponses of Cu(II) sensors wetted by 30 μL of various
metal ion aqueous solution (Cu(II) 1.3 ppm; Cu(II)-Cd(II) 1.3–
0.005 ppm; Cu(II)-Fe(II) 1.3–0.3 ppm; Cu(II)-Pb(II) 1.3–0.015 ppm;
Cu(II)-Hg(II) 1.3–0.002 ppm; Cu(II)-Ag(I) 1.3–0.1 ppm). For Fig. 5b–
d, the applied voltage is 1 V.
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movement of electrons in MWCNTs but from the conductiv-
ity of Cu(II) aqueous solution. Compared with the MWCNTs/
nylon-6 nanocomposites, the Cu(II) sensor has strong hydro-
phobicity with the account of the hydrophobic 2,2′:5′,2′′-
terthiophene molecules. Therefore, less Cu(II) aqueous solu-
tion is stuck in the Cu(II) sensor, and the current is larger than
that of the MWCNTs/nylon-6 nanocomposites. Based on the
above analysis, the Cu(II) sensor exhibits an obvious response
to Cu(II) ions at Cu(II) concentrations between those two in-
tersections that are considered to be the working range of the
Cu(II) sensor, namely from 0.65 to 39 ppm. The 0.65 ppm is
50% lower than the MCL of 1.3 ppm enforced by the U.S.
EPA for Cu(II) ions in drinking water, which means that the
Cu(II) sensor in our work is suitable and sensitive enough for
detecting Cu(II) ions in drinking water. Meanwhile, the upper
limit of 39 ppm is ~ 30 times of the EPA MCL demonstrating
the sensor is applicable for a wide range of the Cu(II) contam-
inated water.

When a voltage is being applied to the Cu(II) sensor, an
electric current is generated as electrons flow through the
MWCNTs. The Cu(II) ions that are captured by 2,2′:5′,2′′-
terthiophene molecules can draw away some electrons from
the MWCNTs due to their positive charges; therefore, a re-
sponsive change (a decrease) in current will be observed.
Since the 2,2′:5′,2′′-terthiophene molecules have a much high
selectivity towards Cu(II) ions over the other metal ions, the
response of the Cu(II) sensor should remain the same with the
existence of interfering metal ions. In other words, there
should be no obvious change for the current when other metal
ions are introduced into the aqueous solution. In order to be
more practical, Cd(II), Fe(II), Pb(II), Hg(II), and Ag(I) at their
MCLs set by the U.S. EPA were employed into the Cu(II)
aqueous solutions to investigate their interferences on the re-
sponse of the Cu(II) sensor to Cu(II) ions. It can be seen from
Fig. 5d that the currents hardly change (less than 5%) when
different interfering metal ion aqueous solutions, instead of
pure Cu(II) aqueous solution, are used. Pb(II) and Fe(II) show
slightly greater effects with current differences of 4.8% and
4.7%, respectively. Compared with the sensor sensitivity of
Cu(II), the interferences of these metal ions are negligible.
Thus, the Cu(II) sensor is able to selectively detect Cu(II) ions
among various other interfering metal ions in water.

4 Conclusion

Detection of Cu(II) ions in drinking water is usually a bigger
challenge than in other contaminated water as a result of its
much lower MCLs. A sensitive, cost-effective, flexible, and
portable amperometric sensor is successfully prepared via a
simple dip-coating method in this work, which is composed of
electrospun nylon-6 nanofibers, MWCNTs, and 2,2′:5′,2′′-
terthiophene molecules. Owing to the selective binding of

2,2′:5′,2′′-terthiophene molecules with Cu(II) ions, the fabri-
cated sensor shows a significant response to Cu(II) ions in a
wide range of 0.65 to 39 ppm, which indicates that its detec-
tion limit is way lower than the MCL (1.3 ppm) for Cu(II)
ions. Moreover, the Cu(II) sensor exhibits a superior selectiv-
ity towards Cu(II) ions over other metal ions, and the presence
of Cd(II), Fe(II), Pb(II), Hg(II), and Ag(I) ions at their MCLs
has no obvious interfering effects on its response to Cu(II)
ions. Therefore, the Cu(II) sensor in this work shows promise
in monitoring Cu(II) ions in drinking water in real time.
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