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Abstract
Composite materials and especially polymer composites are widely used in daily life and different industries due to their vastly
different properties and design flexibility. It is known that the properties of the composites are strongly related to the properties of
its constituents. However, it has been reported in many studies, experimentally and by simulations, that the characteristics of the
composites do not follow the rule of mixing. It means that in addition to properties of the constituents, there are other parameters
affecting the final physicochemical properties of composites. The interfacial interactions between fillers and host is one of the
factors which can strongly affect the properties of the composite. In this review, we summarized the type of interactions between
the constituents, their improvement techniques, interaction measurement methods, and the effects of interfacial interactions on
thermal, mechanical, and electrical properties of composites.
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1 Introduction

Polymers are molecules made of long chains of repeated
units known as monomers. Their intrinsic features of flexi-
bility, light-weight and low production cost, allow them to
have wide applications in our daily life such as food pack-
aging, painting, and automobile industries, etc. Although the
monomer structure and selection of polymerization methods
allow good control on some of the polymer properties, cer-
tain functions cannot be achieved by polymer itself.
Therefore, polymers are compounded with other additives
to achieve new properties. This final product is called com-
posite [1].

Polymer nanocomposites (PNCs) are defined as the
polymer matrixes reinforced with fillers with at least one
dimension within 100 nm range. Nanofillers can be cate-
gorized based on their dimensions, e.g. 0D particle, 1D
tube/fiber, and 2D sheets [2]. The PNCs have attracted
great attention due to their drastically enhanced properties

[3–5]. For instance, thermally insulating polymers can be
transformed into thermal conductors after reinforcing with
carbon nanotubes (CNTs) [6–8]. Moreover, PNCs have
demonstrated improved mechanical, gas barrier, solvent
resistance, and flammability properties compared to the
corresponding neat matrices [3, 4, 9]. The significant dif-
ferences in properties of PNCs can be explained by the
extremely large interface area of nanofiller. The interfacial
area of nanofillers is orders of magnitude higher than tra-
ditional macro- or micron-sized additives [10, 11].
Therefore, the dispersion quality of nanofillers in polymer
matrix becomes critically important. The techniques of
incorporating nanofillers, dispersion control, and their im-
pacts on the physicochemical properties of PNCs have
been reviewed broadly [12–15].

Although the type and chemistry of the nanofillers are im-
portant for the prediction of their composite properties, the
experimental and modeling results have not completely been
in compliance with the predicted behavior. Therefore, there
should have been other parameters which have either
underestimated or not been considered in the prediction of
composite behavior. In this regard, the interfacial interaction
between polymer matrix and nanofiller became one of the
parameters which have raised attention [16–19]. The presence
of nanofillers in the matrix and their interfacial interaction can
affect the mobility of polymer chains [20]. At high filler
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content (over threshold), they can form a network which fur-
ther restrains the mobility of the polymer chains [21].
Moreover, it has been reported that the property enhancement
of polymer matrix filled with nanoparticles is a function of
inter-filler distance, interfacial interactions, and interfacial ar-
ea [22]. Hence, in addition to the characteristics of the constit-
uents of the composites, the properties such as their interfacial
areas, play a key role in the overall performance of compos-
ites. In this review, we described the type of interactions be-
tween the constituents, interaction characterization, improve-
ment techniques, and the effect of interfacial interactions on
thermal, mechanical, and electrical properties of PNCs.

2 Interfacial interactions in PNCs

The involved interactions in PNCs can be categorized into
filler-filler and filler-polymer interactions. For instance, the
interaction between the nanofillers (in the filler bundles) [23]
or between different shells of the nanofillers such as
multiwalled carbon nanotube (MWCNT) [24] is only related
to the fillers and their properties. While the interaction be-
tween filler and polymer matrix [25] depends on the properties
of both. The Binterface/interphase^ is defined as the region
where the filler and matrix are either chemically or physically
attached to each other [26]. A schematic model for the inter-
face of filler in polymer matrix is shown in Fig. 1. The inter-
facial bonding plays a key role in polymer chain mobility and
transferring the forces from the surrounding matrix to the fill-
er. Therefore, it affects the mechanical properties of the poly-
mer composites [17]. Following, the attributes of the fillers
influencing the interfacial interactions, types of interfacial in-
teractions, and the modification methods are reviewed.

2.1 Effect of filler surface chemistry

Surface chemistry of the fillers can impact the filler-matrix
and filler-filler interactions as well as the isotropic dispersion
of fillers in the matrix. Stronger interfacial interaction between
the composite constituents than the inter-filler interactions can
lead to a better isotropic distribution [27, 28]. The inter-filler
interaction is the reason for potential agglomeration of fillers.
If the inter-filler interaction is highly attractive, the fillers can
accumulate and then act as a bigger reinforcing cluster rather
than individual particles. However, in the case of weak inter-
filler interaction, the deformation of the aggregated fillers will
affect the storage/loss of applied energy [28].

2.2 Effect of filler size and shape

As discussed earlier, the high surface to volume (SV) ratio of
nanofillers is responsible for the significantly enhanced prop-
erties. Therefore, it can be counted as the primary motivation
for nanocomposite development [28, 29]. This parameter in
addition to the stress transfer [28, 30] is responsible for Bnew
structural arrangement^ at microscale in the composites. As a
result, improving the interfacial regions can increase the
chance of introducing new properties to the composites [28].
Based on Eq. (1), SV ratio of spherical fillers is a function of
(1/r):

As

Vs
¼ 4∙π∙r2

4
�
3
∙π∙r3

¼ 3

r
ð1Þ

where As is the available surface area, Vs is the volume of the
filler, and r stands for spherical radius. To investigate the effect
of the interfacial area, the whole interfacial area involved in the
composites should be considered. For this purpose, in addition
to surface volume ratio of individual fillers, the volume frac-
tion (φ) of the fillers should be considered as well (Eq. (2)):

A;total

V total
¼ 3

r
∙φ ð2Þ

where A,total is the total surface area of the fillers and Vtotal is
the total volume occupied by the fillers. Therefore, the overall
surface to volume ratio is a function of (1/r) and φ. This means
that in a constant volume fraction, by decreasing the size of
fillers, the overall interfacial area will be increased and follow-
ed by increment of the interfacial interactions. As a result, the
interfacial stress transfer will be more efficient. Additionally,
for a specific size of fillers, by increasing the content of filler
in the composite, the interfacial regions can be increased as
well.

For cylindrical fillers, this ratio can be expressed in Eq. (3):
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ð3Þ

Fig. 1 Schematic model for the filler interface in a polymer composite
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Comparing the spherical and cylindrical shaped fillers,
their SV ratio can be expressed in Eq. (4):

SVs

SVc
¼ 3

2∙ 1þ r=L
� � ð4Þ

Hence, for plates (r > L) and short rods (L < 2r) the
SV ratio of cylindrical fillers is larger than spherical
fillers’, while the SV ratio of long fibers (L > 2r) is
smaller than the spherical filler. Although it seems that
due to high SV ratio of cylindrical fillers, it is better to
use them as reinforcing agents, but there are other fac-
tors that may influence the selection of filler shape. For
example, rigid cylindrical fillers can hardly disperse
isotropically at high concentrations [28]. For thermal
conduction, composites with smaller fillers (larger inter-
facial area) have severe phonon scattering resulting in
lower thermal conductivity (TC) [31]. For example, Wu
et al. investigated the effect of graphite nanoplatelet size
(1 to 15 μm) on thermal conductivity of polyetherimide
(PEI) composites. It was shown that although the small-
er particles formed a better network, the thermal con-
ductivity of the composites was higher with larger par-
ticles. It was suggested that the interfacial thermal resis-
tance is the dominant parameter that determines the TC
of the composites [32]. Eventhough larger enhancement
of TC was also reported in other composites with larger
fillers [33, 34], there are some contradictory reports as
well [35, 36]. For instance, Pashayi et al. found that
nano-sized silver particles outperformed micron-sized
particles in enhancing TC of epoxy-silver composites.
SEM observations revealed that nano-sized fillers
formed a continuous network which was not observed
for micron-sized fillers [37]. However, it is known that
TC is not only a function of particle size; other param-
eters such as surface chemistry, morphology, and disper-
sion of fillers could affect TC as well. Therefore, more
likely, the effect of size should be discussed with other
parameters when interpreting the thermal conduction in
polymer composites [38]. Fu et al. reported higher TC
fo r e poxy adhe s i v e s f i l l e d w i t h n ano - s i z e d
Al2O3compared with micron-sized filled ones. The au-
thors believed that higher polydispersity of nano-sized
fillers helped to construct an effective filler network
for heat transfer [36]. In contrary to high interfacial
thermal resistance in polymer nanocomposites, combina-
tion of nanoparticles with microparticles could synergis-
tically enhance the TC of composites. This phenomenon
has been observed in several systems, which was attrib-
uted to bridging effect of nanofillers between micron-
sized fillers [36].

With filler size down to nanometer, the SVratio and surface
energy of nanofillers become large enough that lead to a

dramatic change in physicochemical properties of PNCs due
to the presence of large interface area between filler and poly-
mer matrix. It should be also considered that homogenous
dispersion of the nanofillers is essential for achieving the de-
sired mechanical properties.

In terms of stiffness, the effect of filler size seems more
complicated. It was reported that the size of fillers in a con-
stant volume fraction cannot significantly affect the stiffness
(or called Young’s modulus) [39, 40]. However, Ji et al. have
theoretically proved that there is a critical size for fillers in
nylon 6/montmorillonite nanocomposites, below which the
filler size can affect the stiffness (Fig. 2) [41]. This phenom-
enon has been experimentally proved in separate studies [42,
43]. Therefore, the stiffness of the composites can be either
unaffected or decreased by increasing the filler size [44].

2.3 Types of interfacial interactions

The properties of the composite materials are framed based on
the interfacial characteristics of the fillers and matrixes [45,
46]. Generally, the interactions between the filler and matrix
are categorized as covalent and noncovalent interactions (i.e.,
van der Waals (VDW) [45], electrostatic [45], and hydrogen
bonding [47–49]). Depending on interactions between the
constituents of the composite, different types of improvement
techniques were developed [16].

2.3.1 Noncovalent interaction

The noncovalent interaction between the matrix and fillers can
be enhanced by employing bridging, increment of interfacial
area, and polymer wrapping [16]. Bridging happens when a
polymer chain interacts with two or more reinforcing fillers
simultaneously (Fig. 3). The probability of the presence of
bridging in the composite depends on the ratio of the radius
of gyration (Rg) of the polymer chain to the average distance

Fig. 2 Normalized modulus as a function of particle size [41]
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of nearest reinforcing filler. Therefore, by increasing the filler
content and using higher molecular weight polymer, the
chance of bridging phenomenon will be higher [50].

Specific interaction area in the composite is another
factor which can affect the properties of the composite.
It is defined as interfacial area of polymer-filler per unit
volume and it is related to the density ratio of polymer
matrix to the fillers, the concentration, and diameter of
the filler [50]. In this regard, Cadek et al. have shown
that the reinforcement of polymer composites is linearly
related to the overall interfacial area of fillers, meaning
that the smaller fillers can have higher impact on the
property of the final product [29].

Wrapping fillers by polymer chains, in addition to
increment of the interaction, is useful for better disper-
sion of the fillers in the matrix [51–54]. Wrapping of
the nanotubes by the polymer chains has been explained
by presence of π-π stacking [55–59], hydrophobic [60],
and VDW interactions [61, 62]. Figure 4 shows the
schematic of a wrapped single wall carbon nanotube
(SWCNT) by DNA which is due to π-π stacking inter-
action between the SWCNT wall and the aromatic bases
of DNA [63].

Wrapping fillers by polymer is related to the chemical com-
position and stiffness of the polymer backbone [60] and geo-
metric parameters [50] of the constituents in the composites.
Thus, higher molecular weight polymers and nanotubes with
smaller diameters are more likely to go through the wrapping
mechanism [16].

Finally, it should be noted that crystallization of the semi-
crystalline polymer host at the interface is another way for
improving the interfacial interactions. In this process, the
fillers will act as a nuclei and the semi-crystalline host will
crystallize at the interface [64].

2.3.2 Covalent interactions

Covalent interaction happens when polymer chains are
chemically connected to the reinforcing fillers [16]. For
that purpose, proper chemical treatments are required to
attach functional groups to filler surface which can react
with the matrix [65–70]. Figure 5a–c shows three types
of surface functionalization of CNT with polymer
chains, hydroxyl, and carboxyl groups, respectively.
Functionalized fillers not only enhance their interaction
with the host, but improve their dispersion and the final
properties of the composites compared to the pristine
fillers [71–73]. The functional group of the fillers
should react with an active group on the polymer chains
of the host. One of the suitable methods for chemical
bonds formation is the in situ polymerization, where the
monomers react with each other and the fillers simulta-
neously [74–78]. The other way is to modify the host
prior to the chemical attachement of the fillers [79].

Although covalent bonding between the fillers and
the host can enhance the interfacial strength more effec-
tively (due to stronger adhesion), the involved pretreat-
ment process requires special attention. For instance,
even though the functionalized fillers could achieve bet-
ter dispersion, but introduction of surface defects could
deteriorate the intrinsic properties of the filler [16].
Grafting polymer chains on filler surface have been
demonstrated effective approach to improve the interfa-
cial interaction and thus enhanced property of the com-
posites [80–82].Fig. 4 Schematic drawing of a single wall CNTwrapped with DNA [63]

Fig. 3 Schematic drawing of bridging incident in polymer composites
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3 Experimental methods of measuring
interfacial interactions

3.1 Interfacial wetting properties

For strong adhesion between the fillers and matrix, good wet-
tability of the reinforcements by the matrix is required [84],
which makes it important to evaluate the wettability of the
fillers. In the following section, contact angle [85] and surface
tension [86] methods will be introduced for wettability
measurement.

The concept of contact angle was first introduced by
Thomas Young in 1805 [87]. He proposed that the contact
angle of a drop of a liquid on a solid surface is the result of
mechanical equilibrium between three surface tensions. The
involved surface tensions at the interface are liquid/vapor
(γLV), solid/vapor (γSV), and liquid/solid (γLS). This equilib-
rium results in the following Eq. (5) [88]:

γSV−γSL ¼ γLV :cosθ ð5Þ

This concept is important as the angle of the liquid
drop at equilibrium state gives information on wettability
and spreadability of the liquid on the solid surface [88].
The contact angle (θ) below 90° indicates that wetting is
favorable while for angle above 90° (θ > 90°) is not
(Fig. 6) [89]. In other words, the lower the angle, the
better the wettability. Complete wetting can be achieved
when contact angle approaches to 0° [90].

Fig. 5 a, b Schematic drawing of
modification of CNT’s surface by
addition of polymer chains and
functional groups, respectively. c
Functionalization of multiwall
CNT (MWCNT) by plasma
functionalization [83]

Fig. 6 The schematic presentation of the relationship between contact
angle and wettability [89]
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Contact angle measurements of the nanofillers with poly-
mer matrixes have been studied in both microscopic and mac-
roscopic scales [84]. For instance, the wetting property of
carbon nanotubes in macroscopic scale was evaluated by plac-
ing the liquefied matrix (or the powder followed by applying
heat to convert it to liquid) on the nanotube sample. The aim
was to see whether the liquefied matrix would absorb (wetting
contact angle) by the surface or it would make a spherical bead
(nonwetting contact angle).

Further, using drop-on-fiber techniques [85] and character-
ization by scanning electron microscopy (SEM) [84], trans-
mission electron microscopy (TEM) [86] and optical micro-
scope [91], the shape and symmetry of the drop on the cylin-
drical fiber can be studied. In drop-on-fiber method, the drop
will be symmetrically shaped along the cylindrical axis when
the contact angle is zero, in contrast to the high contact angle
which results in nonsymmetrical conformation [92, 93]. For
instance, Qian et al. used the drop-on-fiber approach to eval-
uate the wettability of carbon fiber (CF) and its CNT-grafted
version with poly (methyl methacrylate) (PMMA) as matrix
(Fig. 7). The contact angle of CF changed from 27.4 ± 0.8 to
25.7 ± 0.8° after oxidation, while grafting CNT to CF resulted
in further drop of the contact angle to 21.6 ± 0.7° [94].

Wetting property of the fibers at microscale has been stud-
ied with the Wilhelmy model [95, 96]. Combination of the
Wilhelmy model with atomic force microscopy (AFM) makes
it a useful technique for measuring the wetting properties of
the carbon nanotubes. For this purpose, carbon nanotube will
be attached to a calibrated AFM tip and will be brought down
to immerse CNT in the polymer melt. This process will be
followed by inducing a downward force on the CNT, which
will be recorded by the cantilever deflection. The deflection
force can be converted to the contact angle by knowing the
surface tension of the liquid. The following Eqs. (6) and (7)
will be used for this conversion:

Fr ¼ γLπ:d:cosθ ð6Þ
Fr ¼ γL:π: dout:cosθout þ dincosθinð Þ ð7Þ

where γL is the surface tension of the liquid (N/m), θ is the
contact angle in degree, θin and θout are the inside and outside
contact angles of the nanotube, d is the diameter of the nano-
tube, and din and dout are the inside and outside diameters of
the nanotube [97–99].

Although the wetting measurements are known as sim-
ple method to estimate of the interfacial adhesion, signifi-
cantly different values are reported even for the same ma-
terials. For example, the contact angle of PEG-MWCNT
was reported to be in the wide range of 25–73° in different
studies. The difference between observed results could be
explained by the different size of fillers and also tempera-
ture variations in the system [84, 99]. Therefore, these
methods could provide an initial estimation for the recog-
nition of strong or weak interactions [16]. Thereafter, re-
searchers found surface tension measurement a better tech-
nique for wettability studies [84, 98]. In this method, the
surface tension of the polymer will be compared with the
critical surface tension of the nanotube (γc) (in the plot of
cosθ versus γL of various liquid, the intercept at cosθ = 1
shows the critical surface tension) [95]. In theory, liquids
with surface tension equal or less than the critical surface
tension of substrate (γc) can completely wet the surface
[90].

3.2 Spectroscopy techniques

The spectroscopy techniques such X-ray diffraction, Raman,
and Fourier transform infrared (FTIR) are well-known
methods for material characterization. Raman spectroscopy
was first conducted on CNTs in 1993, and since then, it has
been used for characterization of nanocomposites [100].
Raman spectroscopy can be used for detection of the type
of functionalization [101] and the diameter of the nanotubes
[102, 103]. Furthermore, the chemical peak shifts in Raman/
FTIR can be used to distinguish the VDW interactions be-
tween the nanotubes in the bundle [104, 105], the hydrogen

Fig. 7 Optical images of PMMA
droplets on a as-received, b
oxidized, and c CNT-grafted
carbon fibers [94]
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[106], and covalent bonding between the nanotubes and the
polymer matrix [107].

3.3 Atomic force microscopy involved techniques

As mentioned earlier, recent developments in the force mi-
croscopy techniques makes it feasible to measure the force
between the cantilever and the substrate even in atomic reso-
lution [108] e.g. for measuring the interactions in the nanotube
composites. Two major approaches have been developed for
this purpose. In the first approach, a nanotube attached tip will
be prepared and a polymer melt will be used as the substrate
[97–99, 109] (similar to the contact angle measurement men-
tioned in previous section), while in the second approach, the
tip will be coated with the polymer and the nanotube is placed
as the substrate [110].

3.3.1 CNT-on-tip/cantilever approach

This approach involves two different methods for strength
measurement: (i) pull out method [111] and (ii) peeling force
microscopy method [112]. Figure 8 shows the pull out tech-
nique which was used by Barber et al. for the first time. Using
this method, they could measure the critical force required for
interfacial failure between CNT and a copolymer melt [113].
In the pull out method, the CNTattached tip will approach the
polymer melt, while the applied force on the cantilever is
simultaneously recorded as a function of time. When the tip
is close enough to the polymer surface, a jump-in force is
usually observed in the force curve. Afterwards, by pushing
the CNT further into the bath and keeping it stationary for a
while, the polymer will solidify around it and later will be
pulled out from the matrix (Fig. 9). For this procedure, it is
required to investigate the length and diameter of the nanotube
after pull out process to see if any changes have occurred [111,
114, 115].

The other method is the peeling force microscopy. In this
method, the CNT is attached to a tipless cantilever and it will
be in touch with the substrate. In next step, the nanotube will
be peeled off from the surface, generating the force curve
simultaneously. During this process, the nanotube will go
through different geometrical configurations with regards to
its contact with the substrate: line contact (s shape), point
contact (arc shape), and finally no contact or freestanding
mode (Fig. 10). Based on a proposed theoretical model, each
of these configurations represent specific kind of involved
energy in separating the nanotube from the substrate and the
applied work in s-shape mode will mostly change the interfa-
cial energies of constituents. Although this technique is useful
for interaction measurement, it cannot measure the interfacial
energy per unit area due to difficulty of measuring the contact
area during this process [112, 116].

3.3.2 CNT-on-substrate approach

In contrast to the previous approach, CNTwill be placed as the
substrate, and a modified AFM tip (chemically modified ei-
ther by applying the polymer as a coating or binding function-
al groups to it) will be used. Later, the force curve between the
cantilever and the substrate will be recorded and used to mea-
sure the corresponding adhesion. This type of measurement is
useful to show the effect of present chemical groups on the
adhesion between the polymer matrix and the nanotubes [110,
117–120]. However, it worth mentioning that in this method
only the maximum adhesion force will be considered, which is
the summation of all forces applied on different locations of
the cantilever. Therefore, the tip-substrate distance will influ-
ence the final value of the adhesion force. Recent studies have
introduced a new parameter for measuring the adhesion force
which is also a function of separation distance, called interac-
tion stress. This parameter is Bthe state of stress (i.e., a tensor)

Fig. 9 Force vs. time plot for the pull out approach: a the nanotube is
already in the polymer bath; b by pulling out the nanotube, the cantilever
will be deflected until it reaches its maximum deflection at c. At d, the
pull out is occurring, while at e, it is completely out of the bath [111]

Fig. 8 CNT attached AFM tip is immersed in the resin followed by
pulling out and measuring its required force simultaneously [113]
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at any given point of an object as a result of its vicinity to a
secondary object^ [121]. In order to get this factor, a stepwise
discretization method was applied to the force curve of AFM
followed by determination of the noncovalent interactions ver-
sus separation distance. Furthermore, all the other interaction
parameters can be calculated (e.g., interaction forces, energy
and internal stress) from interaction stress as well [120, 121].
Additionally, each of these factors can be used for measuring
the other parameters such as the stress field at nanoscale [121,
122].

4 Influence of interface on mechanical
properties

It is known that incorporation of fillers in a matrix can modify
its properties. In conventional composites, micrometer-sized
inorganic fillers such as calcium carbonate, talc, and glass
beads have been extensively used for mechanical property
enhancement [123–125]. Such properties can be further im-
proved by decreasing the fillers’ size to nanoscale and increas-
ing their aspect ratio.

Since the behavior of PNCs is greatly influenced by their
microstructures, the properties of matrix and fillers, filler
distributions, interfacial bonding, and processing method
should all be considered [123, 126]. Mechanical properties
of composites are more related to particle size, loading, and
filler-matrix interfacial adhesion [44]. The interfacial proper-
ty is important for the evaluation of the mechanical load
transfer from polymer matrix to fillers [127, 128]. For in-
stance, strength and toughness of the composites strongly
depend on the interfacial adhesion. Therefore, the dispersion,
interfacial adhesion, geometric dimensions, etc., play key

roles in mechanical property enhancement [76, 129–131].
The mechanical properties can be evaluated by either con-
ventional methods such as dynamic mechanical analysis
(DMA) [27, 132]; tensile, compression, and shear tests
[25, 133–135]; or the new methods such as copper grid
technique [136, 137] and strain-induced elastic buckling in-
stability for mechanical measurements [138–140]. Since
stiffness is not significantly affected by the degree of inter-
facial bonding in polymer composites [141, 142], it is not
reviewed here.

4.1 Strength

The tensile strength of the composite depends on the effi-
ciency of stress transfer between the constituents of the
composite. If the applied load efficiently transfer to the
fillers, the strength will be improved [143, 144]. The
smaller particles have larger interface area at a constant
volume fractions of fillers, leading to a large portion of
stress transfer regions [44].

The efficiency of the load transfer also depends on the
strength of interfacial bonding between the composite constit-
uents [44, 145]. Contrary to the composites with strong inter-
facial interaction [142], strength will be decreased in compos-
ites with poorly bonded fillers. This is due to the presence of
discontinuity because of de-bonding at the interface, which
prevents the filler from carrying the applied load efficiently.
There are many studies on filler surface modification that lead
to higher dispersion and interfacial interaction and subse-
quently higher tensile strength of the composites [76,
146–149]; suggesting that, the introduction of chemical bond-
ing to filler-matrix interfaces can effectively enhance the
strength of composites [150, 151].

Fig. 10 The s-shape and arc-
shape CNT configuration on the
substrate [112, 116]
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An et al. incorporated functionalized rod-shaped silicates
known as attapulgite (ATT) into the polyimide (PI) films. For
that the fillers’ surface was grafted with polymer chains sim-
ilar to the matrix. The functionalization of the silicates resulted
in better dispersion of ATT and more efficient stress transfer
between filler and matrix. The final composite showed an
increase of 70% in tensile modulus, 45% in tensile strength,
and 54% in elongation at break. The enhanced mechanical
properties were explained by considering the predominant
factors such as the percolated particle networks, interfacial
interactions, and introduced free volume due to addition of
the fillers. The enhanced properties were induced at three dif-
ferent stages: (i) at low concentration of fillers, the reinforce-
ment was due to interfacial interactions, leading to effective
stress transfer between fillers and matrix; (ii) after reaching the
percolation threshold, in addition to the interfacial interac-
tions, percolated particle network also enhanced the strength
of the composite; (iii) further increasing the fillers’ concentra-
tion beyond percolation increases free volume and decreases
the tensile strength by crack initiation and propagation.
Therefore, depending on the concentration of reinforcing
agents in the composite, the mechanical properties could be
enhanced by interfacial interaction, percolated network, or
both of them. At high loading degrees, the strength will be
decreased due to crack formations [152]. Results mentioned
above, are consistent with other studies stating that the addi-
tion of nanoplatelets into the polymer matrixes can improve
their stiffness and toughness and possibility of de-bonding at
the interfaces at high volume fraction of the fillers [153].

In addition to the surface modification of fillers, interfacial
crystallization can also enhance the interfacial interactions
followed by more load transfer. The mechanism of such me-
chanical property enhancement has been systematically stud-
ied and been explained by: (i) improvement of interfacial in-
teractions in the filler/crystalline polymer compared to the
filler/amorphous polymers, (ii) crystalline phase of polymer
acts as an additional stiff constituent in the composite, and (iii)
reduction of filler aggregation due to the formation of crystal-
line phase at the boundaries [64, 154].

4.2 Toughness

The role of nanofillers in development of tough polymeric
products have been reported [155, 156]. However, the en-
hancement of the strength of composites are accompanied
with sacrificing toughness of the products [157]. Likewise,
toughening agents such as rubbers which are used to enhance
the extensibility and the fracture resistance of polymers, re-
duce the strength of product [158, 159]. Therefore, the balance
between these two properties should be considered when de-
signing desired properties in composites [160, 161]. The frac-
ture behavior of polymer nanocomposites which defines their
toughness is a function of the type of polymeric matrix [44],

size and shape of fillers [152], and the interfacial interactions
[152]. For instance, toughness can be significantly enhanced
by the enhancement of the interfacial adhesion between the
thermoplastic matrix and filler; but not in composites with
thermosetting matrix [44]. Yet, the simultaneous enhancement
of toughness and strength in glassy polymeric matrix is un-
clear [152].

Sakai et al. investigated the mechanical properties of brit-
tle carbon matrix reinforced with carbon fiber. They pro-
posed that if inappropriate interaction was embedded be-
tween the components, the cracking of matrix would propa-
gate along the fibers. In that case, the fibers could not bridge
the crack and lead to weak toughening of the composite. On
the other hand, for the interactions which were strong
enough for stress transfer and weak for de-bonding to hap-
pen, the crack pattern changed significantly (crack deflec-
tion, voiding, and de-bonding). This phenomenon resulted
in fiber pull out followed by bridging the crack and tough-
ening the composite (Fig. 11) [162]. Boo et al. studied the
exfoliated epoxy/α-zirconium phosphate nanocomposite.
They claimed that since fillers had strong bonding with the
matrix, no crack blunting and deflection occurred. The crack
went through fillers by breaking them; thus, there was no
improvement in toughness [163].

Moloney et al. also reported that though epoxy/glass bead
composite had a low strength due to the poor bonding and the
toughness was enhanced due to crack tip blunting [159, 164].
Similarly, Liu et al. explained the toughening of intercalated
epoxy/clay nanocomposite due to the crack deflection and de-
bonding process. The toughness of epoxy resin was enhanced
by 70% after adding 4 wt% of clay [165]. The same result was
reported by Zuiderduin et al. for toughening of aliphatic
polyketone by stearic acid-coated calcium carbonate particles.
They claimed that rigid particles can enhance the toughness of
composites with reduction of the volume strain. That required
the particles to de-bond from the host [166]. For this mecha-
nism to happen, fillers should have a round shape (no stress
concentration) and their size should be less than 5 μm (in this
study, it was around 0.7 μm; otherwise, the created voids
would cause fracture initiation), well dispersity of fillers, and
moderate interfacial interactions. The stearic acid coating used
in this study was for enhancing the dispersion of the particles
and lowering the interaction with the matrix. Thus, due to de-
bonding mechanism, the toughness of the composite was in-
creased [166, 167]. On the other hand, Levita et al. believed
that at high enough adhesion between the filler and the matrix,
the crack will be arrested (pinned) by reaching the filler
(known as crack pinning model). Further propagation of the
crack, needed higher tension. It was mentioned that the size of
the filler was important to be able to interact with the crack
[168].

Fiedler et al. investigated the effect of CNT on the tough-
ness of epoxy composites. They showed that although
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untreated CNT could enhance the toughness due to void nu-
cleation and crack deflection, the amino-functionalized carbon
nanotube had a better performance. The fracture toughness of
the resin was enhanced 45% by incorporation of just 0.3% of
amino-functionalized double-walled CNT. They concluded
that crack bridging by fiber can further enhance the toughness
of composites [169]. Gojny et al. summarized the possible
fracture mechanisms of CNT-filled composites as shown in
Fig. 12 [170]. Table 1 briefly summarizes the change of me-
chanical properties of polymer composites after introducing
different fillers. To sum up, depending on the dominant tough-
ening mechanism and the type of matrix (thermoplastic vs.
thermoset), higher interfacial interaction may have positive
or negligible impacts on the toughness of composites.

5 Influence of interfacial interactions
on thermal properties

Investigation of the thermal behavior of nanocomposites is
essential for determining the applicable temperature range of
the materials [180]. In this section, we will review the effect of
fillers and proximity to the fillers’ surfaces on the thermal
properties of composites, such as glass transition, thermal sta-
bility, and interfacial thermal resistance.

5.1 Glass transition (Tg)

The impacts of the size and confinement on the glass transi-
tion and dynamics of polymer chains at the interface have

Fig. 11 Crack interaction with
fibers for a strong and b weak
interactions [162]

Fig. 12 Schematic representation of fracture mechanisms of CNT-filled
composites. a Initial position of CNT in a matrix. b CNT-pull out as a
result of CNT-polymer debonding (weak interfacial interaction). c CNT’s
rupture which is caused by strong interfacial adhesion and fast local

deformation. d Telescopic pull out resulting in outer layer fracture (due
to strong adhesion) and inner layer pull out. e Crack bridging
phenomenon combined with partial debonding [170]
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been reviewed earlier. Evidence of the effect of interface has
been found on the variations of the glass transition tempera-
ture or the dynamics of molecules [20, 181, 182]. Presence of
reinforcing particles in the polymers can affect the local seg-
mental mobility of polymer chains. This parameter can be
evaluated either by measuring the segmental relaxation time
or the Tg behavior before and after filler addition [20]. The
relaxation time was mainly measured using dielectric spec-
troscopy [183, 184], NMR spectroscopy [185–192], and neu-
tron scattering [193, 194]. Tg was determined using dynamic
mechanical spectroscopy [195–199], calorimetry [191,
200–202], and dilatometry [184, 203] techniques. Since the
mobility of the polymer chains around the fillers is related to
the interfacial interaction, the presence of the interaction and
their strength can be estimated by measuring Tg and relaxa-
tion time [11, 204]. For example, stronger interactions will
cause reduction of the dynamic loss, decrement of thermal
expansion coefficient and increment of Tg [205]. On the other
hand, in NMR measurements, bonding strength between the
polymer chains and the filler particles show different relaxa-
tion times [185].

For different polymer nanocomposites, Tgwas shown to be
increased [206, 207], decreased [180, 208], or even unaffected
[182, 209] by the introduction of fillers into the system. More
studies are summarized in Table 2.

The presence of strong interaction between the matrix
and the fillers (e.g., H-bonding [30, 220], electrostatic in-
teraction [220, 221], and covalent bonding [222]) increase
the Tg while the free space at the interface of nonwetted
fillers lead to reduced Tg [204, 223]. The absence of strong
interfacial interaction of wetted fillers have no substantial
impact on Tg [182, 204]. This phenomenon was explained
by the thermomechanical similarities of planar polymer
films and polymer nanocomposites [223]. If the interaction
between the fillers and surrounding matrix is the same as
the interfacial interaction between ultrathin layer of the bulk
polymer and the substrate, Tg will be invariant
[204]. Additionally, it was reported that there may be
more than one Tg in polymer nanocomposites with
strong interactions between the fillers and polymer
chains [196]. In that case, higher Tg belongs to the
regions adjacent to the fillers with irreversible adsorp-
tion of polymer chains to the particles, while the lower
Tg represents for the polymer bulk farther from the
fillers [182]. It should be mentioned that different Tg
values have been reported for the same materials, which
can be the result of incorporating different methods of
analysis [20], neglecting the effect of fillers on the de-
gree and nature of crystallinity of the matrix [20], or
different methods of preparation [224].

Table 1 Mechanical property of polymer composites with different fillers and bonding types

Filler Fraction Matrix Bonding type Property Changes Ref.

Silica 20 vol% Epoxy VDW Strength Decreased [159]

Polymer-coated CNF 0.8 wt% Epoxy H-bonding,
covalent bonding

Strength + 10.5% [49]

Silica nanoparticles 13.4 vol% Epoxy VDW Toughness Improved [161]

ZrP nanoplatelets 2 vol% Epoxy VDW Toughness No change [163]

Organoclay 4 wt% Epoxy VDW Toughness + 27% [165]

GA-II/graphene (noncovalent) 2 wt% Epoxy Improved interaction Strength + 70% [171]

Amino-functionalized double-
walled CNT

0.3 wt% Epoxy Covalent bonds Toughness + 45% [169]

Functionalized CNT 10 wt% Nylon 6 Improved interaction Strength 126% [172]

Polymer-functionalized MWCNT 0.3 wt% Poly(vinylidene fluoride)
(PVDF)

Improved interaction Strength + 90% [173]

SWCNT 0.4 wt% Poly(ethylene tetraphetalate)
(PET)

Covalent bonds Strength + 16% [174]

SWCNT 1.0 wt% Polyurethane (PU) Both noncovalent
and covalent bonding

Strength + 50% [175]

Chlorinated polypropylene
(CPP)-grafted MWCNT

0.6 vol% CPP Improved interaction Strength + 280% [176]
Toughness + 300%

CPP-grafted MWCNT 0.5 wt% Polystyrene (PS) Improved interaction Strength + 100% [133]

(PS-co-PCMS)-b-PS Functionalized
SWCNTsa

0.06 wt% PS Improved interaction Strength + 82% [177]

Graphene nanoplatelet (GNP)-5 5 wt% Epoxy VDW Strength ~ − 60% [178]

Noncovalent functionalized graphene flakes 0.25 wt% Epoxy Improved interaction Strength + 75% [179]

a Copolymers of styrene and p-chloromethylstyrene
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5.2 Thermal stability

The improved thermal stabil i ty of the PMMA/
montmorillonite PNCs was first reported by Blumstein
in 1965 [225]. Higher thermal stability and improved
flammability performance make them suitable for high-
temperature applications. Additionally, since many of
the polymer composites are produced through melt
mixing at high temperatures, it is essential to know
the degradation temperatures for a better process design
[4, 226].

The presence of reinforcing agents in the matrix can
increase the thermal stability in different ways. First,
they can act as a barrier, which makes them useful for
flame retardation applications [209, 227, 228]. Second,

they can create a network which can protect the poly-
mer from degradation [229–232]. Third, they can act as
radical traps [233]; and lastly, they are capable of alter-
ing the microstructure of the product [4, 222].
Moreover, strong adhesion between the filler and matrix
causes lower mobility of polymer chains followed by
reduction of decomposition rate [234, 235]. Therefore,
using any method which can increase the strength of the
interaction between the composite constituents would
improve its thermal stability.

5.3 Thermal conductivity

In many literatures, it has been confirmed that the interface in
the composites play a significant role in their thermal

Table 2 Glass transition behavior
of polymer composites after
incorporation of fillers

Filler Fraction Matrix Tg change
(°C)

Ref.

Alumina 1.0 wt% PMMA − 25 [180]

Mica 3 wt% Poly(butylene
terephthalate)

+ 6 [210]

Exfoliated clay (MMT) < 10 wt% Poly(vinyl chloride) − 1 to − 3 [211]

Nanoclay
2.5–15.1 -
wt%

PMMA + 4 to + 13 [212]

Nanoclay 4 wt% Poly(propylene
carbonate)

+ 13 [213]

Nanoclay 6 wt% Natural rubber + 3 [214]

Nanoclay 5 wt% PS + 6.7 [215]

Noncovalent functionalized
graphene flakes (GFs)

10 wt% Epoxy + 6.7 [216]

Diglycidyl ether of bisphenol
A-functionalized GO
(DGEBA-f-GO)

0.5 wt% Epoxy + 3.9 [179]

Alumina 4.0 vol% Poly(2-vinyl pyridine) + 16 [204]
4.0 vol% PS No change

Silica 2.0 wt% PET + 10 [206]

Functionalized SWCNT 1.5 wt% PS + 3 [217]

SiC 0.5–1.5 wt% Polycarbonate (PC) No change [218]

Unmodified MWCNT 6.98 wt% PI − 4.59 [219]
Acid modified MWCNT + 2.97

Amine modified MWCNT + 4.75

Fig. 13 Proposed microstructure
evolution in polymer-filler [280]
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conductivity [236–241]. Heat transfer at the interface of two
different materials mostly happens with a temperature
discontinuity [242]. This phenomenon was observed
first at the interface of a metal and liquid helium
[243], while later it has been found at the interface of
two solids [244]. The heat loss at the interface of two
different materials is due to the phonon scattering at this
region [236, 238, 239]. Phonon scattering can be signif-
icantly impacted by dimensions of fillers, the matrix,
and their interfacial regions. Therefore, the interfacial
zones predominantly affect the thermal conductivity of
the composite [245, 246]. As a result, anything that can
affect the interfacial regions (e.g., geometry of particles
[247–253], aggregation [254–256], interfacial pressure
[257], roughness [258–260], and the strength of

interactions at the interfaces [261–265]) in the compos-
ites would influence their thermal conductivity. In this
section, we will review the parameters affecting the in-
terfacial interactions and their subsequent impact on the
thermal conductivity of the composites.

The heat transport in the macroscopic scale can be de-
scribed by the Fourier law (k =Q/ΔT), where k is the thermal
conduction coefficients and it relates the heat flux (Q) to the
temperature gradient. The thermal conductivity at the bound-
aries is explained by the following equation, hBD =Q1/ΔT1,
where hBD is the thermal boundary conductance, Q1 is the
heat flux perpendicular to the interface, and ΔT1 is the tem-
perature discontinuity. The thermal boundary conductance,
which is the inverse of the interfacial thermal resistance,
was studied first by Kapitza in 1941 [243]. The effects of
interfacial phonons transport are merged into this factor
[238]. Although in macroscopic scale k is the controlling
parameter for heat flux, it is strongly affected by hBD at nano-
scale [266, 267]. In this regard, interface plays a key role
because of influence of factors such as lattice mismatch
[256, 268] and phonon scattering [267, 269]. Wang et al.
reported that the interfacial resistance and phonon scattering
are due to the incomplete contact at the interface (MWCNTs
in their study) [270]. Moreover, it has been reported that the
resistance of the solid-liquid interface is a function of prop-
erties of adsorbed liquid layers [271]. Presence of adsorbed
polymer layers around the fillers prevent the formation of
percolation network and filler-filler phonon transfer. Even if
the fillers are in direct contact with each other, due to their

Fig. 14 Schematic illustration of different crystalline structure and
subsequent micro- and nanoscale phonon transfer in different PVA-AA
blends [290]

Fig. 15 Schematic drawing of
intermolecular interactions in
PVA-lignin-gelatin blend via H-
bonding and achieved continuous
coil microstructures [292]
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small contact area, the matrix and its interfacial resistance
play a key role in heat transfer [272].

Noncovalent functionalization has been used for dispersion
of fillers (i.e., CNTs [273, 274] and graphene [171, 275]) in
polymer matrix. This type of functionalization enhances the
dispersion quality of fillers. However, its impact on the ther-
mal conductivity is still not clear. In some studies, it was
observed that contrary to the dispersion of fillers, the thermal
conductivity was decreased compared to the untreated fillers
[251]. The authors believed that the noncovalent
functionalization leads to the formation of more filler-matrix
interfaces and higher phonon scattering. Additionally, it was
proposed that this type of bonding at the interface cannot
effectively transfer the thermal vibration from the filler to
the matrix [251]. Contrary to these studies, some other authors
showed thermal conductivity improvements with employing
the noncovalent functionalization [171, 275, 276]. For exam-
ple, Teng et al. functionalized graphene nanosheets (GNSs)

through π-π stacking with functionalized pyrene molecules
containing functional segmented polymer chains
poly(glycidyl methacrylate) (PGMA), Py-PGMA. They
showed that Py-PGMA-GNS fillers could form covalent
bonding with epoxy. The strong interaction between Py-
PGMA-GNS fillers and matrix resulted in a much higher ther-
mal conductivity comparing to composites filled with pristine
GNS and MWCNT. Optimized Py-PGMA-GNS-epoxy com-
posite showed 20 and 267% higher thermal conductivity than
pristine GNS-epoxy and pristine MWCNT-epoxy, respective-
ly [275].

In the presence of strong bonding, the phonon scattering
and the local thermal resistance could be decreased and sub-
sequently improved the thermal conductivity of the composite
[277–279]. This phenomenonwas explained by increasing the
transmission coefficient of the phonons [263, 278].
Modification of the end groups of the polymer chains [261]
and surface modification of the fillers (either with

Table 3 Effect of filler type and
surface functionalization on
thermal conductivity of polymer
composites

Filler Fraction Matrix TC
change

Ref.

MWCNTs@SiO2-g-BMIa 1.25 wt% Epoxy + 125% [295]

Noncovalent functionalization with pyrene
carboxylic acid, BNNTsb–BNNSsc

1 vol.% Epoxy + 95% [296]

(BN)d-coated polymethylsilsesquioxane 30 vol% Epoxy + 9 times [297]

Noncovalent functionalized graphene nanosheets 1 phr Epoxy + 267% [275]

Silica-coated aluminum nitride 50 vol% Epoxy + 10
times

[298]

GA-IIe anchored graphene (noncovalent) 2 wt% Epoxy + 12
times

[171]

Noncovalent functionalized graphene flakes 10 wt% Epoxy + 665% [216]

GNP-C750 5 wt% Epoxy + 115% [178]

Alumina-coated graphene sheet 40 wt% PVDF + 192% [299]

Alumina-decorated graphene nanoplatelets 12 wt% Epoxy + 677% [300]

Functionalized GNPs 29.3 vol% Polyphenylene
sulfide (PPS)

+ 19
times

[301]

SiCNWs
f-graphene sheets 7 wt% PI + 138% [302]

Graphene-graphene oxide 10 wt% Polyamide-6 + 6 times [303]

ApPOSS–grapheneg 0.25 wt% Epoxy + 37.60% [304]
0.5 wt% + 57.90%

Noncovalently modified graphene nanosheets
0.608 -
wt%

PU + 34% [305]

TCA-rGOh 5 wt% Polyamide + 19
times

[306]

a 1,10-(Methylene di-4,1-phenelene) bismaleimide (BMI) was grafted to core-shell MWCNT@SiO2-NH2
b Boron nitride nanotubes
c Boron nitride nanosheets
d Boron nitride
e Bio-based epoxy monomer (GA-II) synthesized from renewable gallic acid
f One dimensional silicon carbide nanowires
g Aminopropylisobutyl polyhedral oligomeric silsesquioxane covalently grafted graphene
hModified reduced graphene (rGO) with titanate coupling agent
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functionalization [237, 280–284] or applying specific coatings
[285–287]) are common methods for improving the adhesion
at the interfaces with subsequent thermal conductivity en-
hancement. However, it should be considered that the

functionalization of the filler may create defects and decrease
the intrinsic thermal conductivity of them [288]. This is
caused by higher phonon scattering at the grafted area. On
the other hand, the phonon scattering at the interface will be
decreased due to higher compatibility of fillers and matrix
after functionalization. Therefore, the reduction of intrinsic
thermal conductivity of fillers due to their modification and
increment of interfacial thermal conductance at the interface
are competing parameters [251].

Huang et al. proposed that there is a critical concentration
for thermal conductivity enhancement by chemical bonding.
Below this concentration, covalent bonding improved the
thermal conductivity; above this concentration, chemical
bonding became not as much effective. Although increasing
the filler loading could enhance the thermal conductivity
through direct contact of the fillers, formation of voids and
defects at higher filler concentration could suppress the ther-
mal conductivity enhancement as well (Fig. 13) [280].

In addition to the introduction of conductive fillers in poly-
meric matrix, the thermal conductivity can be enhanced by
engineering the inter-chain interactions [289]. This approach
is accompanied with introduction of large crystallinity [290,
291] or hydrogen bonding [289, 292–294] in polymer blends.

Mu et al. studied the effect of incorporation of different
types of amino acids (AAs) in poly(vinyl alcohol) (PVA).
They showed that depending on the type of PVA-AA interac-
tion, two crystal patterns were formed, continuous and dis-
crete, as shown in Fig. 14. They emphasized the important
role of interface surrounding the crystalline pattern. The con-
tinuous crystal network created continuous interface with fa-
cilitated phonon transfer while the phonon scattering was
higher in discrete network. They concluded that high PVA-
AA interaction and self-organized continuous crystal structure
resulted in higher thermal conductivity in the composite [290].

In another study, the effect of induced H-bonding in PVA-
biopolymers (i.e., lignin and gelatin) blend and its subsequent

Fig. 16 a–d Percolation stages in conductive composite and the
corresponding electrical conductivity in each step [316]

Table 4 Effect of filler functionalization on electrical conductivity of polymer composites

Filler Fraction Matrix Matrix σ (S/m) Composite σ (S/m) Ref.

Poly(phenyleneethynylene)
(PPE)-functionalized SWCNT

7 wt% PS 10−14 6.89 [330]
PC 10−13 4.81 × 102

MWCNT ~ 3 wt% Polypyrrole 2.42 × 10−2 0.38 [331]

Trifluorophenyl-functionalized MWCNT ~ 1.8 wt% PVDF ~ 10−8 ~ 10−2 [332]

Nitric acid-treated MWNT < 1.5 wt% Waterborne PU 2.5 × 10−12 1.2 × 10−4 [333]

Acyl chloride-functionalized MWCNT 0.1 wt% Nylon 610 2.1 × 10−17 6.1 × 10−12 [334]

SWCNT 50 wt% Polythiophene 1.67 × 10−6 0.41 [335]

MWCNT < 8 wt% Poly(3-hexylthiophene) (P3HT) 2.85 × 10−5 3.56 × 10−3 [336]

MWCNT 24.8 wt% Polyaniline 1.1 × 10−2 1.27 [337]

PPE-functionalized CNT 2 wt% Poly(benzoyl-1,4-phenylene)-
co-(1,3-phenylene)

< 10−11 28.6 [338]

Pristine MWCNTs with P3HT-g-polycaprolactone 5 wt% PC 10−15 6.4 × 10−1 [339]
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impact on thermal conductivity was investigated by Mu et al.
They found that stronger H-bonding caused larger polymer
coils which created a continuous microstructure. As a result,
these formed continuous microstructures of polymer coils led
to continuous pathways for better phonon transfer (Fig. 15)
[292].

The advantageous of nanofiller incorporation in some other
polymeric composites has been summarized in Table 3. In
summary, incorporation of thermally conductive fillers, reduc-
tion of phonon scattering at the interfacial regions, and en-
hancement of phonon transfer by enhancing the inter-chain
interaction can improve the TC of polymeric materials.

6 Influence of interfacial interactions
on electrical conductivity

Contrary to the thermal and mechanical properties of the com-
posites, where homogenous distribution and strong adhesion
between the fillers and the matrix is required, electrical con-
ductivity (EC) is based on formation of continuous electrical
conductive network between the fillers [307–312]. The elec-
trical conductivity enhancement appears in three main stages,
(i) prior to, (ii) within, and (iii) after percolation threshold
[313–315]. Figure 16 [316] shows the three steps for carbon
fibers into a polymer host, respectively. In the first stage, due
to presence of few CFs, EC is close to the EC of the host.
Gradually by aggregation and connection through CFs, the
EC increases slightly by tunneling effect (Fig. 16b).
However, there is no complete pathway for conduction yet.
Further increasing the amount of fillers, creates the first con-
ductive pathway (red lines in state c). The volume fraction of
fillers at this stage is known as percolation threshold. Adding
more filler into the host creates more conductive pathways,
which results in the formation of a more conductive network
(Fig. 16d). The percolation threshold is determined by a sharp
drop of electrical resistance and it depends on the size and
shape (aspect ratio) of fillers [308, 317–319], their dispersion
[317, 320, 321], interfacial interactions, and alignment
[322–324].

The presence of thin layer of polymer matrix around the
fillers prevents the formation of continuous network and cause
a tunneling barrier between them [325, 326]. Hence, the
functionalization of the fillers has two different effects. As it
was mentioned earlier, they will enhance the distribution of
the fillers into the host [234, 307, 317, 327]. Well-dispersed
fillers result in the formation of continuous conductive path-
ways which in turn enhance electrical conductivity [308, 320,
328]. On the other hand, the interaction of the host with func-
tionalized filler forms an insulating layer on filler’s surface
[307, 329], which is detrimental for EC enhancement. In gen-
eral, it has been reported that the negative influence of
functionalization was outweighed by its positive effect on

dispersion of fillers [310, 326]. Some other related literatures
are summarized in Table 4.

7 Summary and outlook

In this review, an overview of the interfacial region and its
important role in overall properties of the composites and
especially polymer nanocomposites were provided. Different
types of interactions at the interface and the common tech-
niques for their enhancement were introduced. Additionally,
it was described how the properties of fillers, such as their
aspect ratio and chemistry will impact the interfacial interac-
tion. Moreover, the techniques used for measuring the adhe-
sion between nanotube fillers and polymer matrixes were de-
scribed. Finally, the influence of interfacial interactions on the
mechanical, thermal, and electrical properties of composites
was reviewed. In general, the strength of interfacial bonding
plays a key role in the properties of composite. For mechanical
properties, it influences the load transfer at the boundary.
While for thermal properties, it affects the Tg of polymer host,
its degradation rate, and thermal conduction across the inter-
face. Lastly, due to the impact of interfacial bonding on the
dispersion of fillers in the matrix, it will subsequently affect
formation of percolated network and electrical conductivity.

Numerous studies on the polymer composites and their
properties show the importance of the polymer-filler interfaces
in these types of materials. It has been confirmed that their
performance (mechanical, thermal, electrical, etc.) relies sig-
nificantly on the quality of the interfacial interactions.
Therefore, in-depth studies on the impact of interfacial inter-
actions on each property of polymer composites are required.
Insight of these fundamental understandings followed by
employing suitable methods for achieving optimum interfacial
interactions would lead to enhanced performance of polymer
composites.
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