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Abstract Metal oxides are widely used in many applications
such as thermoelectric, solar cells, sensors, transistors, and
optoelectronic devices due to their outstanding mechanical,
chemical, electrical, and optical properties. For instance, their
high Seebeck coefficient, high thermal stability, and earth
abundancy make them suitable for thermoelectric power gen-
eration, particularly at a high-temperature regime. In this arti-
cle, we review the recent advances of developing high electri-
cal properties of metal oxides and their applications in ther-
moelectric, solar cells, sensors, and other optoelectronic de-
vices. The materials examined include both narrow-band-gap
(e.g., NaxCoO2, Ca3Co4O9, BiCuSeO, CaMnO3, SrTiO3) and
wide-band-gap materials (e.g., ZnO-based, SnO2-based,
In2O3-based). Unlike previous review articles, the focus of
this study is on identifying an effective doping mechanism
of different metal oxides to reach a high power factor.
Effective dopants and doping strategies to achieve high carrier
concentration and high electrical conductivities are highlight-
ed in this review to enable the advanced applications of metal
oxides in thermoelectric power generation and beyond.

Keywords Oxides . Thermoelectric . Power factor . Solar
cells . Optoelectronic power generation

1 Introduction

Thermoelectric (TE) materials have the ability to directly con-
vert heat into electricity for power generation via the Seebeck
effect [1, 2]. It can play a crucial role in renewable energy
production since 60% of energy produced worldwide is waste
as the form of heat. Additionally, as a solid-state device, TE
technology has many attractive features such as high reliabil-
ity, environmental friendliness, and no moving parts [3].

Despite recent advances in TE research, the potential im-
pact of TE technology for power generations is hindered by
the heavy usage of toxic, rare, and expensive (e.g., Te and Se)
elements and their low power output. For instance, there are
only three major TE material systems commercially available
for from low- to high-temperature regimes including Bi2Te3
(300–500 K) [4], PbTe (500–600 K) [5], and SiGe (600–
800 K) [6]. Their applications, particularly Te-basedmaterials,
are largely restricted by the toxicity, limited element resources,
and material degradation at high temperatures [7, 8].

Metal oxides, on the other hand, are promising candidates
to circumvent these challenges due to their earth abundancy,
low cost, non-toxicity, and high thermal stability [9–11]. More
importantly, their electronic properties can be tuned from in-
sulator behavior to metallic behavior by manipulating their
crystal structures, chemical compositions, and doping concen-
trations [12, 13]. These unique material properties open an
exciting opportunity to obtain high power output in metal
oxides. In fact, for TE power generation applications, a mate-
rial with high power factor is evenmore important than having
a high efficiency, since most waste heat sources are free (e.g.,
waste heat from car exhaust, gas engine) and unlimited (e.g.,

* Na Lu
luna@purdue.edu

1 Lyles School of Civil Engineering, Sustainable Materials and
Renewable Technology (SMART) Laboratory, Purdue University,
West Lafayette, IN, USA

2 Birck Nanotechnology Center, Purdue University, West
Lafayette, IN, USA

3 College of Engineering and Computing, Missouri University of
Science and Technology, Rolla, MO, USA

4 School of Materials Engineering, Purdue University, West
Lafayette, IN, USA

Adv Compos Hybrid Mater (2018) 1:114–126
DOI 10.1007/s42114-017-0011-4

mailto:luna@purdue.edu
http://crossmark.crossref.org/dialog/?doi=10.1007/s42114-017-0011-4&domain=pdf


solar radiations) [14]. To this end, the focus of this review
article is on examining the metal oxide potentials for TE pow-
er generation with an emphasis on materials with high power
factor. Effective doping strategies in achieving high power
factor are highlighted for various metal oxides, particularly,
NaxCoO2 [15], Ca3Co4O9 [16], BiCuSeO [17], CaMnO3 [18],
SrTiO3 [19], ZnO-based [20], SnO2-based [21], and In2O3-
based [22] alloys. More broadly, recent advancement of metal
oxides for potential commercial applications in thermal- and
electrical-related fields is summarized, which includes TE
power generators, solar cells, and sensors.

2 Fundamental physics of thermoelectric metal
oxides

The quality of materials for TE application is described by a
dimensionless parameter ZT [7], which is defined as the fol-
lowing:

ZT ¼ S2σ
κ

T ð1Þ

where S is the Seebeck coefficient, σ is the electrical conduc-
tivity, and k is the thermal conductivity. In physics, k consists
of the electronic part (ke, due to carrier transport) and lattice
part (kPh, due to phonon transport). The term S2σ is called the
power factor (PF). A high PF indicates that a TE power gen-
erator can achieve a high power output.

Seebeck coefficient (S, in V/K) is an intrinsic material
property, which measures the thermoelectric voltage induced
in response to a temperature difference across the material. S
represents the energy difference between the averaged charge
carrier energy versus the Fermi energy. It can be expressed as
the following:

S ¼ kB
−q

� �
Ec−EF

kBT
þ Δn

kBT

� �
ð2Þ

where EF is the Fermi level, in which the dependence on the
temperature (T) and the Boltzmann constant (kB) is made ex-
plicit. For semiconductors, the Seebeck value can be negative
(electron conduction) or positive value (hole conduction);
therefore, the absolute value is more important. For doped
semiconductors, the relationship between the Seebeck coeffi-
cient and carrier concentration can be expressed as the follow-
ing:

S ¼ 8π2kB2

3eh2
m*T

π
3n

� �2=3 ð3Þ

where kB is the Boltzmann constant, e is the carrier charge, h is
Planck’s constant, m* is the effective mass of the charger car-
rier, and n is the carrier concentration. As can be seen, lower

carrier concentration is desirable for materials to reach high
Seebeck coefficient.

Electrical conductivity (σ) describes the ease of conducting
charge carrier transport of a material, which is defined as:

σ ¼ neμ ð4Þ
where n is the carrier concentration, e is the carrier charge, and
μ is the mobility. To reach high electrical conductivity, a high
carrier concentration is desirable; however, it often degener-
ates the Seebeck coefficient of materials as governed by Eq.
(3). Therefore, an optimized carrier concentration of TE ma-
terials is often found at 1019–1021/cm3 [23]. The electrical
conductivity of ideal TE materials is usually on the order of
103 (S/cm); however, the electrical conductivity of metal ox-
ides is often lower, on the order of 10–102 (S/cm). Thus, the
investigation of effective doping mechanism on improving
electrical conductivity without degenerating the Seebeck co-
efficient is crucial to enable their applications in TE power
generation and related fields.

Thermal conductivity (k), on the other hand, is the param-
eter that describes how efficiently a material can conduct heat.
In the case of semiconductors, the total thermal conductivity
(κT) consists of contributions from both electron and phonon
transports, defined as the following:

κT ¼ κe þ κl ð5Þ
where κe and κl are, respectively, the electron and lattice ther-
mal conductivities. κl is known as the most important mech-
anism for heat conduction in semiconductors at temperatures
close to room temperature, which normally accounts for 90%
contributions in wide-band-gap materials.

For good TE materials, the typical value of thermal con-
ductivity is kT < 2 W/mK [24]. Low thermal conductivity can
be seen intuitively as an important parameter to maintain a
certain temperature gradient across the junctions, which is
essential for reaching high ZT in a material system [25].
Otherwise, the temperature gradient would quickly turn into
equilibrium and cancel the materials TE effect. Therefore,
recent efforts in TE materials research have been heavily fo-
cused on reducing thermal conductivity to achieve high ZT
using various strategies, such as nano-structuring, phonon rat-
tling, and band structuring as reported in previous studies
[26–28]. To this end, most previous review articles focus on
examining various mechanisms to achieve low thermal con-
ductivity of materials. Very few literatures have discussed
mechanisms to reach high power output of TE materials
[29], and none of them focused on metal oxides.

Unlike previous literatures, we have systematically exam-
ined effective strategies to achieve high power output for po-
tential applications in TE power generation. Much attention is
paid to examining the effective dopants of various metal ox-
ides to achieve high electrical conductivity without degrading
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the Seebeck value or vice versa. As such, this review article
will pave the road to the development of cost-effective, earth-
abundant, and high-performance metal oxides for TE power
generation and other thermal-electrical-related applications.

3 TE properties of metal oxides

3.1 Narrow band gap

3.1.1 NaxCoO2

NaxCoO2 is composed of the alternating stacks of sodium-ion
(Na+) plane and CoO2 plane along with the c-axis, with a
hexagonal layered crystal structure. Phonon and electron
transports follow different paths in this structure. The
electrons/holes are transported by passing through the CdI2-
type CoO2 layer for p-type electronic conduction, while the
disordered charge-balancing Na+ layer is providing the path
for phonons. The materials with this kind of layered structure
are so-called Bphonon glass electronic crystals,^ which often
show high electrical conductivity with low thermal conductiv-
ity [30], an ideal material property for thermoelectric applica-
tions. Therefore, the p-type alkali cobalt oxide-based com-
pounds have been recognized as the most promising oxide
TE materials [16, 31, 32]. Additionally, the polycrystalline
Na0.85CoO2 was reported to exhibit PF as high as
14 × 10−4 W/mK2 at 300 K [15, 33]. The quite high PF values
of either single or polycrystalline NaxCoO2 indicate its great
potential for TE power generation.

The TE properties of polycrystalline NaxCoO2 have been
widely investigated with different dopants and doping level of
NaxCoO2. The effects of different metal dopants on the PF
values of NaxCoO2 are shown in Fig. 1. It was found that

silver (Ag) doping is the most effective because it can improve
the electrical conductivity and the Seebeck coefficient of
NaxCoO2 simultaneously, resulting in an enhanced PF value.
Ag, as a metal-phase dopant, can obviously increase the elec-
trical conductivity, but the mechanism of Ag doping enhanc-
ing the Seebeck value is still unclear. It could be caused by the
uniform Ag doping in the samples or the electron-electron
correlation [34]. With 10% Ag doping, NaxCoO2 achieved
the PF as high as 18.92 × 10−4 W/mK2 at ~ 1100 K with the
carrier density of ~ 1021/cm3 [35]. Compared with un-doped
NaCoO2, other dopants (Y, Nd, Sr, Sm) have little effects on
improving PF values [36], and some dopants (Ni, Yb) even
have negative effects [36, 37]. Because of the interdependent
relations between the Seebeck coefficient and electrical con-
ductivity, these dopants often improve one while they degrade
the other. In contrast, doping transition metal elements turn
out to be more effective in improving the PF of NaxCoO2

composites.

3.1.2 Ca3Co4O9

Ca3Co4O9 is another promising p-type TE material due to its
high Seebeck coefficient and electrical conductivity [38–40].
The crystal structure of Ca3Co4O9 is similar to NaxCoO2,
which is stacked by the CdI2-type CoO2 layer and Ca2CoO3

layer (rock salt-type structure) alternatively along the c-axis.
For Ca3Co4O9, the CoO2 planes of Ca3Co4O9 are mainly re-
sponsible for electrical conduction while the interlayers
(Ca2CoO3) between the CoO2 planes transfer the heat by pho-
nons. The un-doped polycrystalline Ca3Co4O9 shows the
Seebeck coefficient, electrical conductivity, and PF of
150 μV/K, 80 S/cm, and 1.5 × 10−4 W/mK2, respectively, at
room temperature [41]. It was reported that doping noble
metals, such as Ag, at the Ca cationic atom site can simulta-
neously increase the Seebeck coefficient and electrical trans-
port properties, thus resulting in an enhanced PF [42]. This is
mainly due to the substitution of Ag+ for Ca2+ in Ca3
−xAgxCo4O9 (0 < x < 0.3) which results in more improvement
for the Fermi-levelEF than that for the valence band energyEV
of the crystal system [43]. For thermoelectric materials, the
Seebeck coefficient is proportional to EF − EV. Therefore, it
can be concluded that Ag doping in Ca3Co4O9 enhances the
Seebeck coefficient. Although the PF value of NaxCoO2 is
much larger than that of Ca3Co4O9 at 300 K, Ca3Co4O9 is
being more widely used in TE applications because of its high
stability on compositional changes [44].

The doping effects of different transition metal (TM) ele-
ments on the PF of Ca3Co4O9 are shown in Fig. 2. With the
temperature increasing from 300 to 1000 K, the PF of the
polycrystalline Ca3Co4O9 with different dopants increased
[29, 45–47]. It can be found that the substitution of transition
elements (Fe, Bi, Mn, Ba, Ga) for Ca or Co has a positive
effect on the PF improvement of Ca3Co4O9. Fe is the most

Fig. 1 Power factor values of NaxCoO2 with different dopants as a
function of temperature
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effective dopant which has drastically increased the PF of
Ca3Co4O9 from 2.3 × 10−4 to 6.10 × 10−4 W/mK2 at
~ 1000 K. Fe ions replace the Co ions in the CoO2 layers,
and this substitution changes the electronic structure and in-
creases the electronic correlations. Thus, doping Fe causes an
enhancement in both the Seebeck coefficient and electrical
conductivity [46]. On the other hand, doping Cu and Ag de-
creases the PF value because Cu/Ag ions mainly occupy the
sites of Co ions in the Ca2CoO3 layers, which results in an
increase of electrical conductivity but a decrease of the
Seebeck coefficient.

3.1.3 BiCuSeO

BiCuSeO oxyselenide was first reported as a promising TE
material in 2010 [48]. BiCuBeO belongs to the layered
ZrCuSiAs-type structure with the tetragonal space group P4/
nmm [49]. The crystal structure is alternately stacked by
(Bi2O2)

2+ layers and (Cu2Se2)
2− layers along with the c-axis.

The (Bi2O2)
2+ layers are mainly responsible for the carrier

(holes) transport while the (Cu2Se2)
2− layers are for reserving

charges. The un-doped polycrystalline BiCuSeO shows the
Seebeck coefficient and electrical conductivity of 350 μV/K
and 1.12 S/cm at 300 K, respectively, leading to a low PF of
0.14 × 10−4 W/mK2 [49]. This is mainly due to the low elec-
trical conductivity caused by the intrinsic low carrier concen-
tration of 1 × 1018/cm3. This value is much lower than the
optimized doping concentration of TE materials (1019–1021/
cm3) [50–53]. To enhance the TE properties of BiCuSeO, the
alkaline-earth metals (Mg, Ca, Ba, and Sr) with 2+ valence
have been reported to be good p-type dopants replacing the
Bi3+ in BiCuSeO [49, 54–56]. Doping these elements can
improve the electrical conductivity by increasing the carrier
concentration, which leads to an enhancement of PF.

Figure 3 summarizes the different metal dopants on the PF
values of Bi1−xMxCuSeO (M=Mg, Ca, Sr and Ba). As shown,
the PF of BiCuSeO was greatly improved by doping M2+

compared to its undoped crystal structure. The electrical trans-
port properties of BiCuSeO change from semiconducting be-
havior to metallic behavior once M2+ is doped, resulting in a
significant increase in electrical conductivity without
degrading the Seebeck coefficient. Among all the dopants,
Ba2+ doping resulted in the highest electrical conductivity in
the Bi0.875Ba0.125CuSeO sample, which reached 535 S/cm at
300 K [55]. Thus, the largest PF (~ 6.14 × 10−4 W/mK [2])
was achieved at 900 K. With the Ba2+ modulation doping, the
PF of BiCuSeO has achieved PF as high as 10 × 10−4 W/mK2

at ~ 900 K [17], which is the highest PF value of doped
BiCuSeO ever reported.

Alkali metals, such as Na, have also shown promises in
improving the PF of BiCuSeO [57], but the limitation of sol-
ubility in BiCuSeO impeded their potential as good p-type
dopants. Recently, Pb/Ca co-doping has been reported as an
efficient way to enhance the TE properties of BiCuSeO [17,
58]. Under Pb/Ca co-doping, the PF of BiCuSeO has reached
~ 10 × 10−4 W/mK2 at room temperature [58].

3.1.4 CaMnO3

Perovskite oxide CaMnO3 has been considered as a good n-
type TE material due to its high Seebeck coefficient in the
range of − 300 μV/K~− 400 μV/K [59–62] and chemical
stability at temperatures up to 1200 K [63]. Although
CaMnO3 has relatively high Seebeck coefficient, its electrical
conductivity is very low (0.1 to 1 S/cm in the temperature
range 300–1000 K), which often results in low PF values
[64]. Previous studies indicated that with a minor electron

Fig. 2 Power factor values of Ca3Co4O9 doped with the transition metal
elements as a function of temperature

Fig. 3 Power factor values of Bi1−xMxCuSeO (M = K, Mg, Ca, Sr, and
Ba) as a function of temperature
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doping at the A (Ca2+) and B sites (Mn4+), its electrical con-
ductivity can be significantly increased. As such, the high PF
of CaMnO3 TE materials has been achieved by replacing the
A site and B site with rare-earth ions, Y3+, Bi3+, and Nb5+ and
Ta5+, Mo6+, and W5+, respectively [65].

Ohtaki et al. reported that the electron transport proper-
ties of CaMnO3 have been improved by replacing the A
site and B site with different lanthanides [18, 60, 66] and
heterovalent cations such as W, Ta, Ru, Mo, and Nb
[67–71], respectively. Several studies have been carried
out to investigate the TE properties of CaMnO3, particu-
larly focusing on strategies to increase the electrical con-
ductivity without significantly decreasing the Seebeck co-
efficient. Figure 4 exhibits the PF of single and co-doped
CaMnO3 with respect to temperature. Clearly, Bi-
substituted CaMnO3 shows the largest PF of all the sam-
ples. Doping larger cations such as Bi3+ on the Ca site
results in high electrical conductivity caused by the higher
mobility of the carriers [60]. The highest PFs of
4.67 × 10−4 W/mK2 at 423 K and 3.74 × 10−4 W/mK2 at
965 K were achieved for Ca1−xBixMnO3 with a Bi compo-
sition at x = 0.03 (Fig. 4) [72]. However, the co-doped
Ca0.96Bi0.04Mn0.96Nb0.04O3 sample shows a lower PF be-
cause of the decrease of the electrical conductivity.
Compared to Bi-substituted CaMnO3, the increased
amount of Nb5+ into the MnO6 octahedra leads to a more
serious lattice distortion [73]. As a result, the electrical
conductivity is decreased due to a reduction in carrier mo-
bility, which leads to the lower PF of the co-doped
Ca0.96Bi0.04Mn0.96Nb0.04O3 sample.

Lan et al. [74] studied the TE properties of polycrystalline
Ca1−xGdxMnO3 (x = 0.02, 0.04, and 0.06) synthesized via a
chemical co-precipitation method. The maximum electrical

conductivity of 113.4 S/cm was discovered for Gd-doped
CaMnO3 sample at x = 0.06, which resulted in the highest
PF of 2.3 × 10−4 W/mK2 at 950 K, shown in Fig. 4. Nag et al.
[75] examined the transport properties of the co-substituted
Ca1−xGdxMn1−xNbxO3 (0 ≤ x ≤ 0.1) perovskite synthesized
by solid-state reaction. The increase of electrical conductivity
can be attributed to the formation ofMn3+, which results in the
increase of carrier concentration. However, the Seebeck coef-
ficient is lower in co-doped CaMnO3 samples due to the high
carrier concentration, which results in a relatively low PF of
2.0 × 10−4 W/mK2 at 800 K.

3.1.5 SrTiO3

Strontium titanate (SrTiO3)-based perovskite oxide mate-
rials have shown n-type electrical conduction behavior,
and they have an ideal cubic crystal structure (space group
pm3m, lattice parameter a = 0.3905 nm at 300 K, and
melting point 2353 K) [63, 76]. Recently, SrTiO3 has been
recognized as a promising candidate for low-temperature
TE applications, since it has good electrical conductivity
and large Seebeck coefficient (~ 100 μV/K) at high doping
concentration (n ~ 1021 cm−3) [30]. This is mainly due to
its high electron mobility (10 to 100 cm2/V/s) [30] and
large effective mass (m* ∼ 2–16 m0) [77–79], which arises
from its d-band nature and conduction band degeneracy
[80, 81]. Furthermore, the electrical conductivity of the
SrTiO3 can be changed from insulating to metallic behav-
iors through different doping mechanisms such as intro-
ducing oxygen vacancies or substitutional doping of the
Sr2+ or Ti4+ sites with higher-valence elements (e.g., La3+

for Sr2+ sites or Nb5+ for Ti4+ sites) [79, 82, 83].
Okuda et al. [81] first reported the highest PF 28–

36 × 10−4 W/mK2 at 300 K for heavily La-doped SrTiO3

single crystals with doping concentration of 0.2–2 × 1021/
cm3, which is comparable to that of Bi2Te3, the state-of-
the-art low-temperature TE material. The unexpectedly
high PF is due to the large Seebeck coeff ic ient
(~ 350 μV/K) caused by the high degeneracy of the con-
duction band as well as the large energy-dependent scatter-
ing rate. Also, heavily Nb-doped SrTiO3 single crystals at
carrier concentration of 3.3 × 1021/cm3 achieved high PF
(~ 20 × 10−4 W/mK2) at 300 K. The high Seebeck coeffi-
cient (~ 240 μV/K) at room temperature was caused by the
large effective mass (m* ∼ 7.3–7.7 m0) [80].

Figure 5 shows that Sr0.95La0.05TiO3 reaches the highest PF
of 28 × 10−4 W/mK2 at 320 K due to the large Seebeck coef-
ficient as discussed before. Since Sm, Dy, and Yare rare-earth
elements, they have smaller ionic radius compared to Sr2+,
which results in a decreased lattice parameter [84].
Compared to La-doped SrTiO3, the La- and Dy-co-doped
La0.08Dy0.12Sr0.8TiO3 sample has lower PF due to the de-
creased electrical conductivity. The electrical conductivity

Fig. 4 Power factor values of doped CaMnO3 with various dopants as a
function of temperature
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decreases can be attributed to the reduced carrier mobility
caused by the formation of the second phase (Dy2Ti2O7) dur-
ing the doping mechanism [85]. However, Y-doped SrTiO3

has the lowest PF mainly due to the low Seebeck coefficient.

3.2 Wide band gap

3.2.1 ZnO-based

Zinc oxide (ZnO) has a direct wide band gap of 3.37 eV and
large exciton-binding energy of 60 meV [86, 87]. It is a non-
toxic, low-cost, and earth-abundant material which is stable at
a high temperature. These properties make it a promising can-
didate for n-type TE materials for energy harvesting in high-
temperature applications [88–90]. At room temperature, Lu
et al. has reported that the PF of bulk ZnO materials was
achieved at about 0.75 × 10−4 W/mK2 at carrier concentration
(n ~ 10−17/cm3), due to the high crystal quality resulting in a
large Seebeck coefficient (~ 478 μV/K) [91].

Figure 6 presents the temperature-dependent PF of ZnO-
based TE materials. A general trend of PF increasing with the
increase of temperature can be observed, and Al has been used
as the most common dopant to enhance the TE properties of
ZnO. Despite the high Seebeck for the Al-doped nano-bulk
and bulk ZnO samples, the electrical conductivity of these
samples is extremely low leading to a small PF value.
Compared to their nano-structured counterparts, the bulk
Zn0.96Al0.02Ga0.02O and Zn0.98Al0.02O alloys showed a higher
PF in the temperature range from 300 to ~ 1300 K [92, 93],
which can be attributed to a better crystal quality in the bulk
materials leading to higher electrical conductivity. Because the
doped Al3+ and Ga3+ usually substitute for Zn2+ in ZnO and
act as n-type donors, these dopants significantly enhance the
electrical property of ZnO. Furthermore, the largest PF value

( 2 3 . 9 × 10 − 4 W /mK2 ) w a s o b t a i n e d i n b u l k
Zn0.96Al0.02Ga0.02O at ~ 1147 K reported by Ohtaki et al.
[93], which remains the highest PF of all high-temperature
n-type oxides that was ever reported.

The addition of a small amount of Dy2O3 has been also
found to be effective for improving the thermoelectric proper-
ties of ZnO [94]. The highest power factor of 4.46 × 10−4 W/
mK2 at 1100 K was obtained for Zn0.995Dy0.005O. The PF is
approximately 56 times larger than that of undoped ZnO
(0.08 × 10−4 W/mK2 at 1100 K) [94]. It was reported that
the addition of Dy2O3 leads to an increase in the electrical
conductivity, which can be attributed to the substitution of
Dy3+ for Zn2+. As a result, this increased carrier concentration
of the system can compensate for the electrical charge balance
[94].

3.2.2 SnO2-based

Tin oxide (SnO2) is a wide-band-gap (3.6 eV) semiconductor
that crystallizes in a rutile-type structure [95]. Due to its elec-
trical and optical properties, SnO2 and impurity-doped SnO2

are mainly used as an electrode for dye-sensitized solar cell
[95] and electrochromic devices [96], a catalyst in chemical
reactions [97], a varistor [98], and a gas sensor [99].

Rubenis et al. [100] reported that the TE properties of Sn1
−xSbxO2 (x = 0, 0.01, 0.03, 0.05) were synthesized by spark
plasma sintering and subsequently air annealing at 1173 K.
The addition of Sb2O5 increased the carrier concentration of
SnO2. Thus, the Seebeck coefficient decreased but the electri-
cal conductivity increased up to a maximum of 5.5 times at the
Sb-doping level of x = 0.03. The Sn0.99Sb0.01O2 sample has
the highest PF value of 4.5 × 10−4 W/mK2 at 1073 K.

Figure 7 shows that Sn0.94Sb0.03Zn0.03O2 reaches the maxi-
mumPFof 2.13 × 10−4W/mK2 at 1060K,which is 126%higher

Fig. 5 Power factor values of doped SrTiO3 with various dopants as a
function of temperature

Fig. 6 Power factor values of doped ZnO with various dopants as a
function of temperature
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than that of the undoped sample. The electrical conductivity
increases are due to the carrier concentration that was caused
by an increase in Sb doping and the density of Zn doping
[101]. Moreover, the Bi-doped Sn0.97Sb0.01Zn0.01Bi0.01O2 sam-
ple has reached the maximum PF of 4.8 × 10−4 W/mK2 at
1060 K. Yanagiya et al. [21] reported that Bi increased the elec-
trical conductivity by increasing the number of free electrons in
SnO2, where Bi behaves as a donor. Also, the addition of CuO to
the Sb-doped SnO2 increased the PF at a high temperature
(T > 1000 K). The substitution of Cu for Sn decreased carrier
concentration because Cu is divalent but Sn is quadrivalent. As a
result, the Seebeck coefficient increased. Also, the addition of the
CuO has significantly improved the relative density of SnO2

ceramics [102]. As such, the electrical conductivity increased
with the increased carrier mobility. The Cu- and Sb-co-doped
Sn0.98Cu0.01Sb0.01O2 reached the highest PF value of
7 × 10−4 W/mK2 at 1073 K. However, Ti- and Sb-co-doped
Sn1−x−yTiySbxO2 samples had lower PF values due to the electri-
cal conductivity decreases with adding more TiO2 because TiO2

dissolved in SnO2 that caused the reduction of the mobility,
resulting in the decrease of the electrical conductivity [103].

3.2.3 In2O3-based

Indium oxide (In2O3) is a semiconductor with a band gap of
3.6 eV, [104] which has recently gained interest as a promising
candidate for high-temperature TE applications due to its high
stability at air. It has been shown that the electrical properties
of In2O3 can be drastically changed by doping with Sn, Mo
[105, 106], Zr, Ti [107, 108], and W [109].

Figure 8 shows that In1.92(ZnCe)0.08O3-nanostructured ce-
ramic exhibits the highest PF of 8.36 × 10−4 W/mK2 at

1050 K22. This is due to the influence of nanostructuring and
point defects on TE properties of the In2O3 system. Point
defect hinders the atomic-scale scattering and improves the
carrier concentration thereby increasing PF. Utilizing the spark
plasma-sintering process, co-doped polycrystalline In2O3 ce-
ramics were fabricated by Liu et al. [110]. They have achieved
high electrical conductivity and Seebeck coefficient, which
resulted in PF of 4.53 × 10−4 W/mK2 at 1070 K for
In1.96Co0.04O3. Later, Liu et al. [111] prepared single-
element Ga-doped In2O3 ceramics by spark plasma sintering
to explore their TE properties at high temperatures. The slight
change in the Seebeck coefficient and a significant enhance-
ment of the electrical conductivity (~ 400 S/cm) at 973 K were
caused by an increase of carrier concentration through doping
Ga, which achieved the highest PF of 9.6 × 10−4 W/mK2 in
In1.90Ga0.10O3 at 973 K.

Table 1 summarizes the TE properties of various metal
oxides with different dopants at a high-temperature regime,
approximately 800 K. It has shown that metal oxides have
good TE performance at high-temperature range. For n-type
materials, the highest PF value was found as of 22 × 10−4 W/
mK2 for Zn0.98Al0.02O, which is close to that of SiGe, the
state-of-the-art high-temperature TE material. For p-type ma-
terials, the highest PF value was reported as 16 × 10−4 W/mK2

for Na0.95Ag0.05CoO2, which is lower than that of n-type ma-
terials. Despite p-type materials having high Seebeck coeffi-
cient caused by the large effective mass of the hole, their
electrical conductivity is much lower due to the difficulty of
doping. Thus, the investigation of effective doping mecha-
nisms is very important, particularly for p-type TE materials,
to explore more applications such as solar cells, transistors,
sensors, and photodetectors.

Fig. 7 Power factor values of doped SnO2 with various dopants as a
function of temperature Fig. 8 Power factor values of doped In2O3 with various dopants as a

function of temperature
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In summary, transitional metal elements are effective
dopants for metal oxides to reach high power factor. For
NaxCoO2, Ag has proven to be a good dopant as it in-
creases both electrical conductivity and Seebeck coeffi-
cient simultaneously, which results in the highest PF val-
ue for p-type metal oxides. For n-type oxides, both
CaMnO3 and SrTiO3 have shown good TE performance,
particularly with Bi and La doping, respectively. For
wide-band-gap materials, Ga-doped In2O3 has shown
promising TE properties for high-TE-power-generation
applications.

4 Commercial application of metal oxides for TE
power generation and beyond

4.1 TE device for power generation

As a heat engine, the efficiency of thermoelectric device is
governed by the Carnot efficiency and the materials’ figure
of merit ZT as the following:

η ¼ TH−TC

TH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ZT

p
−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ZT
p þ TC=TH

� �
ð6Þ

Table 1 Thermoelectric
properties of metal oxides
measured at 800 K by different
dopants, S is for Seebeck
Coefficient, σ is for electrical
conductivity, and PF is for power
factor

Material Dopants |S| (μV/K) σ (S/cm) k (W/mK) PF (× 10−4 W/mK2) Ref.

Narrow band gap, p-type

NaxCoO2 Y 149.5 271.9 1.72 6.08 [36]

Nd 150.0 280.8 1.43 6.32 [36]

Sr 156.2 276 1.37 6.73 [36]

Sm 145.4 271.8 1.38 5.75 [36]

K 140.0 313 1.35 6.13 [36]

Yb 139.0 268 1.47 5.18 [36]

Ag 205.2 392.1 1.34 16.51 [35]

Ca4Co4O2 Bi 166.7 145.76 – 4.05 [45]

Fe 234.7 88.41 1.92 4.87 [46]

Ga 173.6 114.17 1.52 3.44 [47]

BiCuSeO Mg 352.2 30 0.33 3.72 [49]

Sr 202.4 110.30 0.30 4.52 [49]

Ba 170.0 207 0.25 5.98 [49]

Narrow band gap, n-type

CaMnO3 Gd 147 113 1.41 2.44 [74]

Bi 206 95.87 1.62 4.07 [72]

Bi, Nb 166 77.6 1.82 2.14 [73]

Gd, Nb 150 100 1.2 2.25 [75]

SrTiO3 La 210 250 5.5 11.03 [84]

Sm 223 126 – 6.27 [84]

Gd 206 130 – 5.52 [84]

Dy 200 140 – 5.60 [84]

La, Dy 159 420 3.46 10.62 [85]

Wide band gap, n-type

ZnO Al 163 839 12 22.29 [92]

Al, Ga 173 611 6.2 18.29 [93]

Dy 55 80 – 0.24 [94]

SnO2 Sb 150 190 11.5 4.28 [100]

Cu, Sb 70 100 7 0.49 [102]

Ti, Sb 65 100 2.1 0.42 [103]

Sb, Zn 150 15 – 0.34 [101]

Sb, Zn, Bi 125 290 – 4.53 [21]

In2O3 Ga 150 375 0.25 8.44 [111]

Co 203 65 – 2.68 [110]

Zn, Ge 126 428 3.2 6.79 [22]

S Seebeck coefficient, σ electrical conductivity, PF power factor
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where TH, TC, and TM are the hot-side, cold-side, and average
temperatures, respectively. As a cost-effective alternative to
conventional TE materials, oxides have superior thermal sta-
bility to be used for devices operated at a high-temperature
regime to achieve higher Carnot efficiency (theoretical maxi-
mum) ηC = (TH − TC)/TH, thus achieving much higher energy
efficiency for power generation.

The simplest design of TEG consists of a p-leg and n-leg
connected by conducting strips in series and covered by ce-
ramic plate with heat conduction in perpendicular. Matsubara
et al. [112] reported that a fin-type-oxide thermoelectric de-
vice was fabricated by using Ca2.75Gd0.25Co4O9 as p-leg and
Ca0.92La0.08MnO3 as n-leg. The high power density of the TE
device was achieved at 21 mW/cm2 atΔT = 390 K. This high
performance was observed in oxide-based thermoelectric gen-
erators, because the power factor of both p- and n-type mate-
rials increased with temperature, with no bipolar effect ob-
served. Another oxide-based TE device was fabricated from
Man’s group using CaMgO2(CMO-25-42S) as TE module
[113]. A large power density of 92 mW/cm2 was reported at
ΔT = 440 K compared to the previous study. It is interesting to
note that the power outputs, in both cases, are sufficient to
power small electronics, sensors, and other optoelectronic de-
vices. Intriguingly, metal oxide-based TE generators have
shown great promises for high-temperature power generation
through waste heat harvesting.

4.2 Solar cells

In solar cell application, metal oxides such as SnO2 [95], ZnO
[114], and SrTiO3 [115] are often used as photoelectrodes in
dye solar cells (DSCs) [116, 117]. DSCs are made by a layer of
dye-anchored mesoporous metal oxides, known as
photoelectrodes, and covered with conducting glass plates on
both sides [118]. Like TEG devices, efficiency is also important
for solar cells. The efficiency of DSC is defined as [119]

η ¼ JSCVOCFF
PIN

ð7Þ

where JSC is current per unit active area, VOC is open-circuit
voltage, FF is fill factor, and PIN is power input.

Durrant et al. have fabricated a DSC with ZrO2-doped
TiO2-blocking layer, which resulted in a 35% efficiency im-
provement and reached VOC = 50 mV [120]. This significant
efficiency improvement was attributed to the increased elec-
tron density of The ZrO2-doped TiO2 thin films. As such, a
significant recombination loss was prevented at short-circuit
condition. However, the overall efficiency of photoelectric
conversion at the device level has only reached 8.1%.
Comparing with the 24.7% efficiency from a silicon-based
solar cell, the DSCwith metal oxide photoelectrode still needs
much improvement [119]. For instance, much effort is needed

in synthesizing high-crystallinity metal oxides to increase
charge collection efficiency in DSC without adversely affect-
ing dye loading and, consequently, the short circuit current
density.

4.3 Gas sensor application

Another related application for metal oxides is gas sensors.
Gas sensors are used to detect toxic gas-like carbon monoxide
(CO) and nitrous oxide (N2O). Metal oxides are usually both
thermally and chemically stable and, hence, very suitable for
gas-sensing application. For example, SnO2 and TiO2 can be
used for CO sensors, and ZnO can be used in N2O sensors.
According to Barbi [121], SnO2-based CO sensor has the best
performance at a temperature of 523 K and response (R0/R) of
2.2 at 20 ppm. This significant improvement was attributed to
the ultra-fine crystal size (400Å) of SnO2, which increased the
free-carrier density of nanocrystals and localized the higher
concentration of adatoms.

5 Summary

In this paper, we discuss recent advances in oxide-based ther-
moelectric materials and devices for power generation through
waste heat harvesting. Metal oxides offer very promising so-
lutions to the development of non-toxic and cost-effective
thermoelectric devices for power generations. For low-
temperature operation (300 K), the highest PF was found as
28.3 × 10−4 W/mK2 in n-type Sr0.95La0.05TiO3, which is in
competition to that of BiTe, the state-of-the-art TE material at
low-temperature regime. For high temperature (1147 K), the
highest PF (23.9 × 10−4 W/mK2) was obtained in
Zn0.96Al0.02Ga0.02O, which makes ZnO as the best reported
n-type TE material.

Despite the recent advancement, metal oxides for TE pow-
er generation are still in their early stage of development, and
many scientific and technological challenges need to be ad-
dressed. For instance, it is very difficult to reach high electrical
conductivity of metal oxides without degrading their Seebeck
value simultaneously. Achieving high doping concentration
and p-type behavior in wide-band-gap metal oxides remains
a significant challenge. Regardless, the scientific and techno-
logical importance of developing metal oxide TE materials is
evident, and the outlook is very promising. Clearly, discover-
ing effective doping mechanisms to achieve high power out-
put is essential to the development of thermoelectric power
generation, solar cells, gas sensors, and photodetectors.
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