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Abstract Carbon nanoadsorbents have attracted tremendous
interest for metal ion removal from wastewater due to their
extraordinary aspect ratios, surface areas, porosities, and reac-
tivities. However, challenges still exist as they suffer from
subpar dispersion and recovery, tending to aggregate, and so
on. Thus, significant research efforts focus on modification of
these carbon nanomaterials to increase the dispersions and
recoveries, while maintaining or even enhancing the desirable
properties. This review aims to give an in-depth look at recent
and impactful advances in metal ion adsorption applications
involving these modified carbon nanostructures. Here, the ad-
vanced design and testing of modified carbon nanostructures
for metal ion removal are emphasized with comprehensive
examples, and various adsorption behaviors and mechanisms
are discussed, which are hoped to help the development of
more effective adsorbents for water treatment.

Keywords Carbon nanoadsorbents . Heavymetals .Water
treatment .Modificationmethods . Adsorption behaviors

1 Introduction

Industrial, agricultural, and domestic activities inevitably pro-
duce large amounts of wastewater [1–3]. Pollutants in the
water can mainly be divided into three categories: microor-
ganisms, organics, and inorganics. Heavy metal ions, as the
major part of inorganic pollutants, have aroused lots of con-
cern due to their toxicities to ecological and biological systems
[4–8]. The United States Environmental Protection Agency
(EPA) has limited the levels of various metal ions in drinking
water. Table 1 lists some of them and the corresponding effects
on human health [9].

Water pollution due to metal ions is still a serious problem
and great challenge throughout the world. A tremendous
amount of research focuses on this area, and many methods
have been developed, such as adsorption [10, 11], ion ex-
change [12, 13], membrane filtration [14, 15], electro-
chemical precipitation [16, 17], reverse osmosis [18, 19],
and flocculation [20, 21]. Among these methods, adsorption
is most widely used to remove metal ions from wastewater
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due to its simple, economical, and highly efficient character-
istics [22, 23]. Lots of adsorbents including carbon materials
[24, 25], metal oxides [26, 27], clays [28, 29], zeolites [30,
31], biomass [32, 33], and polymers [34, 35] have been
explored.

Carbon nanomaterials, some of which are shown in Fig. 1,
are the most commonly employed adsorbents for metal ion
removal from wastewater owing to their large specific surface
area and concentrated pore distribution [36, 37]. Moreover,
they exhibit a great mechanical property and excellent struc-
tural stability under extreme conditions (e.g., high temperature
and strong acidic/alkaline conditions) [38–40]. However, it is
often difficult to disperse them in an aqueous environment and
recover them after adsorption due to their hydrophobicity and
small size [41–43]. In addition, some carbon nanomaterials,
such as graphene, tend to aggregate decreasing their surface
area and surface energy, which strongly decreases their ad-
sorption performance [44–46]. To overcome these disadvan-
tages, much attention has been paid to decorating the carbon
nanomaterials. Various modified carbon nanoadsorbents have
been developed because of the widespread functionalization
of carbon nanomaterials.

In this review, the uses of modified carbon nanoadsorbents
for metal ion removal from water are focused on. Different
types of carbon-based nanoadsorbents and their adsorption
performances, common methods to modify carbon
nanomaterials, various adsorption isotherm and kinetic
models, diverse adsorption mechanisms, and practical appli-
cations of the modified carbon nanoadsorbents to environ-
mental water samples are covered. Furthermore, some issues
about current research are discussed. For example, the adsor-
bents with such characteristics as high selectivity, extreme

sensitivity, or none toxicity are rarely reported. It is hoped that
this review can help to promote the development of carbon-
based nanoadsorbents and the treatment for water pollution.

2 Overview

Based on their different architectures, carbon nanomaterials
include zero-dimensional carbon nanoparticles and carbon
nanospheres, one-dimensional carbon nanotubes (CNTs) and
carbon nanofibers, two-dimensional graphene and carbon
nanofabrics, and three-dimensional carbon nanoclusters and
carbon nanofoams. A variety of adsorbents involving them
are thus developed.

2.1 Graphene-based nanoadsorbents

Graphene possesses a two-dimensional structure consisting of
sp2 hybridized carbon atoms covalently bonded in a honey-
comb or hexagonal lattice with only one atomic thickness
[47–50]. Due to its superior thermal, mechanical, electronic,
and chemical properties, graphene and its derivatives can be
applied to many fields, such as electronics, energy, sensors,
and composites [51–54]. Moreover, since it has a huge surface
area, large delocalized π-electron system, and tunable chemi-
cal properties, graphene and its derivatives can be used to
effectively adsorb metals from wastewater [55–57].
Graphene as the nanoadsorbent mainly includes three forms:
pristine graphene, graphene oxide (GO), and reduced
graphene oxide (rGO) [58]. GO is an oxidized form of
graphene, containing various oxygen-containing groups, such
as epoxide, carbonyl, carboxyl, and hydroxyl groups [59–63].
Since the oxygen groups break the double bonds holding the
carbon atoms together, GO loses its electrical conductivity.
However, these oxygen groups cause GO to become polar
and easy to disperse in water [64–66]. rGO is the reduction
product of GO, which can be prepared through thermal, chem-
ical, or electrical treatments of GO. Compared to pristine
graphene, rGO contains more such defects as residual oxygen
and other heteroatoms and has a lower conductivity.

Xu et al. [67] successfully prepared polyacrylamide grafted
graphene (PAM-g-graphene) through γ-ray treatment of
graphite oxide and acrylamide, which was characterized by
UV-Vis absorption spectroscopy, XRD, XPS, FTIR, TGA,
and AFM. The as-prepared PAM-g-graphene had a thickness
of 2.59 nm, N2-BET-specific surface area of 128 m2/g, and
grafted PAM chains of 24.2 wt%. In contrast, the N2-BET
specific surface area of pristine graphite oxide and the thick-
ness of its single-layer sheets were 46.4 m2/g and 1.30 nm,
respectively. A superior performance for Pb(II) adsorption
was exhibited by the PAM-g-graphene. Figure 2 a, b shows
that the adsorption equilibrium could be reached in 30 min,
and the adsorption kinetics was well described by the pseudo-

Table 1 EPA maximum contaminant levels in drinking water and
corresponding health effects

Metal MCL
(ppb)a

Health effects

Arsenic
(As)

10 Skin damage or circulatory system problems,
cancer risk may increase

Cadmium
(Cd)

5 Kidney damage

Chromium
(Cr)

100 Allergic dermatitis

Copper
(Cu)

1300 Gastrointestinal distress, liver or kidney damage

Lead (Pb) 15 Deficits in attention span and learning abilities,
kidney problems, blood pressure increases

Mercury
(Hg)

2 Kidney damage

Uranium
(U)

30 Cancer risk increases, kidney toxicity

a MCL: maximum contaminant level; ppb: parts per billion,
1 ppb = 1 μg/L.
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second order model. Langmuir and Freundlich isotherm
models were employed to illustrate the adsorption isotherms,
as shown in Fig. 2 c, d. The maximum adsorption capacity
determined by the Langmuir isotherm model was 819.67 mg/
g, which was respectively 20 times and 8 times higher than
that of graphene nanosheets and CNTs. The one-step synthesis
of PAM-g-graphene exhibited a bright prospect for heavymet-
al removal from water.

As shown in Fig. 3, L-cystine functionalized exfoliated GO
(EGO) was synthesized and used for Hg(II) adsorption [68].
First, graphite was oxidized and exfoliated to prepare GO.
Then GO was treated with thionyl chloride (SOCl2), and
acylchloride groups were formed due to the reaction between
carboxyl groups of the GO and SOCl2. After that, L-cystine
was added, and its amine groups reacted with acylchloride
groups to produce acylamide groups. In this way, L-cystine
was successfully grafted onto EGO. Nitrogen, oxygen, and
sulfur-containing groups on the L-cystine functionalized
EGO could effectively bind Hg(II), and an outstanding ad-
sorption performance was observed. Compared with

unmodified graphite, L-cystine functionalized EGO had a
much higher adsorption capacity under the same conditions,
which were 79.36 and 12.4 mg/g, respectively. Moreover,
there was no significant interference from other metal ions
when they were at low concentrations. Thiourea could be
employed to accelerate the process of desorption, and after
four adsorption-desorption cycles, the adsorption efficiency
began to decrease.

Radionuclides can cause serious environmental problems.
Wen et al. [69] prepared three-dimensional hierarchical
flower-like GO-hydroxyapatite (GO-HAp) nanocomposites
for Sr(II) removal. The GO was synthesized through a modi-
fied Hummers method, and the HAp grew on the GO nano-
sheets via a biomimetic method. The process of HAp nucle-
ation and growth was shown in Fig. 4. To evaluate the adsorp-
tion ability of GO-HAp, effects of contact time, solution pH,
coexisting cations, GO-HAp content, and Sr(II) initial concen-
trations were investigated. The adsorption equilibrium could
be quickly reached within 2 h, and the removal kinetics
followed the pseudo-second-order model. The GO-HAp

Fig. 1 Some carbon
nanostructures. Reprinted with
permission from Ivyspring
International Publisher [36]

Fig. 2 a Effect of the contact
time on the adsorption of Pb(II)
onto PAM-g-graphene (adsorbent
0.1 g/L; initial Pb(II) concentra-
tion 45 mg/L; pH 6; T 293 K); b
adsorption kinetics of Pb(II) onto
PAM-g-graphene fitted by
pseudo-second-order model; ad-
sorption isotherm of Pb(II) onto
PAM-g-graphene fitted by c
Langmuir model and d
Freundlich model (adsorbent
0.1 g/L; initial Pb(II) concentra-
tion 5–100 mg/L; pH 6; T 293 K).
Reprinted with permission from
Elsevier [67]
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could keep a high removal percentage in a wide pH range,
more than 76% even at pH 2–4. Cd(II) and Pb(II) had a slight
influence on the adsorption of Sr(II), while Mg(II), Al(III),
and Na(I) had almost no effects. As more GO-HAp were
added to the solution, the adsorption percentage of Sr(II) in-
creased swiftly, whereas its distribution coefficient gradually
decreased. Both the Langmuir and Freundlich isotherms could
well describe the adsorption behaviors of Sr(II). A maximum
adsorption capacity of 702.18 mg/g was obtained from the
Langmuir model, which was higher than most other adsor-
bents, almost two times that of bare HAp and nine times that
of GO. Two possible mechanisms for Sr(II) adsorption were
proposed, namely ion exchange between Ca(II) and Sr(II) and

complex compound formation of Sr(II) with HAp active sur-
face sites. The GO-HAp showed great potential applications
for radiostrontium pollution clean-up.

Yang et al. [70] employed a new adsorbent, lignosulfonate-
GO-polyaniline (LS-GO-PANI) ternary nanocomposite, to ad-
sorb Pb(II) from water. GO was first fabricated from expansi-
ble graphite via an airtight oxidation method, and then LS-
GO-PANI was prepared through an in situ polymerization of
aniline in the presence of LS and GO in a HCl aqueous solu-
tion, as shown in Fig. 5. Compared with PANI and GO-PANI,
LS-GO-PANI ternary nanocomposite exhibited a higher ad-
sorption capacity due to the existence of a synergistic effect
among the functional groups on it. It was believed that the

Fig. 3 Preparation process of L-
cystine functionalized EGO and
its interactions with Hg(II).
Reprinted with permission from
Royal Society of Chemistry [68]
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amino groups in PANI units enhanced the coordinate ability of
sulfonic groups on LS chains and carboxyl groups on GO
nanosheets for Pb(II). An optimal adsorption pH of 5.0 was
observed for the LS-GO-PANI, and 98.3% of its maximum

adsorption capacity could be reached in 4 h. Pb(II) concentra-
tions and LS-GO-PANI amounts had an effect on the adsorp-
tion capacity and adsorptivity, which could further utilized to
enhance the adsorption of Pb(II).

Fig. 4 The process of HAp
nucleation and growth on GO.
SEM images of the GO after a
12 h, b 1 day, c 3 days, and d
7 days of immersion in a
1.5 × simulated body fluid
aqueous solution. Reprinted with
permission from Royal Society of
Chemistry [69]

Fig. 5 Preparation process of LS-
GO-PANI ternary nanocompos-
ites. Reprinted with permission
from American Chemical Society
[70]
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2.2 Carbon nanotube-based nanoadsorbents

Carbon nanotubes (CNTs) are allotropes of carbon that are
long, thin, and cylindrical, about 1–3 nm in diameter and
hundreds to thousands of nanometers long. They are a kind
of graphite material and can be viewed as rolled up graphene
sheets [71, 72]. CNTs are mainly divided into single-walled
CNTs (SWCNTs) and multiwalled CNTs (MWCNTs) [73,
74]. SWCNTs have only a single layer of graphene, while
MWCNTs are made up of multiple rolled layers of graphene.
CNTs can be treated by acid, such as nitric acid and sulfuric
acid, and potassium permanganate, to form oxidized CNTs
[75–78]. Compared to CNTs, oxidized CNTs become polar
and easy to disperse in water. CNTs and graphene are quite
similar in many aspects, like their compositions, electrical,
thermal, and optical properties [79]. Therefore, CNTs can be
applied to such areas as electronics, energy, and sensors
[80–83]. They are also an effective adsorbent for metal ion
removal from water [84, 85].

Wang et al. [86] prepared amidoxime-grafted MWCNTs
(AO-g-MWCNTs) to adsorb U(VI) from nuclear industrial
effluents. Oxidized MWCNTs were first treated by N2 plasma
and then grafted with acrylonitrile (AN) to produce AN-g-
MWCNTs. The cyano groups on the AN-g-MWCNTs were
converted to amidoxime groups by a reaction with the hydrox-
ylamine hydrochloride. Compared to oxidized MWCNTs,
AO-g-MWCNTs had a rougher surface and more compact
stacking morphology. N2 adsorption-desorption experiments
showed that the BET-specific surface area of oxidized
MWCNTs decreased from 91.31 to 72.59 m2/g after plasma
grafting. The adsorption behaviors of U(VI) onto AO-g-

MWCNTs were systematically investigated. As the initial
pH of the U(VI) solution increased from 1 to 4.5, the distribu-
tion coefficient of U(VI) gradually became larger. It only
needed about 1 h to reach the adsorption equilibrium, and
the adsorption kinetics could be best described by the
pseudo-second-order model (R2 = 0.9997). The Langmuir iso-
therm model revealed that AO-g-MWCNTs had a much
higher maximum adsorption capacity than oxidized
MWCNTs, which meant that AO could significantly enhance
the adsorption ability of MWCNTs. Temperature also affected
the adsorption of U(VI), and higher temperatures were favor-
able. The thermodynamic studies indicated that the adsorption
process was spontaneous and U(VI) was more likely to be
adsorbed by AO-g-MWCNTs than by oxidized MWCNTs.
AO-g-MWCNTs exhibited much higher selectivity towards
U(VI) over other coexisting metal ions, such as Ni(II),
Zn(II), Cs(I), and Ba(II), and showed great removal perfor-
mance for U(VI) from seawater. The adsorption mechanism of
AO-g-MWCNTs was believed to be that U(VI) combinedFig. 6 Probable mechanism for adsorption of U(VI) by AO-g-

MWCNTs. Reprinted with permission from Elsevier [86]

Fig. 7 TEM images of a, b pure Fe3O4 nanoparticles, c, d Fe3O4/o-
MWCNTs nanocomposites, and e, f PmPD/Fe3O4/o-MWCNTs
nanocomposites at different magnifications. Reprinted with permission
from Royal Society of Chemistry [87]
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oxygen and nitrogen atoms of amidoxime groups to form
complexes to achieve the removal of U(VI), as shown in
Fig. 6. The AO functionalized MWCNTs, as a quite effective
adsorbent, showed great potential applications in practice.

Tian et al. [87] synthesized poly(m-phenylenediamine)-
coated iron oxide/acid-oxidized MWCNTs (PmPD/Fe3O4/o-

MWCNTs) magnetic nanocomposites via in situ oxidative
polymerization for Cr(VI) removal for the first time. The mor-
phology of the nanocomposites at different stages in the syn-
thesis process was shown in Fig. 7. BET calculation revealed
that Fe3O4/o-MWCNTs and PmPD/Fe3O4/o-MWCNTs had a
much lower pore volume, specific surface area, and pore size

Fig. 8 Preparation of MHC/o-
MWCNT composites and their
application for Pb(II) removal.
Reprinted with permission from
Elsevier [88]

Fig. 9 a The Cr(VI) removal
performance of different materials
(adsorbent 1.0 g/L; treating time
10 min; pH 7); b effect of the
initial Cr(VI) concentration on the
Cr(VI) removal performance
(MN 1.0 g/L; treating time
10 min; pH 7); c Cr(VI) removal
percentage at different MN
concentrations (initial Cr(VI)
concentration 4.0 mg/L; treating
time 10min; pH 7); d effect of the
solution pH on the Cr(VI)
removal efficiency (MN 1.0 g/L;
initial Cr(VI) concentration
4.0 mg/L; treating time 10 min).
Reprinted with permission from
Royal Society of Chemistry [93]
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than o-MWCNTs, and the reason was believed to be that
Fe3O4 nanoparticles and PmPD blocked the pore entrances
on the o-MWCNTs. The adsorption capacities of
PmPD/Fe3O4/o-MWCNTs, raw-MWCNTs, o-MWCNTs,
and Fe3O4/o-MWCNTs were in the order of PmPD/Fe3O4/o-
MWCNTs > Fe3O4/o-MWCNTs > o-MWCNTs > raw-
MWCNTs. Effects of the initial pH of the solution on the
adsorption of Cr(VI) onto PmPD/Fe3O4/o-MWCNTs were in-
vestigated, and the results showed that the adsorption capacity
decreased as the pH increased from 2 to 11. Langmuir,
Freundlich, and Temkin isotherm models were respectively
used to describe the adsorption behaviors of Cr(VI), and the
Langmuir model fitted the adsorption data best. As the tem-
perature increased from 273 to 333 K, the maximum adsorp-
tion capacity calculated from the Langmuir model increased

from 219.8 to 346.0 mg/g. Adsorption dynamic studies
showed that both the pseudo-first-order model and pseudo-
second-order model could be employed to simulate the ad-
sorption kinetics, and the pseudo-second-order equation gave
a relatively higher correlation coefficient (R2 > 0.99).
Thermodynamic studies indicated that the adsorption of
Cr(VI) onto PmPD/Fe3O4/o-MWCNTs was a spontaneous
and endothermic process. After adsorption, PmPD/Fe3O4/o-
MWCNTs could be easily separated through an external mag-
netic field, and its adsorption capacity decreased by less than
48% after five consecutive recycles. Both PmPD groups and
Fe3O4 particles played an important role in the adsorption of
Cr(VI), and the adsorption mechanism included physical and
chemical adsorptions. In conclusion, PmPD/Fe3O4/o-
MWCNTwas a good candidate for wastewater treatment.

Fig. 10 Preparation process of
snowflake-shaped magnetic
ZnO@SiO2@Fe3O4/C micro
−/nanostructures. Reprinted with
permission from the Royal
Society of Chemistry [94]

Fig. 11 SEM images of a MC-O
and bMC-N; c Cr(VI) adsorption
isotherm fitted by Langmuir
model (adsorbent dosage
50.0 mg; volume 20.0 mL; initial
Cr(VI) concentration 1.0–
10.0 mg/L; treating time 30 min;
pH 7); d effect of the solution pH
on the Cr(VI) removal perfor-
mance (adsorbent dosage
50.0 mg; volume 20.0 mL; initial
Cr(VI) concentration 4.0 mg/L;
treating time 10 min). Reprinted
with permission from the Royal
Society of Chemistry [95]
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Magnetic hydroxypropyl chitosan/oxidized MWCNT
(MHC/o-MWCNT) composites were successfully fabricated
and employed as the adsorbent for Pb(II) removal from an
aqueous solution, as shown in Fig. 8 [88]. Magnetic Fe3O4

nanoparticles were first prepared from FeCl3·6H2O, and then
MWCNTs were oxidized by a mixture of concentrated sulfu-
ric acid and nitric acid to produce o-MWCNTs. Afterwards,
magnetic Fe3O4 nanoparticles and o-MWCNTs were sequen-
tially added to the hydroxypropyl chitosan solution, and
MHC/o-MWCNTs composites were assembled. The MHC/
o-MWCNTs composites showed an impressive adsorption
performance with an adsorption capacity of 116.3 mg/g.
Moreover, they exhibited a rapid response to the external mag-
netic field, and the separation time was as fast as 3 min after
adsorption. Sips isothermmodel was foundmore suitable than
Langmuir, Freundlich, and Dubinin-Radushkevich isotherm
models to describe the adsorption behaviors of Pb(II) onto
MHC/o-MWCNTs composites. The thermodynamic parame-
ters, such as free energy − 2.304 KJ/mol, enthalpy 39.03 KJ/
mol, and entropy 138.7 J/(mol·K), illustrated that the adsorp-
tion process was endothermic and spontaneous. The MHC/o-
MWCNTs composites were an ideal adsorbent to remove
Pb(II) from water.

2.3 Other carbon-based nanoadsorbents

Graphene and CNTs are the two most widely studied carbon
nanoadsorbents. Besides them, there are many other carbon
nanomaterials that are used as nanoadsorbents, such as carbon
nanofabrics, nanofibers, nanocables, and nanofloral clusters.
These carbon nanoadsorbents often exhibit some distinctive
characteristics due to their different architectures, which may
bring about outstanding adsorption performance, economical
costs, and easy recovery [89–92].

Zhu et al. [93] employed conventional and microwave-
assisted annealing methods, respectively, to synthesize meso-
porous magnetic carbon fabric nanocomposites for Cr(VI) re-
moval. For comparison, Fig. 9a shows the removal percentage
of different adsorbents in neutral solution. Both MH and MN
(magnetic carbon fabric nanocomposites prepared by micro-
wave annealing in a 5% H2-Ar and N2 atmosphere, respec-
tively) exhibited complete Cr(VI) removal at an initial Cr(VI)
concentration of 1.5 mg/L, while CN (magnetic carbon fabric
nanocomposites fabricated via conventional annealing under a
N2 atmosphere) only had 68.7% of Cr(VI) removed, and even
lower values were reported for cotton fabrics (CottF, 21.3%)
and carbon fabrics (CarbF, 30.7%). The MN had a higher
removal percentage than MH when the initial concentration
of Cr(VI) was 4.0 mg/L. Figure 9b illustrated the effect of
initial Cr(VI) concentration on the removal efficiency of
MN. A maximum removal percentage of 100% was achieved
for the initial Cr(VI) concentration of 1.5, 2.0, and 2.5 mg/L.
However, the removal percentage decreased with Cr(VI)T

ab
le
2

(c
on
tin

ue
d)

A
ds
or
be
nt

M
et
al
io
ns

pH
T
(K

)
M
ax
im

um
ad
so
rp
tio

n
ca
pa
ci
ty

(m
g/
g)

a
R
ef
.

Po
ly
(m

-p
he
ny
le
ne
di
am

in
e)
-d
op
ed

ir
on

ox
id
e/
ac
id
-o
xi
di
ze
d

M
W
C
N
Ts

na
no
co
m
po
si
te
(P
m
PD

/F
e 3
O
4
/o
-M

W
C
N
Ts
)

C
r(
V
I)

2
33
3

34
6

[8
7]

H
yd
ro
xy
ap
at
ite
-c
oa
te
d
gr
an
ul
ar
-a
ct
iv
at
ed

ca
rb
on

(C
-H

A
p)

na
no
co
m
-

po
si
te

Pb
(I
I)

6
29
8

9.
31

[1
48
]

M
ag
ne
tit
e-
po
w
de
r-
ac
tiv

at
ed

ca
rb
on

(M
-P
A
C
)

N
i(
II
),
C
o(
II
),

C
d(
II
)

6
29
3

56
.0
26

fo
r
N
i,
58
.2
3
fo
r
C
o,
63
.5
2
fo
r
C
d

[1
49
]

C
ar
bo
n
na
no
fi
be
rs
gr
ow

n
on

po
w
de
re
d-
ac
tiv
at
ed

ca
rb
on

(P
A
C
-C
N
Fs
)

Pb
(I
I)

5.
5

30
1

16
6.
66

[9
8]

[C
/F
e 3
O
4
]@

C
co
ax
ia
ln

an
oc
ab
le
s

C
u(
II
)

6
29
8

64
.0
61
5

[9
6]

Fe
3
O
4
@
C
@
M
gA

l-
la
ye
re
d
do
ub
le
-h
yd
ro
xi
de

(L
D
H
)
na
no
pa
rt
ic
le
s

C
r(
V
I)

6
31
3

19
2.
30
7

[1
50
]

M
ag
ne
tic

po
ro
us

γ
-F
e 2
O
3
/C
@
H
K
U
ST

-1
co
m
po
si
te
s

C
r(
V
I)

3
30
3

10
5

[1
51
]

Sn
ow

fl
ak
e-
sh
ap
ed

Z
nO

@
Si
O
2
@
Fe

3
O
4
/C

m
ic
ro
−/
na
no
st
ru
ct
ur
es

Pb
(I
I)
,A

s(
V
)

7
29
8

94
.3
fo
r
Pb

,2
3.
6
fo
r
A
s

[9
4]

H
yb
ri
d
γ
-F
e 2
O
3
/c
ar
bo
n
ho
llo
w
sp
he
re
s

Pb
(I
I)
,C

r(
V
I)

–
A
m
bi
en
t

te
m
pe
ra
-

tu
re

61
4
fo
r
Pb

,4
49

fo
r
C
r

[9
7]

a
T
he

m
ax
im

um
ad
so
rp
tio

n
ca
pa
ci
ty

is
ca
lc
ul
at
ed

ba
se
d
on

L
an
gm

ui
r
ad
so
rp
tio

n
is
ot
he
rm

m
od
el

66 Adv Compos Hybrid Mater (2018) 1:56–78



concentration further increasing. Figure 9c indicates the
Cr(VI) removal performance at different MN concentrations.
The removal percentage increased with the increase of MN
loadings. The maximum removal percentage of 100% could
be achieved with an MN loading of 2.0 g/L. The pH effect on
the removal efficiency of Cr(VI) using MN was revealed in
Fig. 9d. The MN showed stronger removal ability when the
pHwas lower than 3.With an increasing pH value, the remov-
al percentage decreased (about 78.4% at pH 11). The MN had
an adsorption capacity of 3.74 mg/g, which was much higher
than carbon-coated magnetic nanoparticles (1.52 mg/g) and
graphene nanocomposites (1.03 mg/g).

Conventional micro−/nanostructured adsorbents often suf-
fer from unfavorable aggregation, which will lead to overlap
and coverage of numerous adsorption sites. As a result, their
adsorption efficiency seriously decreased. A snowflake-
shaped magnetic ZnO@SiO2@Fe3O4/C micro−/nanostruc-
ture was prepared, as shown in Fig. 10 [94]. First, a
snowflake-shaped porous ZnOmicro−/nanostructure was fab-
ricated through a facile hydrothermal route followed by a

sintering process. Then, the ZnO micro−/nanostructures were
coatedwith SiO2 layers via the Stöber method. Next, magnetic
Fe3O4/C composite coatings were grown onto the ZnO@SiO2

micro−/nanostructures through a solvothermal approach. The
prepared ZnO@SiO2@Fe3O4/C micro−/nanostructures could
keep a relatively large space between themselves, which sig-
nificantly reduced the aggregation of micro−/nanostructures
and the overlap of adsorption sites. Compared with magnetic
ZnO@SiO2@Fe3O4/C microspheres prepared by the similar
p r o c e d u r e s , t h e s n ow f l a k e - s h a p e d ma g n e t i c
ZnO@SiO2@Fe3O4/C micro−/nanostructures exhibited a
much higher adsorption efficiency. The maximum adsorption
capacities for Pb(II) and As(V) were 94.3 and 23.6 mg/g,
respectively, while for the magnetic ZnO@SiO2@Fe3O4/C
microspheres, those were only 54.6 and 17.2 mg/g. The mech-
anism for the enhancement was demonstrated from the special
biomimetic structure.

Magnetic carbon-iron nanoadsorbents fabricated by carboniz-
ing cellulose and reducing Fe3O4 nanoparticles or Fe(NO3)3 (de-
noted asMC-O andMC-N, respectively) had demonstrated great
Cr(VI) removal ability [95]. The SEM images (Fig. 11 a, b)
showed that they presented spherical particles with an average
diameter of ~ 100 and 250 nm forMC-O andMC-N, respective-
ly. A higher portion of zero-valence iron (ZVI) and a larger
specific surface area were observed for the MC-N than the
MC-O. BothMC-O andMC-N exhibited a great Cr(VI) removal
performance. For example, 4.0 mg/L Cr(VI) neutral solution
could be purified by 2.5 g/L MC-O and MC-N within 10 min,
and 1000 mg/L Cr(VI) could be completely removed from the
solution in 10 min at pH 1.0. The equilibrium adsorption data
could be well fitted for Langmuir isotherm model (Fig. 11c).
Meanwhile, the Cr(VI) removal by both MC-O and MC-N was
highly pH dependant (Fig. 11d), and the removal percentage
decreased with the pH value increasing in solutions. MC-N and
MC-O revealed removal capacities of 327.5 and 293.8 mg/g at
pH 1.0, respectively, which were much higher than many other
adsorbents, such as magnetic chitosan (55.8 mg/g), magnetic
carbon fabricated by rice husk (30.96 mg/g), and polypyrrole-
polyaniline nanofibers (227.22 mg/g). For the removal mecha-
nisms, it was believed that Cr(VI) was first reduced to Cr(III) by
the ZVI, and then the Cr(III) was removed from the solution
through precipitation and adsorption.

Han et al. [96] successfully fabricated [C/Fe3O4]@C
electricity-magnetism-adsorption trifunctional coaxial
nanocables by carbonization of the electrospun [polyacryloni-
trile/ferric acetylacetonate]@polyacrylonitrile coaxial
nanocables. The as-prepared [C/Fe3O4]@C coaxial nanocables
had obvious core-shell structure with a core diameter of 125 nm
and shell thickness of 82 nm.Magnetic Fe3O4 nanoparticleswere
scattered in core of carbon matrix and displayed a positive effect
on electrical conductivity. Efficient adsorption of Cu(II) from an
aqueous solution was observed using [C/Fe3O4]@C coaxial
nanocables as the adsorbent. Cui et al. [97] synthesized hybrid

Table 3 Adsorption isotherm models

Model Equation Ref.

Langmuir
Qe ¼ QmKLCe

1þKLCe

[139,
143]

Freundlich Qe =KFCe
1/n [136,

138]

Dubinin-Radushkevich
Qe ¼ Qme

−kε2
[111,

164]

Temkin
Qe ¼ RT

b lnKT þ RT
b lnCe

[87, 120]

Redlich-Peterson
Qe ¼ KRCe

1þαRC
β
e

[102,
122]

Sips
Qe ¼ QmαsC

1=n
e

1þαsC
1=n
e

[88, 125]

Henry Qe =KHCe [105,
135]

Table 4 Adsorption kinetic models

Model Equation Ref.

Pseudo-first-order
Qt ¼ Qe 1−e−k1 t

� � [75, 165]

Pseudo-second-order
Qt ¼ k2Q2

e t
1þk2Qet

[104,
166]

Intraparticle
diffusion

Qt = kdit
1/2 +C [167,

168]

Elovich
Qt ¼ 1

β ln αβð Þ þ 1
β lnt

[169,
170]

Bangham
lnQt ¼ lnkb þ 1

m lnt
[123]
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γ-Fe2O3/carbon hollow nanospheres with a predominant orien-
tation (1 1 1) plane of γ-Fe2O3 and rich oxygen-containing func-
tional groups on carbon via a one-step hydrothermal method.
The hybrid γ-Fe2O3/carbon hollow nanospheres exhibited high
adsorption capacities and rapid removal abilities for Pb(II) and
Cr(VI). They could be easily recovered through an external mag-
netic field after adsorption. Mamun et al. [98] prepared carbon
nanofibers (CNFs) by chemical vapor deposition method in
which C2H2 was employed as carbon source and Ni(II) catalyst
impregnated oil palm kernel shell-based powdered-activated car-
bon (PAC) was used as fixed substrate for the growth of CNFs.
The PAC-CNFs porous nanocomposites were found to be good
for adsorption of Pb(II). The adsorption kinetics and isotherm
were carefully investigated, and all the results showed that the
PAC-CNFs porous nanocomposites had potential for Pb(II) re-
moval from an aqueous solution.

2.4 Comparison

Table 2 summarizes the adsorption data of somemodified carbon
nanomaterials that were recently reported. Their maximum ad-
sorption capacities are compared, and the corresponding
adsorbed metal ions are illustrated.

It can be seen from Table 2 that graphene and CNTs are the
two most often used carbon nanoadsorbents. In fact, most
modified carbon nanoadsorbents involve graphene and
CNTs composites. Besides that, polymers, especially those
with electron-donating or alkaline groups, are increasingly
applied to various carbon nanoadsorbents. They have many
advantages over other materials, such as tailored molecular
weight, chain topology, and functional groups [152–154].
Moreover, they are usually nontoxic as a result of their large
molecular size, which will dramatically reduce the secondary
pollution [155, 156]. The plentiful active groups of polymers
can significantly enhance the adsorption performance, and
more possible ways are provided to achieve the desorption
and recovery of adsorbents in an easy manner with the advent
of stimuli-responsive polymers [157–159]. In a word, it be-
comes more and more popular utilizing polymers to modify
carbon nanoadsorbents.

3 Analysis and discussion

Based on the above summary, some common modification
methods, various adsorption isotherm and kinetic models, and
diverse adsorption mechanisms can be concluded.

3.1 Modification methods

The removal process of metal ions from wastewater mainly in-
cludes three steps: adsorption, desorption, and recovery. Carbon
nanomaterials are always modified to optimize their

performances in these areas by changing their morphologies or
molecular structures. Some commonly used modification
methods can be found by analyzing papers broken into the cat-
egories of magnetic carbon nanomaterials, electron-donating
group grafted-carbon nanomaterials, mixed or filled carbon
nanomaterials, and carbon nanomaterials with modified
morphologies.

3.1.1 Magnetic carbon nanomaterials

Adsorbents should ideally be well-dispersed in water during the
adsorption process and be easy to aggregate during the recovery
process. However, it seems there are contradictions between
these two processes because usually the better the dispersion of
an adsorbent is, the more difficult the separation of it will be.
Adsorbent particles with a smaller size are often easier to form a
uniform solution than those with a larger size, but they are usu-
ally harder to be separated by such methods as filtration, centri-
fugation, and gravity sedimentation. Magnetic separation is an
effective way to solve the above problem. It is a physical, easy to
operate, economical, and environmentally friendly process. The
adsorbents can be easily separated by applying an external mag-
netic field after introducing some magnetic materials into them.
These magnetic materials often not only facilitate the recovery of
adsorbents but also improve their adsorption ability. For
graphene-based nanoadsorbents, they can even inhibit the aggre-
gation of graphene nanosheets. Some frequently used magnetic
materials are Fe3O4, γ-Fe2O3, and MFe2O4 (M = Zn, Mg, Co,
Cu, Ni, Mn, etc.) [100, 101, 103, 104, 151].

Tan et al. [137] synthesized cobalt ferrite/MWCNTs
(CoFe2O4/MWCNTs) magnetic hybrids by a hydrothermal
method. The surface area and pore volume of CoFe2O4/
MWCNTs were much larger than those of CoFe2O4.
Compared to MWCNTs and CoFe2O4, CoFe2O4/MWCNTs
showed a far higher adsorption capacity for U(VI). U(VI)-
loaded CoFe2O4/MWCNTs could be easily separated from
the solution by using a magnet. Chella et al. [100] fabricated
graphene manganese ferrite (MnFe2O4-G) nanocomposite
through a modified Hummer’s method and solvothermal pro-
cess for the removal of Pb(II) and Cd(II). The existence of
MnFe2O4 nanoparticles not only improved the adsorption ca-
pacity of graphene but also enhanced its antibacterial activity.
Fe3O4 nanoparticles with an average size of 17 nm were suc-
cessfully synthesized and decorated onto the surface of GO
via ultrasound-assisted precipitations [114]. The as-prepared
GO-Fe3O4 hybrid exhibited high adsorption efficiency for
Co(II) and Sr(II), especially for Co(II) arisen from its close
similarity to Fe(II) in the magnetite.

3.1.2 Electron-donating group grafted carbon nanomaterials

Sincemetal ions are positively charged, an effective method to
enhance the adsorption ability of carbon nanomaterials is
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grafting electron-donating groups onto them, such as nitrogen,
oxygen, sulfur, or chlorine-containing groups. These electron-
donating groups can be viewed as bases and metal ions belong
to acids based on Lewis acid-base theory. Their interactions
include electrostatic interaction, ion exchange, complex for-
mation, and redox reaction [160, 161]. Using this method not
only improves the adsorption rate and capacity but also opti-
mizes the dispersity of carbon nanomaterials in water due to
the stronger hydrophilicity of grafted atoms in comparison
with carbon atoms. The adsorption selectivity can also be
enhanced by introducing some specific groups with high
selectivity.

Based on the attraction of N atoms in amine groups to
heavy metal ions which arises from their long pair electrons,
Tan et al. [117] employed L-tryptophan to aminate GO to
investigate its removal performance for Cu(II) and Pb(II). A
greatly enhanced adsorption capacity was obtained. After
three recycle loops, the L-tryptophan functionalized GO
(GO/LTrp) exhibited less than a 5% decrease in adsorption
capacity. Li et al. [136] for the first time synthesized dithio-
carbamate groups functionalized MWCNT (DTC-MWCNT)
to selectively adsorb Cd(II), Cu(II), and Zn(II) from an aque-
ous solution by reaction of oxidized MWCNTs with
ethylenediamine and carbon disulfide. Since Cd(II), Cu(II),
and Zn(II) were considered soft acids and dithiocarbamate
was a soft base, the DTC-MWCNT exhibited high maximum
adsorption capacities. To be more specific, they were 167.2,
98.1, and 11.2 mg/g for Cd(II), Cu(II), and Zn(II),
respectively.

3.1.3 Mixed or filled carbon nanomaterials

Each adsorbent has its own characteristics, strengths, and
weaknesses. If different adsorbents are added together in a
proper way, a new adsorbent will be obtained possessing a
performance superior to any individual adsorbent. In addition,
dispersing active fillers into the matrix of adsorbents is anoth-
er quite effective method to enhance their various properties,
such as the mechanical strength and chemical stability. These
fillers act like the additives in plastics, and some of them
include metal oxides, polymers, and biomass. Sui et al.
[124] employed polyethylenimine-modified magnetic GO
(GO/Fe3O4/PEI) nanocomposites to remove Cu(II) from an
aqueous solution. Fe3O4 nanoparticles first grew on GO
sheets, and then the GO/Fe3O4 was mixed with PEI to obtain
GO/Fe3O4/PEI nanocomposites. Superior Cu(II) removal per-
formance was observed, which was attributed to the large
surface area of GO, superparamagnetism of Fe3O4, and ex-
traordinary complex ability of PEI. The GO and GO/Fe3O4/
PEI had adsorption capacities of 89.32 and 157.48 mg/g, re-
spectively, which clearly indicated the dominant role of PEI
and Fe3O4. After 5 cycles of regeneration, the GO/Fe3O4/PEI
nanocomposites could keep a removal efficiency as high as

84%. Based on the high ion-exchange capability of MgAl-
layered double-hydroxide (LDH), strong adsorption ability
of mesoporous carbon, and easy recovery of Fe3O4 nanopar-
ticles, Zhang et al. [150] designed and developed novel
Fe3O4@C@MgAl-LDH nanoparticles by chemical self-
assembly methods. They could adsorb as much as 152.0 mg/
g of Cr(VI) at 40 °C and pH 6.0. Besides the excellent adsorp-
tion capacity, they exhibited great reusability, which made
them very suitable for the removal of metal ions from
wastewater.

3.1.4 Carbon nanomaterials with modified morphologies

Besides to modify the compositions, another way to meet our
requirements for some properties of carbon nanoadsorbents is
designing and customizing their morphologies. For example,
an increase in the surface area and porosity of carbon
nanomaterials usually brings about the improvement in the
adsorption rate and capacity.

Lei et al. [130] developed a novel three-dimensional (3D)
GO foam/Fe3O4 nanocomposite (GOF/Fe3O4) and evaluated
its adsorption performance for Cr(VI). Microwave-plasma
chemical vapor deposition techniques were employed to syn-
thesize the free-standing 3D graphene foam on the growth
substrate of nickel foam. GOF/Fe3O4 was formed after the
graphene foam was oxidized and functionalized with Fe3O4

nanoparticles through a simple coprecipitation method. The
3D structure provided GOF/Fe3O4 with an ultra-high specific
surface area of 574.2 m2/g. Benefiting from that, a maximum
adsorption capacity of 258.6 mg/g and equilibrium adsorption
rate of 20 min were obtained, which markedly
outperformed the performance of reported 2D graphene-
based adsorbents and many other conventional adsor-
bents. Sankararamakrishnan et al. [142] used composite
nanofloral clusters of CNTs and activated alumina for re-
moval of Cd(II). CNTs were grown over Fe- and Ni-
doped activated alumina by chemical vapor deposition
and washed with acid to produce nanofloral clusters.
The optimum adsorption condition for Cd(II) was in the
pH range of 7–9, and the produced nanofloral clusters had
the maximum adsorption capacity of 229.9 mg/g at
pH 7.5, which was far higher than that of CNTs, oxidized
CNTs, and amino functionalized CNTs. The nanofloral
clusters as a promising candidate for wastewater treatment
provided new ways to design effective adsorbents.

In practice, many modified carbon nanomaterials have
changes in both morphologies and molecular structures.
Per actual needs, they are designed and prepared to own
some special or enhanced properties. Although there are
many ways to enhance the adsorption abilities of carbon
nanomaterials, such as changing their sizes, porosities,
functional groups, and shapes, most of them aim to in-
crease the contact between adsorbates and adsorption
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sites, which is one of the foundations for the development
of carbon-based nanoadsorbents.

3.2 Adsorption isotherm, kinetics, and mechanisms

A variety of new modified carbon nanoadsorbents have been
developed in the past few years. They may have different
structures and properties. However, there are a few common
models that can be employed to describe the adsorption of
metal ions onto them.

3.2.1 Adsorption isotherm and kinetics

Adsorption isotherm and kinetics are often used to describe
the adsorption process, mechanism, and performance.
Specifically, adsorption isotherm gives information about ad-
sorption capacities, types of adsorption systems, surface prop-
erties of adsorbents, and relationships between adsorbents and
adsorbates [162, 163]; information about adsorption rates,
rate-limiting steps, and diffusion processes of adsorbates can
be given by adsorption kinetics. Tables 3 and 4 listed some
usual adsorption isotherm and kinetic models.

Langmuir and Freundlich isotherm models are the two
most often used isotherm models. The Langmuir isotherm
assumes monolayer adsorption on a homogeneous surface,
while the Freundlich isotherm assumes multilayer adsorption
on a heterogeneous surface. The linear form of Langmuir
equation is:

Ce

Qe
¼ Ce

Qm
þ 1

KLQm

where Qe is the equilibrium adsorption capacity of adsorbent,
Ce is the equilibrium concentration of adsorbate, Qm is the
maximum adsorption capacity corresponding to complete
monolayer coverage on the adsorbent surface, and KL is a
constant related to the energy of adsorption. The feasibility
of the adsorption process is determined by RL, which is given
as [171–173]:

RL ¼ 1

1þ KLC0

where C0 is the initial concentration of adsorbate, and RL is
known as the separation factor and is dimensionless. If RL is
between 0 and 1, a favorable isotherm is represented, which
means an effective interaction between the adsorbent and ad-
sorbate. If RL is greater than 1, an unfavorable isotherm is
implied. If RL equals 1, a linear isotherm is meant, and if RL
equals 0, an irreversible isotherm is indicated.

The linear form of Freundlich isotherm can be expressed as
follows:

logQe ¼ logK F þ 1

n
logCe

where Qe is the equilibrium adsorption capacity of adsorbent,
Ce is the equilibrium concentration of adsorbate, and KF and n
are Freundlich constants related to the adsorption capacity and
intensity, respectively. A favorable adsorption has an n be-
tween 1 and 10; a normal L-type isotherm is represented when
1/n < 1, which means an effective interaction between the ad-
sorbent and adsorbate; if 1/n > 1, a co-adsorption is implied
[174–177].

Zhou et al. [164] prepared sponge-like polysiloxane-GO gel
via a simple one-step sol-gel method to remove Pb(II) and Cd(II)
from wastewater. Dubinin-Radushkevish isotherm was
employed to confirm that chemisorption occurred. Temkin iso-
therm assumes that the heat of adsorption decreases linearly rath-
er than logarithmic with coverage. Instead of pure GO, Verma
et al. [120] utilized ammonia-modifiedGO to enhance its adsorp-
tion selectivity towardsU(VI), and the adsorption capacitywas in
good agreement with the Temkin model. Redlich-Peterson iso-
therm is a hybrid of the Langmuir and Freundlich isotherms.
Najafabadi et al. [122] fabricated a chitosan/GO composite
nanofibrous adsorbent through electrospinning for removal of
Cu(II), Pb(II), and Cr(VI) from an aqueous solution. It was found
that the Redlich-Peterson isotherm model fitted better than the
Langmuir and Freundlich models. Sips isotherm is also called
Langmuir-Freundlich isotherm. It is a combination of the
Langmuir and Freundlich isotherms. At low adsorbate concen-
trations, it reduces to the Freundlich isotherm, while at high
concentrations, it approaches the monolayer adsorption capacity
like the Langmuir isotherm. A poly(sodium acrylate)-GO (PSA–
GO) double network hydrogel adsorbent was prepared by Xu
et al. and used to adsorb Cd(II) andMn(II) [125]. The adsorption
process could be best described by the Sips model. Henry iso-
therm is the simplest adsorption isotherm in that the equilibrium
adsorption capacities are proportional to the adsorbate concentra-
tions. It is typically taken as valid for low surface coverages. Guo
et al. [105] synthesized amino functionalized magnetic graphene
composites and studied their performance for adsorbing Cr(VI),
Pb(II), Hg(II), Cd(II), and Ni(II) from an aqueous solution. The
adsorption of Cr(VI) and Pb(II) was well fitted with the Henry
model.

The most commonly used adsorption kinetic models are
pseudo-first-order and pseudo-second-order models. Their
linear equation forms are given as follows:

log Qe−Qtð Þ ¼ log Qeð Þ− k1
2:303

� �
t

t
Qt

¼ 1

k2Q2
e

þ 1

Qe

� �
t
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where Qe and Qt are the adsorption capacities at equilibrium
time and time t, respectively; k1 and k2 are the pseudo-first-
order rate constant and pseudo-second-order rate constant,
respectively. Pseudo-second-order model hypothesizes that
the rate-limiting step is chemical adsorption involving valence
forces through sharing or exchange of electrons between the
adsorbent and adsorbate.

Tan et al. [167] prepared highly ordered layered GO mem-
branes with larger interlayer spacing by an induced directional
flow method and used them for removal of Cu(II), Cd(II), and
Ni(II) from an aqueous solution. The kinetic data was consis-
tent with intraparticle diffusion model, which meant that ad-
sorption of those adsorbates onto the GOmembranes included
both external and intra-particle diffusion, and the intra-particle
diffusion was not the only rate-limiting step. A magnetic bio-
char was synthesized by Wang et al. to adsorb As(V) from an
aqueous solution, and Elovich model gave a good simulation
result, which suggested that multiple interaction mechanisms
or processes might control the adsorption of As(V) [169]. Cui
et al. [123] fabricated magnetic carbonate hydroxyapatite/GO
(M-CHAP/GO) and studied its Pb(II) removal abilities.
Pseudo-first-order, pseudo-second-order, Elovich,
intraparticle diffusion, and Bangham equations were applied
to the description of adsorption kinetics, respectively. The
pseudo-second-order model fitted best, and therefore, the
main rate determining step was chemisorptions. In other
words, the adsorption rate was controlled by chemical process
through electronic exchange or chemical reactions between
the M-CHAP/GO and Pb(II).

3.2.2 Interactions between adsorbents and adsorbates

It’s important to understand the mechanism for adsorption of
metals by adsorbents, which plays a significant role in design-
ing more effective adsorbents. The interactions between ad-
sorbents and adsorbates mainly include electrostatic interac-
tion, ion exchange, complex formation, and redox reaction
[160, 161].

Yang et al. [134] utilized magnetic Prussian blue/GO (PB/
Fe3O4/GO) nanocomposites to adsorb radioactive Cs(I) in wa-
ter, which were synthesized by an in situ controllable method.
It was found that the concentration of hydrogen ions obvious-
ly increased after adsorption, and the increased value was
greater than the reduced amount of Cs(I). Thus, the mecha-
nism for adsorption of Cs(I) onto PB/Fe3O4/GO may be H+-
exchange and/or ion trapping. Zhou et al. [141] synthesized
chitosan-functionalized MWCNT/CoFe2O4-NH2 (MNP-
CTS) hybrid material for the removal of Pb(II). After the ad-
sorption of Pb(II), the peak of N-H bond in the FTIR spectra of
MNP-CTS shifted from 1558 to 1575 cm−1, which was attrib-
uted to the formation of stable complexes between Pb(II) and
nitrogen in amine groups. Moreover, the peaks of C-O groups
at 1071 and 1191 cm−1 shifted to 1043 and 1079 cm−1,

respectively, and it was thought to be caused by the chelating
and ion exchange between Pb(II) and O-H groups. Dinda et al.
[99] polymerized 2,6-diamino pyridine on GO surfaces via
mutual oxidation-reduction techniques to prepare sulfuric
acid-doped poly diaminopyridine/graphene (G-PDAP) com-
posite. The as-prepared P-DAP was investigated as an adsor-
bent to remove high concentration of toxic Cr(VI) from water.
It was confirmed that the mechanisms for removal of Cr(VI)
mainly included reduction of Cr(VI) to Cr(III) at low pH and
anion exchange between mobile dopant and chromate ions at
high pH levels. Cui et al. [135] successfully anchored ethyl-
enediaminetetraacetic acid (EDTA) on Fe3O4 nanoparticles
functionalized GO to obtain EDTA functionalized magnetic
GO (GO-Fe3O4-EDTA) for the first time. The synthesized
GO-Fe3O4-EDTA displayed excellent adsorption perfor-
mance for Pb(II), Hg(II), and Cu(II). EDTA was believed to
have a strong coordination interaction with metal ions. In ad-
dition, ζ potential analysis illustrated that the surface of GO-
Fe3O4-EDTAwas electronegative and the oxygenic functional
groups on GO surface were deprotonated, which indicated
that electrostatic attraction may be another reason for Pb(II),
Hg(II), and Cu(II) binding to the GO-Fe3O4-EDTA.

4 Practical application

The environmental water samples are far more complex than
that prepared in the laboratory due to some known or un-
known substances, such as various metals, organics, and mi-
croorganisms. That an adsorbent performs very well in the
laboratory cannot ensure its applicability to real water.
Normally, the performance of an adsorbent decreases to some
extent when it is used in practice. However, many modified
carbon nanomaterials still show excellent adsorption ability in
spite of those interfering substances in real water, which ob-
viously demonstrates their practicality.

Chen et al. [133] attached polyethyleneimine (PEI) to the
GO through an amidation reaction between the amine groups
of PEI and the carboxyl groups of GO, which could not only
effectively prevent the agglomeration of GO nanosheets but
also greatly enhance its adsorption performance for metal
ions. The prepared PEI-GO composite showed a much higher
maximum uptake capacity for Cr(VI) than many other con-
ventional adsorbents, such as ethylenediamine-functionalized
Fe3O4, PVP-modified activated carbon, mesoporous TiO2,
polypyrrole/Fe3O4 nanocomposite, hierarchical porous car-
bon, and chitosan-Fe(III) complex. Moreover, a removal per-
centage of 96.4% was observed after the PEI-GO at a concen-
tration of 0.01 g/L was applied to the electroplating wastewa-
ter (Zhangzhou electroplating factory, China) spiked with
11.0 mg/L Cr(VI). It was evident that coexisting ions in
electroplating wastewater had a weak influence on the adsorp-
tion of Cr(VI) onto PEI-GO. Aliyari et al. [55] reported the
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synthesis and applicat ion of diethylenetr iamine-
functionalized magnetic GO nanocomposites (GO-Fe3O4-
DETA) as an adsorbent for the simultaneous separation and
preconcentration of Pb(II) and Cd(II) from real water and veg-
etable samples prior to their determination by flame atomic
absorption spectrometry. Sea water (the Caspian sea), river
water (the Babolrud river), well water (a well in Tehran), treat-
ed lettuce, celery, and potato samples were investigated, re-
spectively. More than 94% of Pb(II) and Cd(II) in those real
samples were recovered and the relative standard deviations
were less than 3.5%, which clearly demonstrated the practical
applicability of GO-Fe3O4-DETA nanocomposites. Shaheen
et al. [76] achieved the selective adsorption of Au(III) from an
aqueous solution containing such interfering ions as Zn(II),
Mn(II), Pb(II), and Cd(II) using oxidized MWCNTs (o-
MWCNTs) that were prepared by oxidation of MWCNTs.
The o-MWCNTs were also applied to real environmental wa-
ter samples, including tap water collected from the laboratory,
ground water and sea water collected from Jeddah city (Saudi
Arabia), treated wastewater collected from the wastewater
treatment station at King Abdulaziz University, and finally
drinking water (Aquafina bottled water). All those real sam-
ples were spiked with Au(III) at the concentrations of 2, 5, and
10 mg/L, respectively, and the o-MWCNTs were kept at
0.4 mg/mL in them. The results exhibited that almost all the
Au(III) were removed, which indicated that the o-MWCNTs
were quite reliable, feasible, and suitable for the selective ad-
sorption of Au(III) from real water samples. Ensafi et al. [73]
oxidized and modified MWCNTs with concentrated HNO3

and thiolated cyanuric acid, respectively, and the treated
MWCNTs were employed as adsorbents for the separation
and preconcentration of Cd(II) and Pb(II) in various water
samples, such as river water from the Zayandeh-Roud river
(Isfahan, Iran), industrial wastewater (Mobarake Steel
Complex, Isfahan, Iran), tap water, radiator manufacturing
wastewater, and rice sample solution. The results showed a
quite high recovery percentage of Cd(II) and Pb(II). Zhou
et al. [75] used MWCNTs as the adsorbent and sodium
diethyldithiocarbamate as the chelating agent for the simulta-
neous enrichment of Ni(II), Co(II), and Hg(II) in river water,
sewage water, and factory water, respectively, and satisfied
results were achieved.

5 Conclusions and prospects

It is of the utmost importance that water is clean and safe to
use. However, water pollution is a serious problem around the
world, especially in the developing countries. Millions of peo-
ple are suffering from the threats of unhealthy water.
Adsorption technologies are regarded as some of the most
prevailing devices to mitigate water challenges, since they
make it possible to supply clean water while being low cost

and having a low energy consumption. Carbon-based
nanomaterials as adsorbents have gained much attention in
recent years due to their high stable structures, unique proper-
ties, and outstanding removal performances. Different types of
modified carbon nanoadsorbents and their adsorption perfor-
mances, common methods to modify carbon nanomaterials,
various adsorption isotherm and kinetic models, diverse ad-
sorption mechanisms, and practical applications of the modi-
fied carbon nanoadsorbents are covered. Currently, most re-
search focuses on graphene- and CNT-based nanoadsorbents.
Adsorption behaviors are best described by Langmuir or
Freundlich isotherm models in most cases, and pseudo-first
order or pseudo-second-order models are often more suitable
for simulating adsorption kinetics than others. Adsorption
mechanisms mainly include electrostatic interaction, ion ex-
change, complex formation, and redox reaction, and lots of
modified carbon nanoadsorbents not only perform very well
in laboratories but exhibit excellent applicability to real envi-
ronmental water.

There are many factors affecting the adsorption perfor-
mance of an adsorbent, such as its surface area, porosity, size,
shape, composition, and functional groups. All of them can be
utilized to optimize an adsorbent either by increasing the num-
ber and density of adsorption sites or by enhancing the inter-
action between adsorbents and adsorbates. Through analyzing
the modification methods, functionalizing carbon
nanomaterials with polymers, especially for those polymers
containing electron-donating atoms, is becoming a very prev-
alent and promising way to improve their adsorption abilities
due to the convenience in tailoring the molecular structures
and properties of polymers. In order to facilitate the recovery
of adsorbents after adsorption, making carbon nanomaterials
magnetic is a more and more popular method owing to such
characteristics of magnetic separation as easy to operate, eco-
nomical, and environmentally friendly.

In short, many superior carbon-based nanoadsorbents have
been developed that not only exhibit outstanding adsorption
capacity and rate but allow for easy recovery. They have very
promising uses in practice. However, there are still some is-
sues to concern. Adsorbents with a high selectivity towards a
particular metal need to be further developed. There are fewer
reports that carbon-based nanoadsorbents can remove targeted
metals in the presence of large quantities of other metals,
especially when the coexisted metals are similar to the
targeted ones. High-performance carbon-based nanoadsorbents
that can achieve the removal of trace metals from aqueous
solutions also need further development. In many cases, the
concentrations of metals are extremely low and only a little
higher than their maximum levels in drinking water.
However, most adsorbents do not perform well for this concen-
tration range. Moreover, the potential impacts of carbon-based
nanomaterials on ecological and biological systems are rarely
involved. The carbon-based nanoadsorbents can hardly be
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completely recovered or removed from the solution after ad-
sorption. It is urgently needed to improve the ability of recov-
ering or removing them by such methods as precipitation and
filtration or to incorporate low toxic or non-toxic materials to
reduce their toxicity, like biomass and polymers. In addition,
there needs to investigate the technical and economical feasi-
bilities of their mass production. Hopefully these issues can be
paid attention to in the future work.
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