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Abstract

To make decisions that lead to favorable outcomes, animals have to consider both their perceptual uncertainty as well as uncer-
tainty about the outcomes of their actions, such as reinforcements. There is a long tradition of research investigating how
the reinforcement structure of a task controls animals’ response behavior. The relation between reinforcement and response
rates has been described by the matching law and its generalizations for tasks with and without perceptual uncertainty. The
influence of perceptual uncertainty on decision behavior is traditionally modeled with signal detection theory, which posits
that a decision criterion is placed on an internal evidence axis. Where this criterion is placed and how it is updated based on
reinforcements are open questions within signal detection theory. Various criterion learning models have been proposed; how-
ever, their steady-state behavior across different experimental conditions is not consistent with the aforementioned empirical
matching laws. Here, we integrate models of criterion learning from signal detection theory with matching laws from animal
learning theory to gain a better understanding of the mechanisms by which reinforcements and perceptual uncertainty jointly
shape behavior. To do so, we first derive the criterion position that leads to behavior aligned with those laws. We then develop
a model that updates the decision criterion trial by trial to learn this criterion position. Our model fits data from a previous
experiment well and generates behavior in simulations that is in line with matching laws for perceptual tasks and the subjects’
behavior in the experiment.

Keywords Decision making - Signal detection theory - Matching law - Criterion learning model

Introduction

How do animals choose actions that lead to favorable out-
comes? This question is central to understanding adaptive
behavior and, ultimately, its neural underpinnings. In the real
world, many decisions involve perceptual uncertainty as well
as uncertainty about the outcomes of an action. Therefore, a
significant amount of behavioral and neuroscientific research
revolves around understanding these two aspects of percep-
tual decision making (Abbott et al., 2017; Heekeren et al.,
2008; Hanks & Summerfield, 2017; Najafi & Churchland,
2018). The two most common experimental decision-making
paradigms present animals with signal-detection problems
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(focusing on perceptual uncertainty) or two-armed bandit
problems (focusing on action outcome uncertainty). These
two paradigms are complementary. In a typical signal-
detection paradigm, one of two hard-to-distinguish stimuli is
randomly chosen to be presented on each trial, and animals
are trained to respond with two different actions, contin-
gent on the stimulus. If the responses, after learning, are
assumed to be a deterministic function of the perception of
the stimuli, this paradigm is well-suited to study the role of
perceptual uncertainty in decision making (but see Stiittgen
et al., 2011a). In comparison, in a typical two-armed ban-
dit paradigm, there are also two response options, but the
responses are not controlled by different stimuli but instead
by differential reinforcements. This paradigm is well-suited
to study how animals learn about the expected rewards for
each action. Unsurprisingly, if one of the two responses is
reinforced with a higher probability than the other, then
this action will be taken more frequently. Also, if the rein-
forcement probabilities change, the animals will adapt their
behavior accordingly.
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The two paradigms—signal detection and bandit prob-
lems—can be combined. For example, as in a pure detec-
tion task, animals might have to respond with two different
actions to two hard-to-distinguish stimuli. But unlike pure
detection tasks where feedback is deterministic, correct
responses are only reinforced probabilistically and the prob-
ability of reinforcement might be different for each response
option (see, e.g., Stiittgen et al., 2011b, 2013). A satisfactory
behavioral model for such combined experiments should cap-
ture experimental manipulations of perceptual uncertainty,
prior stimulus probabilities, and differential reinforcements.
It should also account for learning curves and for serial
dependencies between responses in subsequent trials. Cur-
rently, there is no model that has been systematically studied
and validated with regard to all these aspects. We there-
fore propose a new model that integrates three separate
lines of theorizing: signal detection theory (Green & Swets,
1988), Markovian learning processes (Norman, 1974), and
the matching law with its generalizations (Herrnstein, 1961;
Baum, 1974; Davison & McCarthy, 1988). The first deals
with models of perceptual uncertainty, the second with mod-
els of trial-by-trial learning, and the third with the steady-state
behavior after learning. By combining insights from all three
approaches, we hope to make progress towards a standard
model for perceptual decision making in animals (cf. Rah-
nev & Denison, 2018). In this paper, we explain in detail
how the three approaches are related conceptually. Our main
contribution is, however, to demonstrate that matching-law
behavior, as observed empirically in tasks with perceptual
uncertainty, can be generated by a trial-by-trial criterion
learning model within a signal detection theory framework.

Related Work

Behavior in signal detection tasks is usually modeled within
signal detection theory (Green & Swets, 1988), which
decomposes a subject’s performance into a measure of
sensitivity—how well can they discriminate between the dif-
ferent stimuli—and a measure of response bias, the decision
criterion. Traditionally, a subject’s sensitivity is of primary
interest in these studies, and the decision criterion is only of
interest in as far as it allows for a more precise measurement
of sensitivity. In classical models, the criterion is assumed to
be fixed, but there are numerous extensions that try to model
serial dependencies and learning curves. This is often done
through some mechanism that updates the criterion from
trial to trial depending on the feedback that is obtained in
each trial (e.g., Kac, 1962; Friedman et al., 1968; Dorfman
& Biderman, 1971; Thomas, 1973; Treisman & Williams,
1984; Erev, 1998; Stiittgen et al., 2013). The theoretically
best-developed models are Markovian learning processes
(Norman, 1972, 1974) among which the Kac-Dorfman-
Biderman (KDB) model is the most natural extension of
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traditional signal detection models (Kac, 1962; Dorfman &
Biderman, 1971). These models have been developed in the
context of human psychophysics and have rarely been applied
to animal behavior (but see Stiittgen et al., 2013). While they
are theoretically elegant, these models do not seem to be
consistent with the steady-state behavior of animals (Stiittgen
et al., 2024).

An animal’s steady-state behavior depends on the rein-
forcement rates for different responses, and this relationship
is captured well by Herrnstein’s matching law (Herrnstein,
1961) and its generalization (Baum, 1974), the so-called
generalized matching law. These laws provide experimen-
tally well-supported descriptions of the average steady-state
behavior of an animal in a two-armed bandit problem. Impor-
tantly, however, they do not describe trial-by-trial adaptations
of behavior. These can be modeled by classical reinforce-
ment learning algorithms (Sutton & Barto, 1998), but other
ideas, like melioration, have also been explored (Herrnstein
& Vaughan, 1980; Vaughan, 1981; Vaughan & Miller, 1984).
Since these models are based exclusively on experiments
with two-armed bandit paradigms, it is not immediately
clear how to best incorporate perceptual uncertainty. Some
attempts have been made to develop psychologically plausi-
ble reinforcement learning models that work in settings with
perceptual uncertainty (Lak et al., 2017; Funamizu, 2021).
However, these do not try to incorporate empirical steady-
state behavior but instead aim for behavior that maximizes
expected reinforcement, as is customary for reinforcement
learning algorithms in computer science.

Fortunately, there is an extensive body of experimental
and theoretical work on integrating signal detection theory
and the generalized matching law (Davison & Tustin, 1978;
McCarthy & Davison, 1979; Davison & McCarthy, 1988).
The upshot is that empirically the generalized matching law
also applies to the steady-state behavior in experimental sit-
uations with perceptual uncertainty, but does so for each
stimulus separately. We will refer to this version of the
generalized matching law as the Davison-Tustin (DT) law.
However, while the DT law unifies signal detection theory
with the generalized matching law, it does not provide a
mechanism for trial-by-trial updates of the criterion. To close
this gap and combine the explanatory power of two well-
established yet largely distinct areas of behavioral work, here,
we will propose a Markovian criterion learning process that
is consistent with the DT law.

Overview

In the following, we will first review some background mate-
rial on signal detection theory and the generalized matching
law in the remainder of the introduction. Readers who are
experts in one or both of these areas may want to skip
the respective subsections. Then, in Section “Matching with
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Perceptual Uncertainty: The Davison-Tustin Law,” we will
review some of the fundamental work on the DT law and
show how to connect it to signal detection theory. This is,
again, done in detail to cater to readers coming from two dif-
ferent backgrounds, an animal learning background as well as
a signal detection theory background. In Section “Criterion
Learning Models for the Davison-Tustin Law,” we will adapt
the elegant KDB models that have been developed within
signal detection theory in a way that they become consistent
with the DT law. This is the main contribution of our paper.
By design, the resulting new model accounts for both per-
ceptual uncertainty and steady-state matching-law behavior.
Just like the KDB models, it updates the criterion based on
the feedback in each trial and can thus model learning curves
as well. We will then fit the model to experimental data from
a recent experiment (Stiittgen et al., 2024) and present some
model simulations in Section “Fit to Experimental Data” to
demonstrate that the model does indeed produce the desired
steady-state behavior. Finally, in the discussion, we compare
our approach to other approaches that could be taken to unify
signal detection theory with the generalized matching law.
In particular, we discuss attempts to extend reinforcement
learning models to incorporate perceptual uncertainty.

Signal Detection Theory

We will focus on one of the most common tasks in perceptual
decision-making experiments: A stimulus that belongs to one
of two categories, e.g., high vs. low pitch or familiar vs. unfa-
miliar items, is presented. The task is to classify the presented
stimulus, i.e., decide which of the two categories it belongs
to. In signal detection theory, such a task is called a yes-no
task but has also been called single-interval identification (cf.
Wichmann & Jikel, 2018; Stiittgen et al., 2011a). In animal
learning theory, this paradigm is referred to as two-stimulus
two-choice conditional discrimination (Stiittgen et al., 2024).
Each decision will then have an outcome depending on the
choice and the actual category of the stimulus. Usually, cor-
rect responses will be rewarded (either deterministically or
probabilistically), and incorrect responses will be punished
or have no effect. There can also be some other kind of feed-
back indicating what the correct response was, but here we
will only consider experiments where feedback is only given
in the form of rewards.

Decision making in such a task is usually modeled by sig-
nal detection theory (SDT). SDT assumes that each stimulus
gives rise to sensory signals that are evaluated on an inter-
nal decision axis for the task at hand. For example, “pitch”
signals are translated into evidence for the “high” or the
“low” category, and “familiarity” signals are translated into
evidence for the “old” or “new” category. Perception is uncer-
tain: The same stimulus will lead to different sensory signals
on each trial and, hence, to different values of the decision

variable. This can be expressed as a distribution p(x|S = i),
where x is the decision variable and S = i denotes that stim-
ulus i was presented (see Fig.1 for an example). Usually,
the distribution of the decision variable for a given stimu-
lus is assumed to be Gaussian, and in the simplest case, the
distributions for the two stimuli are assumed to have equal
variances.

The optimal decision strategy maximizes expected rewards,
which means that in every trial, the response i is selected for
which the likelihood P (reward|R = i, x) that this will yield
areward is highest. If the decision variable is monotonically
related to the likelihood ratio, this will be achieved by plac-
ing a criterion on the internal decision axis and consistently
emitting one response when the decision variable is below
that criterion and the other response when it is above that
criterion. The position of the optimal criterion depends on
the expected rewards for each correct and incorrect response
and on the stimulus presentation probabilities.

Of course, it is also possible to base the decision on a
different criterion. This will lead to lower expected over-
all rewards. Human and animal experiments on perceptual
decision making have shown that the criterion is often not
optimal. For example, in human experiments with unequal
reward probabilities for the two response options, the crite-
rion does not shift enough to be optimal (Maddox, 2002).
When stimulus presentation probabilities are shifted away
from 50%, the criterion is closer to optimal (Maddox, 2002),
but often still does not shift enough (Green & Swets, 1988).
In contrast, in animal experiments, unequal reward probabil-
ities for the two response options can produce criterion shifts
which are larger than would be optimal (Stiittgen et al., 2013).
Within human psychophysics, the question of how and where
people place their criterion is a long-standing open prob-
lem (Dusoir, 1983; Hautus et al., 2021). Hence, while SDT
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Fig. 1 Illustration of criterion setting in signal detection theory. The
two colored lines are the probability densities p(x|S = i) for stimulus
1 (blue) and 2 (purple), respectively. In this example, these are Gaussian
distributions with d’ = 2 and variance o2 = 1. Dashed lines denote the
means of the distributions. The filled areas are the hitrate s = P(R =
2|S = 2) (purple) and false alarm rate f = P(R = 1|S = 1) (blue)
when placing the decision criterion at ¢ (black line)
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provides a useful framework for describing stationary deci-
sion behavior, it does not specify any mechanism of criterion
updating, nor does it predict a subject’s response behavior
in a given condition. Our goal is to close these gaps in the
theory. We will show in Section “Criterion Placement” how
the position of the decision criterion can be predicted using
matching laws from animal learning theory, which we will
then use in Section “Deriving a Model that is Compatible
with the DT Law” to design a mechanism of criterion updat-
ing accordingly.

The Generalized Matching Law

A long tradition of research with animals is concerned with
the question of how rewards control behavior. Most of this
work does not deal with decisions under perceptual uncer-
tainty but rather only looks at response options that are
distinguished by their expected outcomes. They typically use
different variants of two-armed bandit paradigms. In many
cases, animal behavior has been found to follow Herrnstein’s
matching law, which says that the proportion of responses for
one option is equal to the proportion of reward gained from
that option (Herrnstein, 1961):

Ry Rfi M
Ri+Ry  Rfi+Rf
which can also be expressed as
Ry Rf>
— =, 2
R Rfi

where R; is the total number of trials in which response i was
chosen and Rf; is the number of reinforced trials in which
response i was chosen.

Several strategies have been suggested that animals could
apply to end up with this kind of behavior, such as differ-
ent kinds of reward maximizing strategies, or melioration
(Herrnstein & Vaughan, 1980). While such a behavior can
be optimal in certain circumstance (Kubanek, 2017; Sakai
& Fukai, 2008), it is suboptimal in others (Vaughan, 1981,
Vaughan & Miller, 1984). Frequently, systematic deviations
from the matching law are found, and behavior is better
described by the so-called generalized matching law (Baum,
1974):

R Rf2\¢
22y <£> (3)
R, Rfi
or conveniently expressed in logarithmic form as
Ry ) ( Rf )
log| — ) =alog| —= ) + logh. “4)
g(Rl #\rp ) TE
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This equation includes a bias b towards one of the responses
and a sensitivity to reward a. Behavior with a < 1 is called
undermatching and with a > 1 overmatching.

Matching with Perceptual Uncertainty:
The Davison-Tustin Law

The generalized matching law is not directly applicable
to signal detection tasks since the original experiments do
not address situations with perceptual uncertainty. However,
building on a seminal theoretical paper by Davison and Tustin
(1978), an extensive research program has investigated such
scenarios since the late 70s. These authors hypothesized the
following relation:

R R a1
22 (ﬁ) b— 5)
Ry Rfi d
R R @
82 (ﬁ) bd (6)
R12 Rfi
or in log-form
R21> (sz)
log| — | =ajlog| — ) +1loghb — logd (7)
¢ (Rll 18 Rfi & &
R22> <Rf2>
log| — ) =alog| —= ) +1loghb + logd. 8
g <R12 2 log R, g g (8)

R;j denotes the number of trials in which stimulus j was pre-
sented and response option i was chosen, and R f; as before
denotes the number of reinforced trials in which response
option i was chosen.

For each stimulus, this is basically the generalized match-
ing law but with an additional term d that shifts the response
ratio towards response 2 for stimulus 2 and away from
response 2 for stimulus 1. The value of d increases the more
distinguishable the two stimuli are, which is why Davison
and Tustin call this term discriminability.

We show in Appendix A that with these measures b and
d, bias and discriminability are confounded in some situa-
tions. Hence, we define alternative measures of bias (b*) and
discriminability (d*), such that Egs.7 and 8 become

R
= aj log <R_ﬁ> + ay logb* — logd* )
2 Rf>
log| —= ) =alo <—> + a> logb* + logd™. (10)
g(Ru> \rn g e

Importantly, however, this is simply a reparametrization of
the same equations, substituting logb = (a; + a3)/2log b*
and logd = logd* + (ap — ay)/2logb*, and, therefore,
does not change the empirical validity of the law. We refer
to the empirical relations that are captured in these linear
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equations as the Davison-Tustin (DT) law. McCarthy and
Davison (1979) tested the DT law using experimental sched-
ules where the ratio of received reinforcements for either
response option is under control of the experimenter (“‘con-
trolled reinforcer ratio,” CRR) as well as schedules where this
ratio can vary depending on the subject’s behavior (“uncon-
trolled reinforcer ratio,” URR).

A URR schedule can be implemented by presenting the
two stimuli with probabilities 7 and 7, respectively, and
giving the subject a reinforcement for a correct response to
stimulus i with a fixed probability r; (“reinforcement rate”).
The expected reinforcement that the subject receives for
response i is then Rf; = mir; P(R ilS i), where
P(R i|S i) denotes the probability of choosing
response i given that stimulus i was presented. The expe-
rienced reinforcement ratio thus depends on the animal’s
choices: choosing response i more often implies that more
reward will be gained from response 1 than from response 2.
The DT law fitted the data well in an experiment with a URR
schedule, where the reinforcement rate for correct responses
was held fixed while the stimulus presentation probabilities
were varied between conditions (see Fig. 2, left).

To implement a CRR schedule, the reinforcement ratio
Rf>/Rf; for each experimental condition is chosen in
advance and controlled by using two dependent variable
interval schedules that provide reward availability for the

URR

Y =0.78X + 0.97

24

two responses according to the chosen ratio. The subject’s
response behavior can therefore not influence the experi-
enced reinforcement ratio but only the overall frequency
with which reinforcements are received. In their experiments
with CRR schedule, McCarthy and Davison (1979) observed
the following. When holding the reinforcement ratio fixed
and varying stimulus presentation probability between con-
ditions, the observed response ratio stays constant, which is
also what the DT law predicts. When instead holding stimu-
lus presentation probability fixed and varying reinforcement
ratio between conditions, they observe that the behavior also
follows the DT law (see Fig. 2, right). Across subjects, the fit-
ted sensitivity to reinforcement a is notably lower in this CRR
experiment compared to the URR experiment. This means
that in the CRR procedure, the obtained reinforcement influ-
enced animals’ behavior less, which is not too surprising
considering that the animal has much less behavioral control
over the rewards it obtains—in each trial, a reward can only
be gained from one specific side.

The DT law has been further scrutinized in a series of
studies. For an extensive review, see Davison and McCarthy
(1988, Chapter 11). To summarize, they found that the model
describes behavior well in scenarios with two distinct stimuli.
Often, it is found that a; = a», i.e., the response ratios are
equally susceptible to changes in income proportions for both
stimuli. Similar to findings in scenarios without perceptual

CRR

] v=054x+1.39

3 0o ] logd* =1.51
x T logb™ = —0.21 logh™ = —0.23
S ]

-0.8 -

_16 _- -

-24 .
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Fig.2 Reproduced from McCarthy and Davison (1979); the data were
extracted with the help of WebPlotDigitizer (Rohatgi, 2021) from the
plots for subject 123 in their Figs. 2 and 7. Left: data from an experiment
with URR schedule, in which stimulus presentation probabilities were
varied between conditions. Right: data from an experiment with CRR
schedule, in which reinforcement ratio was varied between conditions.

The logarithm of the response ratio R; /Rj; is plotted as a function of
the logarithm of the reinforcement ratio Rf,/Rf| for the stimulus 1
(blue) and stimulus 2 (purple) trials. The best-fitting straight line and its
equation are shown for each stimulus. The sensitivity @; in the DT law
is directly given by the slope of the line for stimulus 7; discriminability
log d* and bias log b* were computed from a; and the lines’ intercepts
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uncertainty, observers are often found to undermatch (a < 1),
i.e., the deviation of response ratio from 1 is less extreme than
the deviation of reinforcement ratio from 1. Unfortunately,
but also unsurprisingly, when category distributions become
more complex and there are more than two stimuli, the law
fails to accurately capture behavior (Davison & McCarthy,
1987).

ROC Curves Implied by the DT Law

Our goal in this paper is to connect these well-established
findings about animal behavior in perceptual decision-
making tasks to signal detection theory in order to gain
insight into how the steady-state decision criterion comes
about. Traditionally in the matching-law literature, the con-
nection between signal detection models and the DT law is
framed in terms of Luce’s choice model (Davison & Tustin,
1978; Nevin et al., 1982), which is an alternative to the
classical Gaussian signal detection models (Luce, 1963).
Ignoring the choice-theoretic background of Luce’s model
(Luce, 1959), here, we simply treat it as a standard signal
detection model where the Gaussian distributions have been
replaced by logistic distributions. We will show that the DT
law implies logistic stimulus distributions for a signal detec-
tion model. Thereby, we also make the connection to Luce’s
model, while explicitly working with a random variable rep-
resentation, which is more customary to SDT and allows for
placement of a decision criterion.

In the following, we will derive the logistic stimulus distri-
butions via the receiver-operator characteristic (ROC), also
called iso-sensitivity curve, which constitutes one of the most
important concepts in SDT (Green & Swets, 1988; Hautus
et al., 2021). It shows how an observer’s hit rate and false
alarm rate relate to each other under varying experimental
conditions. We can derive the ROC curve for an SDT model
from the DT law as follows: Without loss of generality, we
call the stimulus with lower mean stimulus 1 (“noise”) and
the other one stimulus 2 (“signal’’). The logarithmic response
ratios in the DT law (log(R21/R11) and log(R22/R12)) are
then simply the log-odds of the false alarm rate f = P(R =
2|S = 1) and hitrate h = P(R = 2|S = 2), respectively,
where the log-odds are defined as

p
) "

with the inverse being the logistic function

o (p) = log(

ox) = (12)

1+e*

Note that the logistic function o is the cumulative distribu-
tion function of the logistic distribution and that the inverse
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o~ is also called logit transform. The logit transform is fre-
quently used as an alternative to the probit transform—the
inverse ®~! of the cumulative distribution function of the
standard normal distribution ®—as a link function in gener-
alized linear models. With this notation, we can replace the
left-hand side of the DT law (Eqs. 9 and 10) with the logit
transform and write the DT law equivalently as

L =a log( ? )—l—al logb* — logd* (13)
o ' h)=ar log(R§)+azlogb*+logd* (14)

We can now rearrange both equations in a way that the
experimentally manipulated reinforcement ratios are on the
right-hand sides of the equations:

%(a‘l(f)+logd*> —logh* = log(R?) (15)
1 -1 * * /2

- h) —logd*) — logb* =1 . 16
2(0 (h) — log ) og 0g<Rfl) (16)

For both equations to hold simultaneously, the two left-hand
sides need to be equal, which we can use to derive the ROC
curve, i.e. the hits as a function of the false alarms:

(CAOE —log b*
(7

logd* (18)

1 1
—(ail(f)-l—logd*)—logb*: — logd*)
aj a;

—a—‘(f)+ logd*—— iy -
so =2 —l(f)+<1+ )loga’*.

(19)

The relation between hits and false alarms is linear in
logit space. This is inconsistent with the commonly used
equal-variance Gaussian model of SDT that is linear in probit
space. Instead, the DT law implies a signal detection model
with an ROC curve (19) that results from logistic stimulus
distributions. The logistic distribution is defined as

_N T
. e i
px|S =1i) = ———= = L (x5 wi, 5i) - (20)
14+e
with stimulus means | = —d’/2 and wuy = d’/2, where
d = (1 + Z—f) logd*, and stimulus variances s; = aa/a;

and s, = 1. Appendix B.1 gives a derivation that this distri-
bution does indeed give rise to the same ROC curve as the
DT law. Note also that—as always in SDT—the ROC curve
stays the same if s1, 52, and d’ are scaled by a common factor,
or both w1 and u; are shifted by the same amount. For the
symmetric case a; = ap, which is often found empirically,
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Eq. 19 simplifies to
o'y =c"(f)+d. 1)

This corresponds to a symmetric ROC curve resulting from
logistic stimulus distributions with s; = s = 1 and d’ =
2logd*. This equation is analogous to the standard equa-
tion to compute d’ in the equal-variance Gaussian model:
d = ®~'(h) — ®~!(f), which is why we have used the
same symbol d’ to make this analogy more visible. But since
in the equal-variance Gaussian model the probit transform
@~ ! is used instead of the logit transform o1, the values
for d’ will be different in the two models. Example stimu-
lus distributions and the corresponding ROC curves for the
logistic model are shown in Fig. 3. Qualitatively, there is no
big difference between the equal-variance Gaussian model
and the logistic model, and, in fact, both can be hard to dis-
tinguish empirically (Treisman & Faulkner, 1985).

Criterion Placement

In the previous section, we eliminated the reinforcement ratio
from the equations to derive the ROC curve, which describes
all possible behavioral trade-offs, independent of the actually
chosen behavior. This is in line with the traditional focus of
signal detection theory that aims to characterize perceptual
sensitivity rather than investigating how other factors, like the

d=2,51=1,5=1

prior probabilities and the reward structure of the task, influ-
ence behavior (Green & Swets, 1988). But the DT law also
directly describes how the obtained reinforcements influence
behavior. Therefore, it does not only imply a logistic SDT
model with corresponding ROC curves but, importantly, also
predicts which criterion will be chosen in a specific experi-
mental scenario. We call this the DT criterion.

For logistic stimulus distributions with means @ = —

d/

d a . .
M2 =% and scales s| = a2 = 1, hit rate and false alarm
rate are

heo (—c + %) 22)

(-9)%)
f=o —c——=)—. (23)
2 ) ap

Therefore, the criterion ¢ can be computed from hit rate and
false alarm rate as

c= —% [al(h) + “ial(f))} . (24)
(23]

According to the DT law, hit rate and false alarm rate directly
depend on the reinforcement ratio. Plugging in Eqgs. 13 and
14 for 6~ (h) and o ~1(f), after some algebra (shown in

5.0 ’
4 ,/,’
0.2 7 2.5 S
— — e
S8 < e
3 E < — 0.0 1 e
E: 0.1 ' Ib ,,/
-2.5 1 e
] ,/'
00 1= : : -5.0 +- —— -
-5 0 5 -5 0 5
X f o~ Y(f)
d'=2,51=0.6,5,=1
04 s=1
0.3 — §=2
% S
x 0.2 < 7
Q o)
0.1
0.0 T T T T L T
-5 0 5 -5 0 5
X f g_l(f)

Fig.3 SDT with logistic stimulus distributions. Top row: example with equal variances for both stimuli, bottom row: example with unequal stimulus
variances. Left column: stimulus distribution functions, middle column: ROC curve, right column: logit-transformed ROC curve
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detail in Appendix B.2) yields

¢ = —aylog <£—£b*) + ¢ (25)

with

o= LA T2 (26)
' 2a;+ay

where c¢q is the neutral criterion, where the two stimulus
distributions intersect (see Appendix B.3). Hence, the DT
criterion can be decomposed into the neutral criterion plus a
term that depends on the reinforcement ratio Rf>/Rf; and
the subject’s bias b*. As b* shows up as a multiplicative fac-
tor to Rf>/Rf1, it can be interpreted as the subject behaving
as if there was a reinforcement ratio b* already present when
reinforcement is actually symmetric.

In a CRR schedule, Rf;/Rf> is held constant, so the DT
criterion is directly given by Eq.25. In a URR schedule,
Rf1/Rf> depends not only on the programmed reinforce-
ment rates but also on the subject’s response behavior—recall
that Rf; = P(R = i|S = i)m;r; insuchaschedule. Plugging
this and the response probabilities in, we get

1+ e—a1/a2(d//2+c) o,
cC=—a log ( 1 + e_(d//z_c) T b + (&) (27)

(see Appendix B.2 for the details of the derivation). The
criterion position is again the neutral criterion shifted by a
bias resulting directly from the imbalanced condition and the
inherent bias of the observer, but it also includes a recursive
term that shifts the criterion further depending on how far it
is shifted already. Conceptually, the reason for the recursion
is that the criterion position depends on the ratio of received
reinforcements, while the ratio of received reinforcements in
turn also depends on the criterion position: the further shifted
towards one side the criterion is, the less the observer will
respond with that response option and therefore the less rein-
forcement they will receive from that side.

The recursive equation can be solved with numerical
methods, e.g., fixed-point iteration, to compute the DT crite-
rion for a condition with some ay, as, d*, and b*. Fora; < 1
and ap < 1, there is always a solution for any condition. A
proof can be found in Appendix C. Hence, undermatching
behavior according to the DT law is consistent with a logis-
tic SDT model of decision making with a criterion at a fixed
position.
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Criterion Learning Models
for the Davison-Tustin Law

Now that we have interpreted the Davison-Tustin law in terms
of signal detection theory and have found a description of the
resulting criterion for different experimental conditions, we
want to model the trial-by-trial learning process that ends up
at this criterion position.

The Kac-Dorfman-Biderman Model

A very natural way to implement a criterion learning model in
signal detection theory has been developed by Dorfman and
Biderman (1971) based on an idea by Kac (1962), which is
why the resulting model is commonly referred to as the KDB
model. The basic idea of this model is to update the criterion
after each trial by a fixed amount based on feedback. The
updates are chosen to make correct answers more likely and
errors less likely. The criterion in trial n 4 1 is given by

Cntl = Cn + Ay ifR=1,S=1 (28)
Cntl = Cp + Agj ifR=2,5=1 (29)
Cnt1 =cp — Aq2 ifR=1,5=2 (30)
T AY)) ifR=2,5=2 31

The authors suggest different special cases as variants of the
general model. For example, observers might update their
criterion only after errors (A1; = Ajy = 0) or only after
correct responses (Ajp = Aj; = 0), or some of the update
steps might be constrained to have the same size (A2 = A»j,
Ay = Ag).

Several analyses have been carried out to investigate the
asymptotic behavior of these and similar additive learning
models (Norman, 1972; Thomas, 1973; Norman, 1974). A
focus has been on error learning models, because there is a
stationary distribution for the criterion (which is not nec-
essarily the case for more general models that also learn
on correct trials). Moreover, under some conditions, error
learning models display probability matching behavior, i.e.,
the response probabilities match the stimulus probabilities.
Probability matching has also been observed in humans doing
tasks with feedback (Dorfman, 1969; Friedman et al., 1968).
However, probability matching is not compatible with the
DT law. The criterion that leads to probability matching for a
certain condition only depends on the stimulus presentation
probabilities and is independent of the reinforcement rates
for each response option, while the DT criterion depends on
both.

As the reinforcement ratios directly influence the response
behavior according to the DT law, it is also more plausible



Computational Brain & Behavior

to assume that animals learn from the reinforced trials rather
than from their mistakes. However, models in which the cri-
terion is updated only after correct responses are unstable,
and there is no stationary distribution for the criterion; the
criterion moves further and further outside, and the model
eventually displays exclusive choice behavior. An extension
of the KDB models that stabilizes reward learning has been
suggested by Stiittgen et al. (2013). They introduce a leak
term that prevents the criterion from diverging by pulling it
back towards a neutral criterion at ¢ = 0. The update rule is
given by

for rewarded R = 1 trials (32)
for rewarded R = 2 trials (33)

for unrewarded trials (34)

Cntl = Yen + Aqp
Cntl =Yen — A

Cn+l = YCn

Note that in contrast to the original KDB model, the cri-
terion in this model changes only after trials in which the
subject receives a reward, not after every correct trial. This
is to account for the situation that rewards might be given
probabilistically rather than for every correct response, as
it is often the case in animal experiments. The subjects in
such experiments cannot clearly distinguish between cor-
rect but unrewarded responses and incorrect responses due to
incomplete feedback. Their model was found to adequately
fit adaptive choice behavior in some scenarios (Stiittgen
et al., 2013), but has been less successful in others (Stiittgen
et al., 2024). Moreover, this model’s asymptotic behavior is
also incompatible with the DT law (see Appendix G for an
explanation).

Deriving a Model that is Compatible with the DT Law

Our approach here is to explicitly design a criterion learning
model that is compatible with the DT law. This compati-
bility is a necessary property for any model of perceptual
decision-making. The DT law does, for example, fit the data
of McCarthy and Davison (1979), which are shown in Fig. 2.
The validity of the DT law has been confirmed in many subse-
quent studies and can describe a wide range of data (Davison
& McCarthy, 1988). In our own work, we have, not sur-
prisingly, also found that animals’ behavior adheres to the
DT law in the steady state (Stiittgen et al., 2024). In Section
“Criterion Placement,” we derived the criterion which is in
accordance with the DT law. We now develop a model with
reinforcement-based learning that converges to this criterion.
As we have seen, previously suggested criterion learning
models with fixed update step sizes do not have this property
and are therefore not consistent with the empirical findings
from animal experiments. Therefore, the KDB reward learn-
ing model requires modification such that, instead of having
steps of constant size, the size of the update steps A1 and As»

depends on the current criterion position. In the following,
we derive which dependence A11(c) and As;(c) is needed
for the model to converge to the DT criterion.

In criterion updating models, like the KDB models, the cri-
terion is updated stochastically, because the update depends
on the presented stimulus, the given response and the received
reinforcement, which all are probabilistic. As long as the step
sizes do not decrease over time, the criterion does not actually
converge, but instead the model will asymptotically approach
a steady state, in which the criterion keeps fluctuating around
a certain numerical value. Showing that a steady-state crite-
rion distribution exists and deriving it is beyond the scope
of this paper (but see Norman (1974) for an analysis of the
KDB model). However, we can derive the so-called equilib-
rium criterion, i.e., the criterion at which the expected update
step is zero. Heuristically, the criterion does not change on
average if at the current criterion position ¢ the expected step
in one direction is as big as the expected step in the other
direction, i.e., the overall expected update step is zero:

E(A|¢) = P(R = 1,reward|c)A11(¢) — P(R = 2, reward|¢) Ay (¢) = 0.
(35)

Recall that R f; in the DT law denotes the expected number
of reinforced R =i trials, i.e., for a single trial

Rfi(c) = P(R =i, reward|c). (36)
Using this, we can rewrite the equilibrium equation (35) as
E(Al6) = Rf1(€)A11(6) — R2(6)A22(6) =0 (37)
which is equivalent to

A11(6) _ Rf>(0)
An(€)  Rfi1(0)

(3%)

We now derive a model whose behavior in the equilibrium
fulfills the DT law by choosing the step-size functions A1 (¢)
and A»;(¢) appropriately. As is usually done in SDT, we are
assuming equal-variance stimulus distributions, i.e., a; =
ay =: a. We also assume undermatching because this will
ensure the existence of a criterion that is consistent with the
DT law (see Appendix C). This is in line with the findings
of Davison, Tustin, and McCarthy, who often observed a; ~
ay < 1. Amodel will thus fulfill the DT law in the equilibrium
if its equilibrium criterion is at

¢ = —alog <2—j:?b*> (39)
Rf2 _ L —C/a
<:>R—f1 = b*e (40)
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(see Eq. 25 in Section “Criterion Placement”). Plugging this
into the equilibrium equation (38), we get

An(f) _ ig—é/a_ @1
Ap(c)  b*

A straight-forward way to get this to hold for the equilibrium
criterion ¢ is to choose Aj1(c) and As»(c¢) such that

Aq1(c) _ b
Ap(c)  b*

ecl. (42)

for every c. For any model where the two step sizes have this
ratio, the DT law holds in the equilibrium.

There are many ways to choose step-size functions such
that they have this ratio. To make our model more realistic,
we impose the following additional constraints:

1. The step sizes should be symmetric, i.e., Aji(c) =

A (—o).
2. They should be bounded, i.e., A;j;(c) < Amax for all c.

Assuming also an unbiased observer (b* = 1), these con-
straints lead us to choose the following step-size functions
(see Appendix D for details):

1 e—c/a

Aqji(c) = Amaxm = maxm (43)
1

Apn(c) = Amaxm 44)

where Ay is a constant scaling parameter.

This, however, is not the only possible way to derive a
step-size ratio that will asymptotically lead to behavior that
conforms to the DT law. One might, for example, choose
the step-size ratio to directly depend on the reinforcement
ratio. This could be desirable because it seems plausible that
animals adjust learning step sizes dependent on the amount
of reinforcement they receive rather than only dependent on
their own response behavior. An example derivation for step-
size functions that depend on the received reinforcement is
shown in Appendix E.

As in the original reward-based KDB model, the crite-
rion in our model is updated such that a response that is
reinforced becomes more likely subsequently. In a URR
schedule, where the ratio between reinforcements for the two
responses depends on the responses given, this mechanism
has a self-reinforcing effect: A step taken in one direction
makes it more likely to get reinforcement for that same
response and thus to take another step in the same direc-
tion in the future. However, the model achieves stability by
scaling the size of the steps. The further to one side the cri-
terion is shifted, the more likely the model is to take another
step in the same direction, but the smaller become the steps
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further into that direction and the larger the steps going back
into the opposite direction (see Fig. 4, left). By design, these
two forces balance out exactly at the criterion that gives rise
to DT-law-consistent behavior (see Fig. 4, right). A proof that
the model with these step-size functions has a unique and sta-
ble equilibrium for ¢ < 1 (undermatching, which is usually
observed empirically—see, e.g., Baum (1979)) can be found
in Appendix F.

Fit to Experimental Data

We fit our model to existing data from experiment 1 described
in Stiittgen et al. (2024). The data-set and the analysis code
are available at the OSF project site https://osf.io/y8xek/. In
the experiment, rats had to perform an auditory discrimina-
tion task where they had to distinguish between white noise
bursts with two different center frequencies. The bandwidths
of the stimuli were adjusted individually for each subject to
yield 80% correct responses. In each trial, the subjects were
presented with one of two possible stimuli that were pre-
sented with equal probability. They could respond by poking
into one of two nose ports—the right one to indicate S = 1
or the left one to indicate S = 2. Correct responses were
reinforced according to a URR schedule, i.e., there were
fixed rates of reinforcement r; and r, with which correct
R = 1 or R = 2 responses were reinforced. These reinforce-
ment rates were varied between conditions (see Table 1), and
the sequence of conditions was counterbalanced across sub-
jects (see Fig.5). Each experimental condition was run for
5 consecutive days. We refer to each of these as “sessions.”
Additionally, a baseline condition with equal reinforcement
rates for both responses was run for 3 sessions before and 2
sessions after the experimental conditions. A session lasted
45 minutes and contained a median of 551 trials. For more
details on the subjects, stimuli, and procedure, see Stiittgen
et al. (2024).

The model was fit by maximizing the log-likelihood of
the data under the model. The parameters to be fitted are
Amax, d’, and a. For a given A,y and a, the log-likelihood
can be formulated as a generalized linear model with a
unique maximum, which can therefore be maximized reliably
using standard numerical optimization procedures (Dorfman,
1973). The optimal values for Apax and a were determined
via grid search. For each combination of Ap.x (ranging
from 0.001 to 2) and a (ranging from 0.1 to 1), the optimal
d’ and the corresponding log-likelihood were determined,
and the parameters corresponding to the overall highest log-
likelihood were chosen. The fitted parameter values for each
subject can be found in Table 2. The results of the fit are
visualized in Fig.5, which shows the proportion of R = 2
responses in each session for the original data along with the
predictions from the fitted model.
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Fig.4 Left: Step-size functions Ay (c) and Az (c) fora = 0.7. Right:
Expected update step dependent on the criterion position for different
experimental conditions in a URR schedule (solid lines), and DT cri-
teria for these conditions (dashed lines) for a = 0.7 and d’ = 2. N.b.

To evaluate the goodness-of-fit, we compared our model to
two existing models that our model was designed to improve
upon: The income-based KDB model from Stiittgen et al.
(2013) also updates the decision criterion after each received
reinforcement, but does not take steady-state DT law behav-
ior into account (see Section ‘“The Kac-Dorfman-Biderman
Model”). Stiittgen et al. (2024) made a first proposal for a
trial-by-trial learning model that implements the DT law,
but it uses a much less realistic update rule than our model.
We fit each of the models to the same data-set (see Stiittgen
et al., 2024, for details) and computed the Bayesian informa-
tion criterion (BIC) for each fit (see Table 3). As expected,
our model outperforms both of the previous models.

A good model fit does not necessarily imply though that
the model would also generate behavior that is similar to
the data. This is because the model predictions for each trial
take into account the actual experimental history (i.e., stim-
uli, responses, and reinforcements) up to this trial, ignoring
the possibility that the model might not be likely to have
generated such a history (see Corrado et al. (2005) for an
illustration). To check our model’s validity, we therefore also

Table 1 Experimental

i h . . Condition r r
conditions in experiment 1 in
Stiittgen et al. (2024) 1 05 0.5
2 0.5 0.1
3 0.5 0.9
4 0.9 0.5
5 0.1 0.5

Each condition follows a URR
schedule in which correct
response i trials are rewarded
with probability r;

E(Ct+1—Ct)

0.10 .
1
i
0.05 | i
i
1
1
0.00 -
1
i
]
—-0.05 /
1
]
I 1
0104 — (0.5,0.5) ! ]
—— (0.5,0.1) H |
— (05,0.9) ! |
-015 +——"—7F————"71———7— . .
-4 -2 0 2 4
criterion

the DT criteria lie exactly at the zero-crossings of the expected update
step, i.e., where the model is in an equilibrium. The slope of the curves
is negative at the respective equilibrium positions, so the equilibrium is
stable

compared its generative behavior in the experiment to the
actual subjects’ behavior. One hundred simulations of the
model with the fitted parameters were run for each subject,
using the original stimulus sequence the subject was con-
fronted with and providing a reward for a correct response in
the same trials that the subject originally could have gained
one by responding correctly. The mean and standard devi-
ation of the 100 model simulations are shown in Fig.5,
together with the original data and model fit. It can be seen
that the model does indeed behave similarly to the subjects
when faced with the same experiment sequence, although
some of the data points lie several standard deviations away
from the simulation mean. For example, the overshoot that
subject 1 displays at the beginning of conditions 2 and 5
cannot be captured, as well as the asymmetry in response
proportions between conditions 2 and 5 for subject 3.

Next, we looked at the generative behavior of the model
in the given experimental setup but independent of a spe-
cific experimental sequence, to validate that it does indeed
conform to the DT law. To do so, another 100 model simula-
tions per subject were run with the fitted parameters, this time
newly generating stimulus sequence and potential reinforce-
ments for each simulation, according to the same procedure
that was used originally in the experiment in Stiittgen et al.
(2024). Averaging over these simulations generates a predic-
tion of how the model generally behaves in the experimental
setup. To check whether the model’s behavior in the steady
state conforms to the DT law, we computed response ratios
and reinforcement ratios for each stimulus in the last two ses-
sions of each condition and fitted the DT law with a; = ap
and log b* = 0to these data with the method of least squares.
The results are shown in Fig. 6. The mean of the simulated
data lies almost exactly on the fitted straight lines, so the
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Fig.5 Data, model fit, and simulations. Each data point is the propor- one standard deviation above and below the mean. Conditions end at
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Table2 Parameters of our

Subject a d Amax
model fitted to the data from
experiment 1 in Stiittgen et al. 1 051 546 0.72
(2024) 2 027 272 142
3 031 3.62 1.55
4 0.51 3.56 0.96

model’s behavior does indeed follow the DT law. This is not
a trivial observation because our model derivation is based
on a fixed equilibrium criterion and the data points in the
plot are computed from the simulated steady-state distribu-
tion with a criterion that varies from trial to trial (see Eq.39
and the explanations at the beginning of Section “Deriving a
Model that is Compatible with the DT Law”). Note that for
this reason, the slope a and the distance d’ between the lines
that show the fit of the DT law to the simulations in Fig.6
are also not exactly the same as the a and d’ parameters in
our model that generated those simulated data (cf. Table 2)
even though in the model derivation they were the same (and
hence have the same name). As the simulated data still follow
the DT law, the simulations show that our heuristic simpli-
fication that is based on the equilibrium criterion instead of
the full equilibrium distribution is a valid simplification for
realistic parameter values.

Generally, the experimental data has larger variance
between sessions within one condition than the simulations
do. This shows that some of the behavioral variability is not
accurately captured by our model. This is not terribly surpris-
ing because behavioral data are notoriously noisy and there
are many factors, such as vigilance, that are hard to control
and this additional variance is not modeled here. The sensi-
tivity to reward (slope a) that the model simulations display
matches well with the empirical sensitivity to reward of the
subjects’ behavior. The discriminability (distance d’ between
the lines) for the model simulations is systematically smaller
than the one for the subjects’ behavior. However, this does
not imply that the model is a bad description of the behavior.
The same phenomenon is observed when fitting the model
to data that were generated by simulation of the model (see
Fig.7 in Appendix H) and can therefore be explained by the
maximum likelihood estimator being a biased estimator of
the true d’ underlying the data.

Table 3 BIC values of model fits to the data from experiment 1 in
Stiittgen et al. (2024) for the following models: our model introduced
in this paper, the income-based KDB model (ib-KDB) from Stiittgen et
al. (2013), the trial-based DT model (tb-DT) from Stiittgen et al. (2024)

Subject Our model ib-KDB tb-DT
1 8179 8330 8280
2 14742 15445 15293
3 8335 8794 8495
4 10386 10720 10504

Discussion
Theoretical Contributions

Our model brings together three areas of decision-making
research that have not yet been unified. It is a trial-by-trial
Markovian model that updates an SDT decision criterion
and in the steady state, i.e., after learning, displays matching
behavior consistent with the DT law. In previously posited
criterion learning models (Kac, 1962; Dorfman & Biderman,
1971), the criterion has to be updated after error trials to pre-
vent exclusive choice behavior. Our model does not exhibit
this property; there is a steady state in which both responses
are emitted probabilistically, while the criterion changes only
on rewarded trials.

Our approach rests on an explicit theoretical connection
between the DT law and SDT. By deriving the ROC curve, it
becomes apparent that behavior that conforms to the DT law
can result from choices according to the SDT framework
featuring logistic rather than Gaussian stimulus distribu-
tions. We also derive the position of the criterion at which
such behavior is produced for two different experimental
schedules. It can be seen that the DT law implies a direct
relationship between a certain experimental condition and
the decision criterion an observer adopts in that condition.
In designing a trial-by-trial model that learns this criterion
position, we derive a new theoretical result about the link
between criterion learning models and the DT law: The DT
law implies a specific ratio between the update step sizes in
either direction in the equilibrium, which directly depends
on the criterion position (see Eq.41).

Relation to Other Modeling Approaches

Other attempts have been made to combine animal learn-
ing theory and SDT to explain perceptual decision-making
behavior. In our approach, we start with criterion learning
models from SDT and adapt them to be consistent with the
DT law. This approach is very much in the tradition of the
original work of Davison and Tustin (1978), who have always
emphasized the conceptual connections between the DT law
and SDT. An obvious alternative to this classic approach is to
start with reinforcement learning (RL) models. RL models
are well studied in the context of bandit problems and are
therefore closely related to Herrnstein’s matching law. Such
models often use a logistic response function, also known as
a softmax, that looks like the generalized matching law (Sut-
ton & Barto, 1998, Section 2.3). Note, however, that in these
models, the stochasticity of the responses lies in the decision
rule and is not explained by perceptual uncertainty. In fact,
it is not immediately obvious how standard RL algorithms,
like temporal difference learning or Q-learning, should be
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Fig. 6 Fitting the DT law. For each experimental condition, the log
response ratio is plotted against the log reinforcement ratio. Blue: orig-
inal data, green: average of 100 simulations of the experiment, simulated
with the parameters from the model fit on newly generated stimulus

adapted to deal with perceptual uncertainty in a way that is
psychologically plausible.

Lak et al. (2017, 2020) propose an RL model in which
action values are learned for each response option. In each
trial, the response with the highest expected value is cho-
sen (they do not use a softmax). These expected values are
computed from the learned action values and the probabil-
ity that each response is the correct one, which is calculated
using Gaussian SDT assumptions. Their model can be treated
as a trial-by-trial Markovian criterion learning model, even
though there is no explicit criterion variable in the model:
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sequences. The horizontal and vertical bars indicate one standard devi-
ation along each axis. Dots represent the data points, the lines result
from fitting the DT law with a; = a» =: a and log b* = 0 to the data.
The parameters of the DT-law fit (a, d’ = 2 log d*) are given in the plot

In each trial, there is an implicit decision criterion whose
position depends on the learned values. From trial to trial,
these values are updated depending on the perceived stimulus
and the received reinforcement, which means that the crite-
rion position changes. In the model by Lak et al. (2020), the
update step directly depends on the reward prediction error
(RPE), i.e., the difference between the current expected value
of the chosen response and the actually received reinforce-
ment. This allows the authors to link behavior to neuronal
responses, as they show that the RPE term in their model
correlates with the activity of midbrain dopamine neurons
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that reflect reward prediction errors in classical conditioning
experiments (Schultz et al., 1997). A similar approach was
taken by Funamizu (2021), who also proposes a model which
uses the RPE to learn action values for each response (but
without taking the subject’s belief about the observed stim-
ulus into account) and places a decision criterion based on
these values.

The learning process in our model differs qualitatively
from learning in these RPE-based models: In our model, the
criterion is only updated after rewarded trials and remains
unchanged after unrewarded trials. In the RPE-based mod-
els, the value estimates, and thereby the decision criterion, are
updated also when a negative RPE occurs, i.e., when the ani-
mal expects a reward but does not receive one. On one hand,
this property might make these models more plausible from
the theoretical viewpoint of reward prediction. On the other
hand, they might not be able to produce steady-state behav-
ior that complies with the DT law. The models are designed
in a classical reinforcement learning manner, which aims to
learn the optimal behavior and maximize expected rewards.
Due to various assumptions in their models, behavior will not
necessarily be optimal in the steady state, but, importantly,
it is unclear whether and under which assumptions it is con-
sistent with the DT law. Equipping a reinforcement learning
model with a probabilistic decision rule, like the softmax,
might lead to the desired steady-state behavior. It might also
be that the Gaussian noise in the perceptual input leads to
behavior that in the steady state is qualitatively similar to the
DT law. But we do not know. How to reconcile these models
with the empirically well-established DT law is an important
theoretical problem that, as far as we can tell, so far has not
received the attention in the field of reinforcement learning
that it deserves.

In contrast, for models of human criterion updating in sig-
nal detection tasks, the steady-state criterion is often studied
explicitly and is mostly consistent with probability match-
ing (Dorfman, 1969; Dorfman & Biderman, 1971; Thomas,
1973; Erev, 1998), which is, however, inconsistent with the
DT law because in probability matching the response proba-
bility only depends on the stimulus presentation probability
and is independent of the obtained reinforcements that in turn
depend on the response probabilities themselves. To the best
of our knowledge, our model is the first trial-by-trial crite-
rion updating model that is consistent with SDT and the DT
law (a less worked out precursor to the current model was,
however, already published in Stiittgen et al., 2024).

Limitations and Future Directions

In connecting the DT law to SDT via an ROC curve and cri-
terion, we have posited a fixed criterion position c. This is in
line with Davison’s and Tustin’s original interpretation of the
DT law, as they draw parallels between their approach and

various SDT-like choice measures (Davison & Tustin, 1978).
However, in a criterion learning model like ours, the crite-
rion does not actually converge to an equilibrium position;
instead, it ends up fluctuating around the equilibrium posi-
tion in the steady state. Rigorous mathematical treatment of
such a steady state (and even showing that a steady-state cri-
terion distribution actually exists) is difficult. While some
work has been done to derive this distribution for some ver-
sions of the KDB model for small steps as A goes to zero
(Norman, 1974), there are no analytical results for larger
step sizes. Nevertheless, our model simulations show that
the steady-state behavior of our model does follow the DT
law closely, even though we only designed the model to fol-
low the DT law for a fixed instead of a fluctuating criterion.
Hence, apparently, when applying the model to real data and
when the step sizes are small enough, we can approximate
the behavior of the subject under the steady-state criterion
distribution by a single equilibrium criterion.

The direct link between our model and the DT law is
simultaneously its biggest strength and its biggest weakness.
By design, it guarantees steady-state behavior in line with a
broad range of behavioral findings. On the other hand, the
model inevitably inherits some unresolved issues of the DT
law. For example, it has been pointed out by Davison and
Jenkins (1985) that the sensitivity to reinforcement—a in the
DT law—has some flaws as a measure. Even within one ani-
mal and for the same task, it is inconsistent between different
experiments, e.g., an experiment with a URR schedule and
an experiment with a CRR schedule (McCarthy & Davison,
1979). Thus, the parameter a in our model is specific to each
experiment as well and has no generalizable interpretation.
Moreover, it is also probably confounded with discriminabil-
ity (Alsop, 1991; White, 1986). There have been multiple
extensions of the original DT law which address these short-
comings (Davison & Jenkins, 1985; Alsop, 1991; Davison,
1991; Davison & Nevin, 1999). Their treatment and rela-
tion to the present model is however beyond the scope of the
present work and will have to be addressed in the future.

This paper lays the foundation for modelling trial-by-trial
decision-making behavior in a way that aligns with the empir-
ical findings about steady-state behavior. It can fit the data
from experiment 1 in Stiittgen et al. (2024) better than exist-
ing models that try to capture either reinforcement-based
criterion-learning or steady-state DT law behavior but do not
combine the two. As a next step, our model needs to be eval-
uated empirically by comparing it to existing models based
on other modelling approaches, and in a wider range of sce-
narios, i.e., on experimental data that systematically varies
stimulus probabilities, reinforcement rates, and overall rein-
forcement density.

So far, in this paper, we only investigated experimental
setups with two different stimuli. However, experimental
setups with multiple stimuli are used in many experiments
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(e.g., Davison and McCarthy, 1987; White, 1986; Stiittgen
etal.,2011b, 2013; The International Brain Laboratory et al.,
2021), and using more than two stimuli confers considerable
additional flexibility in experimental design. To adopt our
model to these kind of scenarios, further empirical and the-
oretical research is needed, since the DT law does not hold
anymore when stimulus distributions become more complex
(Davison & McCarthy, 1987; Davison & Nevin, 1999).

As pointed out in Section “Deriving a Model that is Com-
patible with the DT Law,” different step-size functions can
be chosen as long as their ratio fulfills (42) in the equilib-
rium. This allows a modification of the step-size functions to
include other factors that are known to be relevant for learn-
ing in perceptual decision making. For example, an estimate
of the received reinforcement could directly influence the
step sizes (cf. Section “Deriving a Model that is Compatible
with the DT Law”). It would also, in principle, be possible to
directly include a dependence on the RPE or some measure of
decision confidence. There are some behavioral phenomena
that the model in its current form cannot account for, e.g., an
overshoot of the response behavior directly after a condition
change, as observed in the data in Stiittgen et al. (2024) and
Stiittgen et al. (2013). A question for future research is thus
whether there are step-size functions with which the model
can generate such behavior. Future work should also follow
in the footsteps of Treisman and Williams (1984) and look
carefully at serial dependencies and check which step-size
functions are consistent with them. In general, models with
different step-size functions will have to be compared sys-
tematically with regard to their theoretical ability to capture
relevant phenomena and the goodness of fit to empirical data.

An important open research problem, as already men-
tioned in Section “Relation to Other Modeling Approaches,”
is combining reinforcement learning approaches with the
insights about the steady-state criterion presented in this
paper. To tackle it, a promising avenue might be to study
the partially observable Markov decision process (POMDP)
that corresponds to the task. In a POMDP, the agent has to
maintain a belief about the (unknown) state of the environ-
ment, which should be updated after each observation in a
Bayesian manner. Decisions are then made based on the cur-
rent belief. In our task, subjects should therefore maintain
a belief about the probability that a certain action will lead
to a reinforcement. Like in standard reinforcement learning
models that deal with fully observable Markov decision pro-
cesses, the assumption is that an agent in a POMDP should
try to maximize the expected reward, i.e., the goal for the
agent is to behave optimally. Still, the approach might be
capable of producing DT law behavior, which is suboptimal
(but see Sakai and Fukai, 2008). Suboptimal behavior can
arise from a non-deterministic decision rule or from the way

@ Springer

the belief distribution is maintained. For example, it has been
suggested by Mozer et al. (2008) that humans store a limited
number of samples rather than a full probability distribution.
And Vul et al. (2014) show that such a sampling strategy can
giverise to matching-law behavior in two-armed bandit tasks.
In a similar way, it is conceivable that approximate Bayesian
approaches might lead to behavior in line with the DT law in
a signal-detection task, given the right assumptions.

Conclusion

Research on learning in perceptual decision making takes
many forms. Some research is firmly based in signal detec-
tion theory and provides trial-by-trial Markovian models of
criterion updating. Other research focuses on behavioral reg-
ularities in the steady state, like the DT law. Reinforcement
learning approaches take into account biologically plausi-
ble components like the reward prediction error. All these
approaches provide valuable insights into decision behavior
and the process by which it is learned. However, a unified
account is still missing.

We have highlighted the theoretical connections between
some of these approaches. Moreover, we have showcased
how a model can be designed to link the different aspects
of perceptual decision making to each other. The result is a
model grounded in SDT with a criterion that is updated from
trial to trial. In this model, the size of the update steps depends
on the current criterion position and yields behavior that fol-
lows the DT law in the steady state. The update steps towards
even more extreme criteria get smaller the more extreme the
criterion already is. This mechanism allows the model to
learn only from reinforced responses while still being sta-
ble, unlike the original KDB reward-learning model. Our
work hence provides a theoretical as well as practical link
between SDT, trial-by-trial learning models, and descriptions
of steady-state behavior.

Appendix A: Reason for Reparameterizing
the DT Law

We use a different parameterization than the one that is
usually used for the DT law because the original parameteri-
zation confounds bias and discriminability in the unequal-
variance case. To demonstrate that, let us look at what
happens when we derive the ROC curve using the DT law
with the original discriminability and bias measures (Eqgs. 7
and 8). This derivation works exactly as the derivation with
our new measures, which is done in Eqs. 13, 14, 15, 16, 17,
18 and 19. Expressing the DT law in terms of log-odds of hit
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rate and false alarm rate gives

1 Rf
(f)=ajlog Rf| +logb —logd (A1)
_ Rf
~L(h) = az log f +logb 4+ logd. (A2)
Rearranging these terms leads to
lr 2
— —logh +logd| =1 A3
1[0 (f) —logh + log ] 0g<Rfl) (A3)
1r 12
— h) —logh —logd 1 A4
az[cr (h) —logh —log ] og(Rﬁ) (A4)
For both equations to hold simultaneously, we need
1 [07'(f) —logh +logd] = 1 [0 (h) —logb —logd]
ag a
(AS)
R » 1 1
(h) = *0 )+ logd + | — — — ) logb
2 a aj ai
(A6)
sl (h) = g 71(f)+( 1>10gd+<1—2—?)10gb.
(A7)

This ROC curve corresponds to logistic stimulus distribu-
tions with scales 51 = “—f, s» = 1 and

d = <1 + )10gd+ <1 - —) log b.
ay a

d’ is the SDT measure for how discriminable the two stimuli
are. Therefore, if d and b are measures of discriminability and
bias, respectively, there should be a one-to-one correspon-
dence from d to d’ which does not depend on b. However,
here, d and b are confounded. Only in the equal-variance
case (a; = ap and therefore s; = 1 = s7) d’ becomes
independent of b and is a valid bias-independent measure of
discriminability.

(A8)

Appendix B: SDT with Logistic Stimulus
Distributions

Consider two logistic stimulus distributions

X
Si

. e
px|S=1i)= T

I+e

= L(x; i, ). (B9)

The hit rate and false alarm rate can be computed as fol-
lows:

c p— p—
h:l—f [,(x;uz,sz)zl—o(c Mz):a( C+M2)
—o0 52 52

(B10)
[ oo () o (<22
f=1- Lx;puy,s1)=1—0 =0
—o0 51 51
(B11)
B.1 Derivation of ROC Curve
From Eqs.B10 and B11, it follows that
oy = S H2 (B12)
52
_ —C+ W +M2—M1 (B13)
52 52
:S_1—0+M1+M2—M1 (B14)
s2 S1 )
_ M2 — ,U«I
== ')+ —— (B15)
Sz 52

For sy = s, 5] = Z—fs andd’ = s — ) = 5o (1 + a1)
logd* = (s1+s2) log d*, this is the ROC curve derived from
the DT law (see Eq.19). In particular, for s, = 1, we get

s1=2andd = (1 n —f) log d*.
B.2 Criterion Corresponding to DT Law
For logistic stimulus distributions with means pu; = —%/,

’
= % and scales s
rate are

d/
h = — —
O’( c+2)

= “—f so> = 1, hit rate and false alarm

(B16)

(B17)

Therefore, the criterion ¢ can be computed from the rein-
forcement ratios as

c=—5|0 (W+ —o () (B18)
2 aq

1 Rzz) as <R21>]
— log [ 22) 4 Pog (220

2|: g<R12 ai & R

1

Rf> R
= _5|:a2 log<R§ >+a2 log b*+logd™ + a; log<R]fcj>

(B20)

(B19)

+ ay logb* — %2 log d*:|
a
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sz) 1 < az)
=—arlog| =) —arlogh* — = |1 — = |logd*
s <Rf1 £ 2 ai £
(B21)
Rf> 1 ap d
— —wloe (22 ) _ 1 (1_® B22
a20g< fi ) 2( d1>1+2—f (522
Rf2 1 a) —ap d/
ai
R 1 —
— —alog(Rl2p) L[z (B24)
Rfi 2\a1+ a2
R
= —ap log (R_Jf?b*) + co (B25)
with
o= LA T2 (B26)
’ 2a1 +ap

For the uncontrolled reinforcement schedule, we get

Rf>
c=—-alo —b*) + ¢ (B27)
g<Rﬁ
R

— —alog (ﬁ wb*) +co (B28)

Ry mir
d /2 —

— —arlog [ —2 @2=c) mn.\, (B29)
o (ar/azx (d'/2 4+ ¢)) mir
1_,r_efa1/a2(,1’/2+c) mr

= —aj log ( PR s p— b* | + co. (B30)

B.3 Neutral Criterion

The neutral criterion is the value ¢y where the two stimulus

distributions intersect, i.e., p(x = ¢o|S = 1) = p(x =
. . . . . . 4

co|S = 2). For logistic distributions with | = —dj, M2 =

%, s1 = Z—?, sp = 1, the neutral criterion is

lay—ay
= —= d. B31
0 2a1 +az (B3D)
Proof Let us denote
e—X
f(x)=L(x;0,1) = 5 (B32)
(1+e™)

Note that this is a symmetric function, i.e., f(x) = f(—x).
Plugging x = ¢p into the stimulus distribution function for
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the first stimulus

plcolS = 1)=£(co, d ,a—z) (B33)
2 aj
=f (—1 (co + d—)) (B34)
a 2

_r(u(lazae,
=f (az ( o +a2d +d/2>> (B35)
_ d a ai—a
(2(-a5) e
_ d_/ﬂa1+a2—(a1—a2)
=/ ( 2 a ay+az ) B37)
— <d_/ﬂ 2a) ) (B38)
=/ 2 aay+ax
=f < 4 d’) (B39)
- al + a

and the second stimulus

d/

plcolS =2) =£(co; > 1) (B40)
= f(co—d'/2) (B41)
_ _lal a .,
—f( Yot d/2> (B42)
=r(3(-isn)  ew
=/ 2 ay +ax
(a1 @) (a1 —a)
=f < > P ) (B44)
= <d—/ —2a > (B45)
=f 2 a1 +a
=f <— 4 d’) (B46)
- ar +ap

ai ,
- B4
f <a1 +azd) (B47)

shows that p(cg|S = 1) = p(co|S = 2) at the neutral crite-
rion ¢y, i.e., the two distributions intersect.

Appendix C: Proof of Existence of a DT
Criterion

For a URR schedule, we derived the fixed-point equation (27)
for the criterion position. We can rewrite this as

¢ =aplog (1 + e_(d,/z_c)) —aylog (1 + e_“‘/‘”(d//z“)) +y
(C48)
&y=c—aslog <1 + e’(d//z’”)) +as log <1+e’“‘/"2(‘j’/2+”)> =:g(0),
(C49)
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with

212

y = —ay log (—b*) + ¢p. (C50)
TIF1

y can take any value in R depending on the condition. So
to show that for every condition there exists a criterion which
will lead to DT-law behavior, we need to show that for every
y € R, there is a c fulfilling Eq. C49, i.e., that the value range
of g(c) is R. Since g(c) is continuous, it suffices to look at
the limits for ¢ — oo and ¢ — —o0.

For large positive c,

_(4_ (£ d’
log<1+e <2 C>)%log(e <2 C>)=C_E (C51)
and

- d

lim log (1 +e afa(% +C)) =0, (C52)

c—> 00

So we get

d d
goyxc—awm <c— 3) =(1 —az)c-i-az?. (C53)
Similarly, for large negative c,
- (59

lim log(1+e \? =0 (C54)

c—> 00

and

log (1 +e_al/a2(%+c)> ~ log (e_al/az(%/H)) =4 <—c - i/) ,

a 2

(C55)

so we get

d’ d
glo)~c+a <_C_3) =(1—a1)c—a13. (C56)

That is, for 0 < a; < 1 and 0 < a» < 1, g(c) increases
linearly both for ¢ — oo and ¢ — —oo0, thereby having a
value range of R. That proves that there is a DT criterion for
any condition in the case of undermatching.

For a; = 1 (or ap = 1), one of the limits becomes con-
stant at lime—, _oo g(¢) = —d'/2 (or lime— _o0 g(c) = d'/2,
respectively). That means a DT criterion exists for condi-
tions with y > —d’/2 (or y < d'/2), with ¢ — —oo for
y — —d'/2 (or ¢ — oo for y — d’/2). For reinforcement
rates leading to more extreme values of y, behavior that is
consistent with the DT law can be generated by exclusively
choosing the response option that is favored by the ratio.

A similar but slightly more complicated analysis can be
done fora > 1. We limit the investigations in this paper to the
case of a < 1 though, as overmatching behavior is usually
not observed empirically (see, e.g., Baum, 1979).

Appendix D: Step-Size Function
To keep step sizes bounded, we want
Ap1(0) + Ax(e) =1 (D57)

for any c. Moreover, the step-size functions need to fulfill the
ratio constraint from Eq.42, so
A11(0)/An(c) = e~/ . (D58)

By solving Eq.D57 for Az (c) and plugging it into
Eq.D58, we find

A11(e)/(1 = Aqi(c)) = e/ (D59)
& Ap(e) = (1 — Api(e))e™*  (D60)
& A1 (e)(1 4 e /) = ¢/ (D61)
& Ari(e) = e /(1 + e~/ (D62)
and accordingly
Ap(c) =1—Aji(e) = 1/(1 4%, (D63)

Note that this can be rewritten as

Ax(c) = e/ + 1) = Ay (—c), (D64)

so the step-size functions are symmetric to each other, ful-
filling our other desired constraint.

Appendix E: Model with Step Sizes
Dependent on Reinforcements

Recall that a KDB-like criterion updating model with step-
size functions A11(c) and A»; isin an equilibrium at criterion
¢ when

A11(6) _ Rf>(0)
An(€)  Rfi1(0)

(see Eq. 38), and moreover that the DT criterion, i.e., the
criterion that is consistent with the DT law, is given by

¢ = —alog (2—?5‘)
1

(see Eq. 39).
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In the main text of this paper, we have derived a possible
step-size ratio Aq(c)/A22(c) for which the equilibrium ¢
is the DT criterion. We have done so by solving Eq. 39 for
Rf>/Rf1, which gives

Rfa _ 1 ¢
Rf1 b*

(see Eq. 40), and plugging this into the right-hand side of
Eq.38.

There are other ways to derive a step-size ratio for which
the equilibrium ¢ is the DT criterion, too. For example, it
could be desirable to have step-size functions that depend
directly on the received reinforcements. To achieve that, a
recursive formulation of R f> /R f] is needed, which can, e.g.,
be derived by squaring Eq. 40:

2 2
RAN (LY 2/
Rfi b*
2
SR (N uRA
Rfi b* Rf>
This can then be plugged into Eq. 38 as before. Again impos-

ing the additional constraints and assuming an unbiased
observer, step-size functions can, e.g., be chosen as

(E65)

(E66)

1
A11(c) = Amax——7Rf1(0)

o (E67)

1
mez(C)

A (c) = Amax ]

(E68)
Since a subject cannot directly know the expected reinforce-
ment Rf; for each response at its current criterion position,
an estimate based on previously received reinforcements has
to be used instead.

Appendix F: Existence and Stability of Model
Equilibrium

We are going to show that for any condition in a URR sched-

ule, there is exactly one criterion position ¢ where our model

(with @ < 1) is in an equilibrium, and moreover, that this

equilibrium is stable. For a model with @ > 1, a similar

proof is possible, but this is left out of this paper, as we are

not interested in models that display overmatching behavior.
The expected update step of a KDB-like model is

E(Ale) = Rfi(©)A11(c) — Rf2(c) A2z (0). (F69)
The model is in an equilibrium at ¢ if and only if
E(A|&) =0 (F70)
& RA@A11(E) = Rf2(6)An(6)
(F71)
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& log (Rf1(&)A11(8)) = log (Rf2(8) A22(6))

(F72)

& log (Rfi(@)A11(8) —log (RA-2(E)An(E) =0 (F73)
Let us call

g(c) :=log (Rf1(c)A11(c)) —log (Rf2(c)Axz(c)). (F74)

Plugging the step sizes of our model (Eqs. 43 and 44) and
the expected reinforcements for a URR schedule in, we get

A
g(c) =log (mrw (c+4d')2) ﬁ)

A
/ max
log (nzrza (—c+d'/2) W) (F75)
=log | mr ! Amax
TR\ TV T m—d 2 ] 1 ec/a
1 Amax
—log (7‘[21’2 T e @214 e_c/a> (F76)

=log (;r1r) — log (1 + e_C_d//z) —log (1 + ec/“)
(F77)

—log (mprp) + log (1 + eC_d,/z) + log (1 + e_c/“)
(F78)

The equilibrium is stable if E(A|c) > 0 for ¢ < ¢ and
E(Alc) < Oforc > ¢.In analogy to the previous calculation
for the equilibrium criterion, this is equivalent to g(c) > 0
for ¢ < ¢ and g(c) < 0 forc > ¢.

We are now going to show that

1. g(c) is monotonically decreasing with
2. lime— g(c) = —o0 and
3. lime—s —o0 g(c) = 0.

Together, this proves that g(c) has exactly one zero cross-
ing ¢ with g(¢) > 0 forc < ¢ and g(c¢) < 0 for ¢ > ¢, which
means that our model has exactly one equilibrium and this
equilibrium is stable.

Proof of 1 The derivative of g(c) with respect to ¢ is

ec—d'/2 _Lly=c/a _e—c=d'/2 Lpc/a
g/(C) = 7 + 4 - 7 -
14+ ec—d /2 1+ e—c/a 1+ e—c—d /2 1+ ec/a
(F79)
e 2 1 e/ 1 [
= 1+ ec—d'/2 - 5 1+ e—¢la 1+ ectd' /2 - E 1+ e—c¢la
(F80)
c—d' /2 1 11 —c/a
- = (F81)
1+ ec—d'/2 1+ ectd' /2 al+ e—¢la
ecmd'2 1 1
Tl fecdn2 + L +ectd2 g (F82)
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. ’ L
Since d’ > 0, ecT4'/2 5 ¢¢=d'/2 and therefore

ec—d'/2 1 1

§O <t (F83)

=1—-

1+ec—d2 4

For a < 1 (undermatching), this is smaller than zero. A
negative first derivative for every ¢ means that the function
g(c) is monotonically decreasing.

Proof of 2 For large positive c,

lim log (1 + e—f—d’/z) —0, (F84)
c—>00
log (1 + ¢°/4) ~ log (¢*/4) = <, (F85)
a
/!
log (1 + ec’d/ﬂ) ~ log (ec’d//z) =c— —, and (F86)
lim log (1 4+ e~/*) = 0. (F87)
Cc—> 00
Putting everything together, we get
c d’
g(c) ~log (mir1) — p —log (m2r2) +¢ — B (F88)
1 d’
- <1——>c+10g <”‘”> -2 (F89)
a 1) 2

For a < 1, this is linear with a negative slope, so
lime—, o0 g(c) = —00.

Proof of 3 For large negative c,

’ ! d/
log (1 +ecd /2) ~ log (g‘f—d /2) =—c—3. (F90)
lim log (1 + /%) =0, (F91)
Cc—>—00
lim log (1 + ef—d’/z) — 0, and (F92)
c—>—00
log (1 + e_c/”) ~ log (e_“/”) — (F93)
a
Putting everything together, we get
d’ c
g(c) ®log (miry) — | —¢ — 5~ log (72r2) — P (F94)
1 Try d/
=(1——-)c+log + —. (F95)
a 1) 2

For a < 1, this is again linear with a negative slope, so
lim—, o0 g(c) = o0.

Appendix G: Leaky KDB Model Incompatible
with DT Law

Stiittgen et al. (2013) derive that there is a linear relation-
ship between the equilibrium criterion of their model and the

(weighted) difference between the expected reinforcement
for response 1 and response 2. For a model with step sizes
A11, Ay and leak-term y,

1
=1, (AnRfi — AnRf2). (G96)

In contrast, the DT criterion depends linearly on the differ-
ence between the logarithms of the expected reinforcements:

¢ = ay (log(Rf1) —log(Rf2)) — azlog(d™) +co  (GI7)

(cf. Eq.25), with the last two additive terms being equal to
zero for an unbiased observer with symmetric sensitivities
to reward. These functional relationships are fundamentally
different from each other, so the model is not compatible with
the DT law, no matter the choice of parameters.

Appendix H: Comparing Simulations
to Original Data

3 {4 —— data
—— simulation

data: d'=3.83, a=0.57
0 - sims: d'=3.23, a=0.51

-2 -1 0 1 2
|Og(Rf2/Rf1)

Fig. 7 Artificial data was generated by the model witha = 0.5,d’ =
4, Amax = 0.7. This plot was produced for the artificial data in the
same way that the plots in Fig.6 were produced for the real experi-
mental data. For each experimental condition, the log response ratio is
plotted against the log reinforcement ratio. Blue: artificial data, green:
average of 100 simulations of the experiment, simulated with the param-
eters from the model fit on newly generated stimulus sequences. The
horizontal and vertical bars indicate one standard deviation along each
axis. Dots represent the data points, the lines result from fitting the DT
law with @ = ap =: a and b* = 0 to the data. The parameters of the
DT-law fit (a, d’ = 2log d*) are given in the plot
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