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Abstract
Decision-making behavior is often understood using the framework of evidence accumulation models (EAMs). Nowadays,
EAMs are applied to various domains of decision-making with the underlying assumption that the latent cognitive constructs
proposed by EAMs are consistent across these domains. In this study, we investigate both the extent to which the parameters
of EAMs are related between four different decision-making domains and across different time points. To that end, we make
use of the novel joint modelling approach, that explicitly includes relationships between parameters, such as covariances or
underlying factors, in one combined joint model. Consequently, this joint model also accounts for measurement error and
uncertainty within the estimation of these relations. We found that EAM parameters were consistent between time points on
three of the four decision-making tasks. For our between-task analysis, we constructed a joint model with a factor analysis
on the parameters of the different tasks. Our two-factor joint model indicated that information processing ability was related
between the different decision-making domains. However, other cognitive constructs such as the degree of response caution
and urgency were only comparable on some domains.

Keywords Decision-making · Cognitive neuroscience · Joint modelling · Bayesian factor analysis

Introduction

Decision-making is a critical part of everyday life which
underpins many types of actions. Even though there is a
large range of decisions that individuals regularly engage
in, researchers posit that various decision-making processes
can be described within the framework of evidence accumu-
lation models (EAMs; Donkin & Brown, 2018; Forstmann
et al., 2016).

EAMs posit that decision-makers gather information for
each choice alternative until sufficient evidence for one alter-
native has been accumulated to commit to a decision (Donkin
& Brown, 2018; Ratcliff & Smith, 2004). Although many
implementations of EAMs exist, most propose that decision-
making is governed by a combination of at least three latent
cognitive processes. First, the drift rate drives the speed of
the evidence accumulation process. Second, the threshold
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captures the amount of evidence needed to commit to a
decision. Third, the non-decision time comprises both the
time necessary for the sensory processing of the stimulus
and the time taken to execute the motor response. EAMs
describe response times and choices simultaneously, provid-
ing a model that accounts for both modalities of observed
decision-making behavior. Given the success of EAMs in
describing decision-making, and their sensitivity to manip-
ulations of the decision-process, their use is widespread
(Ratcliff et al., 2016). EAMs are applied to study decision-
making across various domains, such as conflict processing,
perceptual decision-making, value-based decision-making,
learning, working memory, and the speed-accuracy trade-
off (e.g., Miletić et al., 2021; Rae et al., 2014; McDougle
& Collins, 2020; Hübner & Schlösser, 2010; Polanía et al.,
2014; Boag et al., 2022).

To accommodate the differences between these tasks
within the framework of evidence accumulation, EAMs are
often adjusted for task-specific processes (e.g., Boag et al.,
2019; McDougle & Collins, 2020; van Ravenzwaaij et al.,
2019). Furthermore, cognitive psychologists assume that
the type of evidence accumulated differs between types of
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decisions. For example, the strength of accumulation for
decisions involving working memory is assumed to be based
on the strength of working memory representations (Boag
et al., 2021), whereas the accumulation process for value-
based decision-making may depend on subjective preference
for alternate values (Ratcliff et al., 2016). Nevertheless, the
underlying architecture of accumulating evidence for vari-
ous choice options until a threshold is met remains the same.
Thus, explicit links between these designs exist in the frame-
work of EAMs. If, for example, a subject is generally fast
to respond due to a lack of caution, this is assumed to hold
for different tasks (Hedge et al., 2019). Furthermore, even
though the type of accumulated evidence differs between
tasks, the accumulation process is still assumed to be based
on information processing ability, a trait that should show
similarities between tasks (Weigard & Sripada, 2021).

Previous studies have tested the assumption that the cog-
nitive processes assumed by EAMs are related between dif-
ferent decision-making tasks (Lerche & Voss, 2017; Lerche
et al., 2020; Weigard et al., 2021; Yap et al., 2012; Schulz-
Zhecheva et al., 2016; Ratcliff & Childers, 2015; Schmiedek
et al., 2007). These studies mostly found that an individuals’
ability to discriminate information efficiently, as measured
by the most prominent EAM, the DDM, was related between
different decision-making tasks. Still, these studies relied on
tasks that engaged similar decision-making processes, for
example, cognitive control.

Here, we chose to study tasks within a wider range of
domains of decision-making tasks, keeping in mind that
these domains may engage different regions across the
brain. We were specifically interested in tasks that are
known to engage both cortical and subcortical regions, which
include the domains of working memory (Rac-Lubashevsky
& Frank, 2021), value-based decision-making and reinforce-
ment learning (O’Doherty, 2004; Gläscher et al., 2010), bal-
ancing speed and accuracy (Bogacz et al., 2010; Forstmann et
al., 2008), and cognitive control/conflict tasks (de Hollander
et al., 2017; Miletić et al., 2020; Aron & Poldrack, 2006;
Isherwood et al., 2022). Studying these broader domains
also allows us to assess whether the parameters in the EAM
framework are stable across domains for which the neural
underpinnings might partly vary.

To that end, we relied on four different decision-making
tasks that engage different domains of decision-making:
(1) a reversal learning task (RL-Rev; Costa et al., 2015;
Behrens et al., 2007; Miletić et al., 2021), (2) the multi-
source interference task (MSIT; Bush et al., 2003), (3)
the reference-back task (RB; Rac-Lubashevsky & Kessler,
2016a; Rac-Lubashevsky & Kessler, 2016b), and (4) a rein-
forcement learning speed-accuracy trade-off task (RL-SAT;
Sewell et al., 2019; Miletić et al., 2021).

The four tasks involve different domains of decision-
making; however, all four tasks were forced choice speed

decision-making tasks that fit within the EAM framework
(Donkin & Brown, 2018). All task-specific EAMs con-
tained response threshold parameters and non-decision time
parameters. Furthermore, for each task, we reparameterized
the drift rate as a combination of an evidence-dependent
part of the accumulation process, which is characterized by
information processing ability, and an evidence-independent
part of the accumulation process, which can be character-
ized as urgency (see Fig. 1; Miletić & van Maanen, 2019).
Both urgency and response caution allow decision-makers
to strategically adjust their response speed; however, they
have unique contributions to the decision-process. Increased
urgency only leads to an increased probability of making a
response with passing time, whereas higher response caution
gives more time to choose the correct stimulus (Trueblood et
al., 2021; Miletić & van Maanen, 2019).

Besides engaging a broader scope of decision-making
domains, the current study also uses a new methodology to
test the relationships between these domains. Most previous
studies that investigated the extent to which EAM constructs
were related between different tasks, correlated the param-
eters of the EAMs to each other in a second, independent,
step of analysis. However, recent work has highlighted that in
order to best account for any relations that may exist between
cognitive measures of different tasks, these relations should
be explicitly accounted for in the model itself. Consequently,
the model also accounts for measurement error and uncer-
tainty within the estimation of these relations (Matzke et al.,
2017; Turner et al., 2013; Wall et al., 2021).

To elaborate, cognitive models are often estimated in
a Bayesian hierarchical framework, in which the cogni-
tive model parameter estimates of individual subjects are
related through an overarching group distribution of each
parameter. Besides having desirable effects on the estima-
tion of the parameters of the model (Rouder & Lu, 2005;
Scheibehenne & Pachur, 2015), such a group-level distri-
bution is also beneficial since it facilitates inference at the
level which is usually the target for analysis in psychological
science—the population. In most studies that aim to investi-
gate links between different decision-making tasks, different
EAMs are estimated independently, in that no relationships
between the different group-level parameters of these EAMs
are estimated. As mentioned above, the correlations between
parameters are then calculated afterwards.

However, recent advances have used a multivariate nor-
mal distribution to describe the group level, which allows
an explicit account of the covariances between the group-
level parameters (Turner et al., 2013; Gunawan et al., 2020).
Including a covariance structure in the group level allows us
to estimate the likelihood of multiple models (components)
simultaneously, by simply extending the vector of parame-
ters to be estimated, while explicitly allowing the parameters
(within and between components) to inform one another
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Fig. 1 A graph of the racing diffusion model (RDM). Competing accu-
mulators race towards threshold (B). The straight blue and red lines
indicate themean drift rate of two accumulators. The noisy lines indicate
potential accumulation paths subject to within-trial noise in evidence
accumulation. The response is determined by the first accumulator to
reach the threshold. The response time is determined by the time taken
to reach the threshold, plus the non-decision time (t0). t0 constitutes

both encoding time (te) and response execution time (tr ). However,
these cannot be disentangled based on behavioral data alone and are
therefore estimated as one parameter. In the current paper, we repa-
rameterize the drift rates of the two choices as a mean drift rate (V0)
and a difference in drift rate (δ). This mean can also be interpreted
as an evidence-independent urgency signal, and the difference can be
interpreted as the information processing ability of the decision-maker

through the covariance structure. We refer to this approach
that explicitly accounts for relationships between parame-
ters as the joint modelling covariance approach (Turner et
al., 2017).

Jointmodelling of cognitivemodel parameters of different
tasks has two advantages compared to standard correlational
approaches in which the correlations are calculated after
the models were fit individually. First, estimation precision
is improved, and less attenuation of the true correlations
is achieved by explicitly allowing relationships between
parameters within the model, since measurement noise and
parameter uncertainty are accounted for (Matzke et al.,
2017; Rouder et al., 2019; Wall et al., 2021). Second, since
the covariances are also estimated in a Bayesian approach,
it is possible to construct credible intervals of correlation
estimates, providing us with an inherent estimate of the
uncertainty of our inferences.

Building on the covariance approach, recent work sug-
gested to replace the multivariate normal distribution at the
group level, with a factor analysis decomposition (Turner
et al., 2017; Kang et al., 2021; Innes et al., 2022). This
approach reduces the number of estimated parameters in
the joint model, which can improve estimation with multiple
components included in the joint model, yet still captures the
relationships that exist between these parameters. Further-
more, with the hierarchical factor model, we estimate latent
factors that span the decision-making process across different
decision-making domains and can aid interpretation. Rather

than inspecting separate correlation estimates, these latent
factors can be interpreted across tasks. One factor with high
threshold parameter loadings across tasks would for example
indicate that response caution is related across tasks.

In this study, we used the hierarchical factor modelling
approach to investigate the relationships between the afore-
mentioned four decision-making tasks. The participants
completed each task twice in different sessions. Therefore,
we could first test towhat extent decision-makingwas related
between different time points. More importantly, since the
four tasks were completed by the same set of participants,
we could test whether the latent cognitive processes under-
lying decision-making, as proposed by EAMs, were related
between different decision-making domains.

Materials andMethods

Subjects and Procedure

A total of 150 students from the University of Leiden, the
Netherlands, participated in an experiment consisting of five
tasks that were each to be completed twice online from their
own computers. The study was approved by the local ethics
committee. The order in which the tasks and sessions were
completed was counterbalanced between participants. Each
sessionwas separated by 24–48h. Two of the taskswere rein-
forcement learning tasks, where participants were instructed
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to learn the reward contingencies of abstract symbols. For
both the reinforcement learning tasks and their different
sessions, we used different sets of symbols such that for
a participant, no symbols were repeated between tasks or
sessions.

For between-session analysis of each task, we included
all participants that completed both sessions for that task
above chance level accuracy. Out of 150, we included 86
participants for the MSIT, 85 for the RB, 54 for the RL-
SAT, and 54 for the RL-Rev. For analysis between tasks, we
excluded 86 participants for not having completed all eight
sessions, out of the remaining 64 participants, we further
excluded 11 participants for performing below chance level
accuracy on one of the eight sessions. The high drop-out rate
in participants between sessions was likely due to the online,
rather than in-lab, participation.

The experiment served as a pilot study for a functional
magnetic resonance imaging (fMRI) experiment including
five tasks. One of these tasks was the stop-signal task. The
model architecture needed to account for the behavioral data
of the stop-signal task is vastly different to the other tasks
(Verbruggen et al., 2019; Matzke et al., 2017). Therefore,
we chose not to include the stop-signal task in our analyses.
In-depth methods including task background and design can
be found in Appendix 1.

Cognitive Modelling

Modelling Overview

In the current study, we set out to test latent decision-making
mechanisms that span different types of decision processes.
To that end, we used four different types of decision-making
tasks: (1) a reinforcement learning reversal learning task, in
which learned reward-stimulus associations were switched
following an acquisition phase (RL-Rev); (2) a cognitive
control task that engaged both Flanker and Simon type
interference (MSIT); (3) a working memory task in which
participants were instructed to match the current stimulus to
a reference stimulus (RB); and (4) a reinforcement learning
tasks that interleaved speed emphasis and accuracy emphasis
trials.

For each data set, we used a racing diffusionmodel (RDM;
Zandbelt et al., 2014; Tillman et al., 2020). The RDM is
an EAM that proposes a race between competing choices
that each have separate accumulators. The first accumulator
to reach the threshold determines the choice made, and the
time taken to reach the threshold determines the response
time along with the non-decision time. The RDM combines
aspects of theDDM, as it posits within-trial noise in the accu-
mulation process (Ratcliff & Smith, 2004), and the LBA, as
it comprises separate accumulators for each choice (Brown

&Heathcote, 2008). Here, we parameterized the drift rates as
an evidence-independent urgency term (V0) and an evidence-
dependent difference term (δ) (Fig. 1). The difference term
can be interpreted as information processing ability, since
it maps onto the ability of the decision-maker to discrimi-
nate the difference in evidence between the available choices.
For the reinforcement learning tasks, we further included a
sum term (�) that suggests that choosing between two more
rewarding stimuli is faster than between two less rewarding
stimuli. The sum term can therefore be interpreted as the
sensitivity to reward of the decision-maker.

Each task also required specific changes to this overall
model architecture that mapped model parameters to the task
design. For the reinforcement learning tasks, the models we
used were picked based on model comparisons described
in Miletić et al. (2021). For the RB and MSIT, the models
were picked based on formal model comparisons described
in Appendix 2.

Reinforcement Learning Tasks

We replicated the reinforcement learning speed-accuracy
trade-off task (RL-SAT) and a reinforcement learning rever-
sal task (RL-Rev) fromMiletić et al. (2021), in which partici-
pants were tasked to learn the reward probabilities associated
with different pairs of symbols. That experiment studied
reciprocal influences of learning and decision-making, by
integrating EAMs with reinforcement learning models (RL-
EAMS;Fontanesi et al., 2019a; Fontanesi et al., 2019b; Frank
et al., 2015;Miletić et al., 2021; Miletić et al., 2020; Pedersen
et al., 2017; Sewell et al., 2019). RL-EAMs propose that peo-
ple make decisions by gradually integrating information of
value representations associated with each available choice
option. When enough evidence has been accumulated, they
commit to a choice, and the associated feedback is used to
update the value representations. In turn, these value repre-
sentations drive the speed of evidence accumulation the next
time the decision-maker is faced with the same choice.

In the previous study (Miletić et al., 2021), the authors
relied on the delta learning rule tomodel the learning process:

Qt+1 = Qt + α(r − Qt ) (1)

This entails that the difference between reward r and the
current expected value Qt is scaled by the learning rate α

to determine how much the current value representation is
updated to form the new expected value representation fol-
lowing feedback Qt+1. These value representations drive
the drift rate, the speed of evidence accumulation. That
study showed that the choice of EAM in the RL-EAM
greatly influenced the extent to which the RL-EAM could
describe the data (Miletić et al., 2021). The authors concluded
that the advantage framework in combination with a racing
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diffusion model (ARD) could best describe the learning-
related increase in response accuracy and response speed.
The advantage framework posits that the speed of evidence
accumulation is a weighted sum of three components: first,
a baseline, evidence-independent component, which can be
interpreted as urgency (Miletić & van Maanen, 2019; True-
blood et al., 2021); second, the difference in perceived value
between the available options; and third, the sum of the per-
ceived values of all options (van Ravenzwaaij et al., 2019).
Additionally, the evidence accumulation process is subject
to Gaussian noise W , with standard deviation s, which was
fixed to 1 to satisfy scaling constraints (Donkin et al., 2009;
van Maanen &Miletić, 2020). When faced with two choices
as in our instrumental learning tasks, the accumulators asso-
ciated with each choice can thus be described as follows:

dx1 = [V0 + δ(Q1 − Q2) + �(Q1 + Q2)] + sW

dx2 = [V0 + δ(Q2 − Q1) + �(Q1 + Q2)] + sW (2)

Furthermore, non-decision time (t0) and response caution
(B) were also estimated.

The samemodel architecture, a combination of the advan-
tage framework racing diffusion model with a reinforcement
learning algorithm,was applied to both learning tasks.Below,
we outline task-specific changes to the modelling architec-
ture, if any, for the two reinforcement learning tasks.

Reinforcement Learning Reversal Task

The reinforcement learning reversal task (RL-Rev) is an
instrumental learning task in which the associated reward
probabilities within a pair are switched roughly halfway
through a block (Behrens et al., 2007; Costa et al., 2015).
This tests the ability of the participant to update their rep-
resentation of the most valuable stimulus within a stimulus
pair.Weused the above-describedRL-ARDto account for the
behavioral data of this task. The model predicts that follow-
ing the reversal, the reward prediction errors will increase,
which in turn will lead to updating of the Q values. The
RL-ARD we used for the RL-Rev has six free parameters
(α, V0, δ,�, B, t0).

Reinforcement Learning Speed-Accuracy
Trade-off Task

In the reinforcement learning speed-accuracy trade-off task
(RL-SAT), participants complete an instrumental learning
task inwhich they are instructed to emphasize response accu-
racy on half of the trials and response speed on the other
half of the trials (Sewell et al., 2019). On these speed tri-
als, participants also have less time to respond, forcing them
to leverage speed for caution, which is referred to as the

speed -accuracy trade-off (Ratcliff & Rouder, 1998; Bogacz
et al., 2010). Similar to other recent papers (Rae et al., 2014;
Arnold et al., 2015; Sewell et al., 2019; Heathcote & Love,
2012), Miletić et al. (2021) found that such SAT manip-
ulations are best described by both drift rate adjustments
(in this case separate urgency components, V0,spd V0,acc),
as well as threshold adjustments (different thresholds bspd
and bacc; Miletić et al., 2021). In total, the model we used
for the RL-SAT was a RL-ARD with eight free parameters
(α, V0,spd , V0,acc, δ,�, Bspd , Bacc, t0).

Reference-Back Task

The reference-back task (RB) is a working memory task in
which participants have to compare the current stimulus to a
stimulus held in working memory (the reference) to make a
binary “same” or “different” response. On comparison trials,
the stimulus needs only to be compared to the reference stim-
ulus held in working memory, whereas on reference trials,
the stimulus also becomes the reference for subsequent trials
(Rac-Lubashevsky & Kessler, 2016a; Rac-Lubashevsky &
Kessler, 2016b). Stimuli were presented as either the letter
“X” or “O,” encircled by a red frame for reference trials and
a blue frame for comparison trials. Using the RDM, we can
disentangle the cognitive costs of working memory updating
(reference trials) from working memory comparison (com-
parison trials).

Previous studies showed that participants performed bet-
ter when responding “same” compared to “different” and
when there was a comparison rather than a reference trial.
Furthermore, these studies also found a sequencing effect in
that participants were faster when previous trial’s trial type
(i.e., reference or comparison) was repeated compared to
a switch in the trial type sequence (e.g., Rac-Lubashevsky
& Kessler, 2016b; Boag et al., 2021; Rac-Lubashevsky &
Frank, 2021; Jongkees, 2020). In the current study, we also
found that participants performed better following stimulus-
identity (e.g., X or O) repetitions between trials compared to
switches in stimulus identity.We aimed to construct the most
parsimonious model that still accounted for the aforemen-
tioned effects and was similar in architecture as the RL-ARD
described above. Therefore, instead of letting drift rates vary
across response, trial type, trial type sequence, and stimulus
sequence, we used a sensitivity parametrization, in which the
drift rates for two options can be written as a combination of
an urgency term and a difference term (similar to Strickland
et al., 2018), such that

vcorrect = V0 + δ

2
, verror = V0 − δ

2
(3)

Thus, we can estimate some of the aforementioned effects
as differences in V0 (urgency) and some as differences in
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δ (processing ability), effectively reducing the number of
parameters estimated. This parameterization is essentially a
simplification of the advantage framework. To elaborate, the
V0 parameter in Eq.3 captures both the urgency and the sum
term of the advantage framework (Eq.2), since these cannot
be disentangled in a task where there are no inherent stim-
ulus values. Analogously, the δ in the advantage framework
weights the difference of stimulus values, whereas the δ in
Eq.3 captures the difference in evidence for each stimulus.
Even though this parameterization is a simplification of the
advantage framework, it still results in a range of models
that capture the effects associated with the RB task. Since
the above-described model was newly developed, we per-
formed a model comparison study to test which combination
of parameters could best account for our behavioral data (see
Appendix 2). In the winning model, the evidence accumu-
lation process for the correct and incorrect choice can be
described as follows:

dxcorrect = [V0,t ype−trans + δt ype,response]dt + sW

dxincorrect = [V0,t ype−trans − δt ype,response]dt + sW (4)

This entails that the δ parameter varied depending on
each combination of what would be the correct response
(“same” or “different”; same choices are generally easier)
and trial type (“reference” or “comparison”; comparison
trials are generally easier). We also estimated an urgency
term that differs for type transitions, e.g., repetitions in trial
type or switches in trial type. Additionally, the winning
model comprised a difference in threshold between repeti-
tions in stimulus identity and switches in stimulus identity.
In total, our RDM for the RB comprised ten parameters
(V0,t ype−trans1V0,t ype−trans2 , δresp1,t ype1 , δresp2,t ype1,

δresp1,t ype2 , δresp2,t ype2, Bstim−trans1 , Bstim−trans2 , t0).
We numbered the types of trials, transitions of trials, tran-
sitions of stimulus identity, and responses for brevity.

Multi-source Interference Task

The multi-source interference task (MSIT; Bush et al., 2003)
combines two types of interference with the relevant (target)
visual information, either from irrelevant location informa-
tion (the Simon effect; Hommel, 2011) or irrelevant stimuli
spatially adjacent to the target (the Flanker effect; Eriksen,
1995). In the current experiment, we use an adjusted ver-
sion of the MSIT (Isherwood et al., 2022), where Flanker
and Simon interference are presented both separately and
combined in different types of trials (for example trials, see
Fig. 2; for a more in-depth design description, see Appendix
1). Together, these different trial types allowed us to test the
extent to which decision-making processes are influenced by
Flanker or Simon interference and a possible combination of
both.We rely on an EAM framework that introduces separate

drift rates for both Flanker and Simon interference. In con-
trast to our other three decision-making tasks, participants
always had three response options rather than two.

To the best of our knowledge, there have been no previ-
ous studies that used a model-based approach to analyze the
MSIT. We therefore constructed a process-oriented model of
decision-making that could best describe the observed behav-
ioral effects. We hypothesized that the drift rate for each
choice is jointly driven by an urgency component and the
evidence supporting that choice. To quantify the evidence in
support for each choice, we described the drift rate for choice
A as a combination of possible Flanker support, Simon sup-
port, and target support (the correct response). Additionally,
the evidence accumulation process is subject to Gaussian
noiseW , with standard deviation s, which again was fixed to
1 to satisfy scaling constraints. Consequently, the drift rates
in our MSIT model can be described as follows:

dx = [V0 + vFlank + vSimon + δ]dt + sW (5)

where vFlank and vSimon were 0 if there was no Flanker sup-
port or Simon effect respectively. Similarly, δ was only added
to the accumulator that matched the correct response. Fur-
thermore, we found that response time and accuracy were
influenced by the position of the target, possibly due to left-
to-right reading effects. We therefore modified the starting
point of the accumulator corresponding to the target, based
on the position of the target. We fixed startpos3 to 0 to set
a base positional start point modifier to which the other
positional modifiers were relative, to satisfy scaling con-
straints. In total, ourMSITmodel comprised eight parameters
(vFlank, vSimon, δ, startpos1 , startpos2 , V0, B, t0).

The above-described model was selected after model
comparison against competing models (for details, see
Appendix 2).

Joint Model

For each task,weused the above-describedmodels to first test
to what extent the behavior of the participants on session 1 of
a task is related to their behavior on session 2 of a task. To that
end, we used a joint model of both sessions combined. These
four between-session joint models had two components: the
first component was the parameter set corresponding to the
first session, and the second component was the parameter
set corresponding to the second session.

We concatenated the parameters from the components into
a single vector of parameters thatwe estimated per participant
(random effects), and for each of those parameters, we also
estimated a group-level multivariate normal distribution that
describes the distribution of the parameters of all participants
as a group. The multivariate normal distribution allowed us
to estimate the covariances that existed between these group-
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Fig. 2 Visual descriptions of the
four decision-making tasks. A
The reversal learning task
(RL-Rev). The reward
contingencies are the reward
probabilities associated with the
two pairs of symbols presented
per block. B The multi-source
interference task (MSIT). C The
reference-back (RB). D The
reinforcement learning
speed-accuracy trade-off

level parameters (Turner et al., 2013; Gunawan et al., 2020):

p(α, μ,�|y) ∼ p(y|α)p(α|μ,�)p(μ,�) (6)

Here, y is the data of the two sessions, andα are the random
effects that are concatenated across all sessions. The term
p(y|α) constitutes the joint likelihood of the cognitive mod-
els across both sessions. Additionally, μ is the group-level
mean across individuals, and� is the group-level covariance
matrix that captures the relationships between individuals
across sessions. Here, p(α|μ,�) describes the reciprocal
relationship between the group-level distribution and the ran-
dom effects, and p(μ,�) are the priors on the group-level
parameters as described inGunawan et al. (2020).We applied
this covariance joint modelling architecture to construct
four joint models of the different sessions for the different
tasks.

Besides the between-session joint models, we similarly
constructed a joint model that simultaneously estimated the
parameters from all four task-specific models, which we will
again refer to as components. In order to reduce the number of
parameters we estimated, we pooled the data of both sessions

for each task and estimated only one set of parameters per
task. Nevertheless, if we combined the parameters estimated
per participant from each task-specificmodel component, we
would need to estimate 6 (RL-Rev) + 8 (RL-SAT) + 9 (RB) +
8 (MSIT) = 31 parameters per participant. If we then applied
a multivariate normal distribution as a group-level distribu-
tion, it would result in 31 means + 31×(31−1)/2 variances
and covariances, thus a total of 496 group-level parameters.
To reduce the number of estimated group-level parameters
and thus increase the number of data points per parameter,
we used hierarchical factor analysis rather than a hierarchi-
cal multivariate normal model (Innes et al., 2022). Such that
rather than estimating �, we estimate a factor decomposi-
tion of � at the group level that describes the relationships
between individuals using latent factors:

� = ��T + ε (7)

Here� are the factor loadings and ε describes the diagonal
residuals of the variances. The exact details of this decompo-
sition are described in Innes et al. (2022). We can now write
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the full model as:

p(α, μ,�, ε|y) ∼ p(y|α)p(α|μ,�, ε)p(μ,�, ε) (8)

Here, y is the data of the four tasks, and α are the ran-
dom effects that are concatenated across all tasks. The term
p(y|α) now constitutes the joint likelihood of the cognitive
models across all tasks. As in Eq.6,μ is the group-levelmean
across individuals; however, now, the relationships between
individuals across sessions are described using �. Thus,
p(α|μ,�, ε) describes the reciprocal relationship between
the group-level distribution and the random effects, and
p(μ,�, ε) are the priors on the group-level parameters as
described in Innes et al. (2022).

Besides the significant reduction in parameter space, the
hierarchical factor structure also allows us to examine the
latent factors for meaningful interpretation. To answer what
number of factors optimally described our data, we estimated
multiple joint factor models each with a different number of
factors and interpreted the model with the highest marginal
likelihood (the gold standard in Bayesianmodel comparison;
Kass & Raftery, 1995), as estimated by the newly developed
approach, importance sampling squared (I S2; Innes et al.,
2022; Tran et al., 2021). I S2 uses importance sampling on
both the individual level and the group level of the hierarchi-
cal model to obtain an estimate of the marginal likelihood.
The importance samples can subsequently also be used to cal-
culate Bayes factors (the ratio of two marginal likelihoods)
and a bootstrapped standard error of these Bayes factors.

BayesianMCMC Sampling Using PMwG

All models were estimated using particle Metropolis within
Gibbs sampling (PMwG; Gunawan et al., 2020), which com-
prises three phases: burn-in, adaptation, and sampling. The
group-level distributions, in our case the multivariate normal
or the factor decomposition of it, is described using Gibbs
sampling (George & Mcculloch, 1993). For the group-level
mean parameters, we used a multivariate normal prior with
variance 1 and covariance 0. The prior mean for the group-
level means was set to 2 for threshold (B) parameters, 2 for
processing ability (δ) parameters, 1 for urgency (V0) param-
eters, 0.2 for non-decision time (t0) parameters, and 0 for all
other parameters. For the prior on the group-level covariance
and factor structure, we relied on the default priors described
in Gunawan et al. (2020) and Innes et al. (2022) respectively.

The parameters at the individual level are estimated using
particle Metropolis-Hastings sampling (Chib & Greenberg,
1995), which uses different proposal distributions in combi-
nation with importance sampling. In the burn-in phase, these
proposals are drawn jointly from the group-level distribution
at that Markov chain Monte Carlo (MCMC) iteration and a
multivariate normal distribution centered on the previous set

of random effects of that individual in theMCMC chain. Fol-
lowing burn-in, the parameters have converged towards their
posterior; therefore, in the adaptation stage, we draw samples
that approximate the posterior distribution. We subsequently
use these samples to create a distribution that mimics the
posterior to efficiently draw proposals from. In the sampling
stage, this efficient distribution, together with the group-level
distribution and the distribution centered on the previous set
of parameters of that individual, is used to draw proposals
for the particle Metropolis-Hastings step for each individual
(Gunawan et al., 2020).

Results

Participants each completed four different decision-making
tasks twice.We analyzed the data using different jointmodels
that explicitly estimated the relationships between sessions
or between tasks in the architecture of the model. Of the
task-specific models that formed the components of the
joint models, the models of the RL-Rev and RL-SAT were
selected based on model comparisons described in Miletić
et al. (2021). The models of the MSIT and RB were newly
developed and selected after a model comparison study (see
“Materials and Methods”).

Between Sessions

For each task, we used a joint model of both sessions to
test to what extent the behavior was related between the
two sessions. These four between-session joint models had
two components: the first component comprised the EAM
parameters corresponding to the first session, and the second
component comprised the EAMparameters corresponding to
the second session. Our between-session joint models relied
on a multivariate normal distribution at the group-level to
account for the relationships between the parameters. We
included data from 54 participants in the between-sessions
joint model of the RL-Rev, 86 participants for the MSIT,
85 for the RB, and 54 for the RL-SAT (see “Materials and
Methods”). In Table 1, we report the credible intervals of
the group-level mean parameters for sessions one and two as
well as the response times and accuracy across participants.
Across tasks, we note that information processing ability (δ)
and urgency (V0) were higher in session two compared to
session one, whereas response caution (B) was lower. This
is consistent with the finding that response times decreased
in session two whereas response accuracy was more or less
stable.

Furthermore, we translated the covariances of the mul-
tivariate normal group-level into correlations. For all tasks,
we constructed credible intervals from the marginal poste-
rior distributions, for the correlations between parameters
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Table 1 95% credible intervals of the group-level means, response
times across participants, and accuracy across participants for sessions
1 and 2 for the different tasks

Session 1 Session 2
Variables 2.5% 50% 97.5% 2.5% 50% 97.5%

RL-Rev

δ 1.32 1.50 1.68 1.38 1.58 1.78

B 1.53 1.63 1.74 1.33 1.42 1.52

t0 0.11 0.13 0.15 0.12 0.14 0.17

V0 1.91 2.08 2.26 2.04 2.21 2.38

α 0.15 0.18 0.20 0.16 0.19 0.22

� 0.34 0.48 0.63 0.33 0.49 0.65

RT 0.49 0.67 0.79 0.38 0.55 0.65

Acc 0.55 0.64 0.81 0.57 0.65 0.76

MSIT

t0 0.19 0.21 0.23 0.20 0.22 0.24

vFl 1.02 1.13 1.25 1.08 1.22 1.35

vSi 0.99 1.13 1.26 1.02 1.17 1.32

str tp1 −0.02 0.04 0.09 0.00 0.06 0.11

str tp2 0.05 0.11 0.17 0.01 0.06 0.12

δ 2.40 2.60 2.82 2.68 2.90 3.12

V0 0.48 0.68 0.88 0.75 0.98 1.28

B 1.71 1.83 1.97 1.63 1.75 1.91

RT 0.54 0.62 0.82 0.48 0.55 0.71

Acc 0.71 0.84 0.93 0.71 0.85 0.93

RB

t0 0.10 0.12 0.14 0.12 0.14 0.16

V0t t1 1.84 1.97 2.11 2.14 2.32 2.52

V0t t2 1.66 1.78 1.90 1.97 2.13 2.30

δtr1 2.30 2.57 2.83 2.49 2.81 3.11

δtr2 2.35 2.60 2.84 2.65 3.00 3.36

δtr3 1.95 2.19 2.42 2.28 2.57 2.87

δtr4 1.42 1.63 1.87 1.72 1.98 2.24

Bst1 1.56 1.68 1.80 1.38 1.50 1.63

Bst2 1.77 1.90 2.04 1.56 1.69 1.81

RT 0.59 0.73 1.45 0.44 0.59 1.01

Acc 0.66 0.92 0.98 0.84 0.92 0.97

RL-SAT

t0 0.09 0.12 0.14 0.11 0.14 0.17

V0c1 2.83 3.06 3.25 3.21 3.53 3.81

V0c2 2.43 2.74 3.01 2.71 3.11 3.46

Bc1 1.65 1.79 1.92 1.48 1.71 1.91

Bc2 1.77 1.99 2.21 1.55 1.80 2.01

� 0.45 0.66 0.97 0.12 0.44 0.76

δ 2.03 2.47 3.18 2.12 2.49 3.21

α 0.04 0.07 0.10 0.05 0.08 0.11

RT 0.43 0.57 0.68 0.41 0.53 0.61

Acc 0.60 0.68 0.86 0.56 0.65 0.76

Table 2 95% credible intervals of the correlations between the same
parameters of sessions 1 and 2 for the different tasks

Correlation estimates
Variable 2.5% 50% 97.5%

RL-Rev

t0 −0.14 0.16 0.42

V0 0.11 0.41 0.66

B −0.21 0.11 0.41

δ -.40 −0.15 0.12

α -.46 −0.16 0.19

� -.38 −0.08 0.26

MSIT

t0 0.06 0.39 0.63

VFl 0.09 0.36 0.60

VSi 0.33 0.55 0.73

str tp1 0.15 0.44 0.66

str tp2 0.14 0.40 0.63

δ 0.33 0.55 0.72

V0 −0.06 0.25 0.55

B −0.14 0.24 0.54

RB

t0 0.06 0.37 0.62

V0t t1 0.20 0.48 0.69

V0t t2 0.17 0.42 0.65

δtr1 0.18 0.48 0.69

δtr2 0.29 0.55 0.74

δtr3 0.27 0.55 0.72

δtr4 0.20 0.47 0.68

Bst1 0.23 0.53 0.75

Bst2 0.29 0.56 0.75

RL-SAT

t0 0.19 0.46 0.66

V0c1 0.26 0.55 0.76

V0c2 0.42 0.64 0.79

Bc1 0.52 0.72 0.86

Bc2 0.58 0.76 0.87

� -.15 0.20 0.50

δ 0.13 0.48 0.72

α 0.34 0.60 0.78

Correlations with credible intervals not containing 0 are marked in bold

of the different sessions that mapped onto the same cogni-
tive construct (e.g., the correlation between t0 of session 1
and t0 of session 2). We found that these credible intervals
spanned only positive values for most of the parameters of
the RL-SAT, RB, andMSIT (see Table 2). These positive cor-
relations indicate that participants who, for example, showed
high response caution in session 1 also showed high response
caution in session 2.
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Fig. 3 Mean parameter
correlations of the joint models
of the two sessions of the
different tasks. The larger the
circles, the larger the absolute
size of the correlations. The
darker the red, the more negative
the correlations, and the darker
the blue, the more positive the
correlations. The black lines
within each figure delineate the
within and between-session
correlations

We also plotted the correlation matrices for the different
tasks (Fig. 3). The within-session correlations are symmet-
rical along the diagonal (ρvses1,bses1 = ρbses1,vses1 ), and
we therefore only plot the values below the diagonal. The
between-session correlations, which are then found in the
lower square of the triangular plots, are, however, not sym-
metrical (e.g. ρvses1,bses2 �= ρbses1,vses2 ). We found that again
for the RL-SAT, RB, and MSIT, the visual pattern of cor-
relations observed between the parameters within the same
session is replicated between the parameters of the differ-
ent sessions, albeit weaker in strength (see Fig. 3). This
entails that if, for example, information processing ability
and response caution were correlated constructs within a ses-
sion, they were also correlated between sessions.

For the RL-Rev, we found that the 95% credible intervals
for the correlations between the parameters that mapped onto
the same cognitive construct did contain 0 for most parame-
ters (Table 2), which indicates that the correlations between
sessions for the RL-Rev were inconclusive. Furthermore, the
same visual pattern of correlations within session was not

found between the two sessions, which again highlights that
there was lower similarity between the behavior in session
1 and session 2 of the RL-Rev compared to the other three
tasks.

Between Tasks

We constructed a joint model that simultaneously estimated
the parameters from all four task-specific models, which we
will again refer to as components. In order to reduce the
number of parameters we estimated, we pooled the data of
both sessions for each task and estimated only one set of
parameters per task. To further reduce the number of esti-
mated group-level parameters and thus increase the number
of data points per parameter, we used hierarchical factor
analysis (see “Materials and Methods”; Innes et al., 2022).
Furthermore, we can also examine the latent factors given by
the hierarchical factor model for meaningful interpretation.
Rather than inspecting separate correlation estimates, these
latent factors can be interpreted across tasks.
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To determine which number of factors best described the
relationships between the parameters of the joint model, we
estimated the marginal likelihood for one, two, and three-
factor models using a recently developed implementation of
I S2 for hierarchical factor models, which relies on impor-
tance sampling to obtain estimates of theBayes factors (Innes
et al., 2022; Tran et al., 2021). These importance samples
can subsequently also be used to obtain standard errors of
the Bayes factor estimates. We found that the group-level
relationships were best described with two factors, standard

errors in brackets [BF2−1 = 35.97(SE = 2.27), BF2−3 =
57.12(SE = 2.90)].We did not estimate a four-factormodel,
since the increased complexity of a three-factor model was
already not preferred over the two-factor model (Innes et al.,
2022). On an exploratory basis, we also investigated this two-
factor model applied to the first and second sessions of the
data separately.

The mean group-level factor loadings of our two-factor
model of the pooled data and the two sessions are plotted
in Fig. 4. The 95% credible intervals and the median for all

Fig. 4 Mean factor loadings of
the winning two-factor joint
model of the four
decision-making tasks. The
larger the circles, the larger the
absolute size of the factor
loadings. The darker the pink,
the more negative the
correlations, and the darker the
green, the more positive the
correlations
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loadings of the pooled data are presented in Table 3. We
found that all information discrimination ability (δ) parame-
ters, except for the RL-SAT, loaded positively onto the first
factor. Furthermore, other evidence accumulation parame-
ters of the MSIT and the RB also loaded positively onto
the first factor. Thus, our first factor appeared to capture
elements of the ability to discriminate information and of
general evidence accumulation across tasks. Note that we

Table 3 95% credible intervals of the factor loadings of the winning
two-factor joint model of the four decision-making tasks with the two
sessions pooled

Factor 1 loadings Factor 2 loadings
Variable 2.5% 50% 97.5% 2.5% 50% 97.5%

RL-Rev

δ 0.23 0.30 0.40 0 0 0

B −0.18 −0.05 0.11 0.22 0.28 0.37

t0 −0.03 0.02 0.7 −0.07 −0.02 0.03

V0 −0.14 0.015 0.20 0.02 0.18 0.36

α −0.14 −0.05 0.05 −0.05 0.05 0.16

� −0.05 −0.08 0.21 −0.19 −0.06 0.07

MSIT

t0 −0.02 0.03 0.08 −0.04 0.02 0.07

vFl 0.01 0.18 0.34 −0.08 0.08 0.23

vSi 0.01 0.18 0.34 −0.29 −0.12 0.04

str tp1 −0.08 −0.01 0.05 −0.09 −0.01 0.05

str tp2 −0.07 −0.02 0.04 −0.08 −0.01 0.06

δ 0.08 0.34 0.61 −0.08 0.21 0.52

V0 −0.38 −0.17 0.03 −0.34 −0.14 0.06

B −0.25 −0.14 −0.04 −0.17 −0.03 0.11

RB

t0 −0.02 0.03 0.08 −0.05 0.00 0.05

V0t t1 0.16 0.28 0.40 −0.07 0.12 0.29

V0t t2 0.13 0.25 0.36 −0.03 0.14 0.28

δtr1 0.45 0.66 0.89 −0.22 0.22 0.51

δtr2 0.42 0.66 0.91 −0.10 0.28 0.61

δtr3 0.42 0.63 0.89 −0.18 0.25 0.53

δtr4 0.30 0.45 0.63 −0.18 0.12 0.36

Bst1 −0.31 −0.19 −0.06 −0.01 0.13 0.27

Bst2 −0.37 −0.22 −0.07 0.02 0.17 0.33

RL-SAT

t0 −0.04 0.02 0.07 −0.10 −0.05 0.00

V0c1 −0.44 −0.13 0.30 0.39 0.61 0.90

V0c2 −0.55 −0.18 0.30 0.42 0.68 0.94

Bc1 −0.43 −0.16 0.20 0.43 0.60 0.81

Bc2 −0.48 −0.17 0.21 0.44 0.65 0.86

� 0.01 0.15 0.31 −0.19 −0.01 0.16

δ −0.14 0.06 0.26 −0.32 −0.12 0.07

α −0.09 0.05 0.20 −0.02 0.11 0.27

Loadings with credible intervals outside of 0 are marked in bold

also found weak negative loadings on the threshold param-
eters on the first factor for the MSIT and RB task, which
suggests that participants who were good at the tasks also set
lower thresholds for these tasks, as they could discriminate
evidence more quickly. Furthermore, we found that param-
eters that related to threshold (B) or urgency (V0) from the
reinforcement learning tasks loaded highly on the second fac-
tor. Thus, our second factor was related to time management
in the reinforcement learning tasks. Note that the first param-
eter (δ of the RL-Rev) on the second factor was fixed to 0
to satisfy estimation constraints (Innes et al., 2022; Ghosh &
Dunson, 2009).

These findings were mostly consistent with the factor
models applied to the separate sessions. However, for the
first session, we found that thresholds in the RB task also
loaded highly on the second factor. Furthermore, for the data
of the second session, we found that the parameters of the
RL-Rev did not have strong loadings on either factor.

Discussion

In this study, we investigated to what extent decision-making
behavior is related between different types of decisions. To
that end, we tested participants on four different decision-
making tasks: a reversal learning task (RL-Rev; Behrens
et al., 2007; Costa et al., 2015), a reinforcement learn-
ing speed-accuracy trade-off task (RL-SAT; Sewell et al.,
2019; Miletić et al., 2021), a working memory task called
the reference-back task (RB; Rac-Lubashevsky & Kessler,
2016a; Rac-Lubashevsky &Kessler, 2016b), and a cognitive
control task, called themulti-source interference task (MSIT;
Bush et al., 2003; Isherwood et al., 2022). We relied on evi-
dence accumulation models (EAMs) tailored to each task
to account for both modalities of decision-making behavior,
responses, and response times. Furthermore, EAMs facilitate
the interpretation of the behavior in terms of latent cognitive
constructs (the parameters in the EAMs) underlying the data
(Donkin & Brown, 2018; Ratcliff et al., 2016).

For the two learning tasks, we relied on previously devel-
oped and tested models that capture the interplay between
learning and decision-making (Miletić et al., 2021). How-
ever, for the RB and MSIT, we developed two novel mod-
elling approaches that provided a parsimonious account of
the different experimental effects in the respective designs.

To test relationships between the parameters of our dif-
ferent EAMs, we employed the joint modelling framework,
where relationships between parameters are measured with
less attenuation compared to standard approaches, using a
hierarchical model that explicitly estimates the relationships
between the parameters as an integral part of the model
(Turner et al., 2013, 2017; Wall et al., 2021; Matzke et al.,
2017). First, for each task, we constructed a between-session
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joint model of the two sessions participants had completed to
test to what extent the cognitive constructs, as proposed by
EAMs, were consistent between different time points. Then,
we constructed a between-task joint model to investigate to
what extent these constructs were related between different
decision-making domains.

Between Sessions

The between-session joint models of the RL-SAT, RB, and
MSIT showed high correlations between the same latent
constructs of the first and second sessions. Furthermore,
parameters that were correlated within session for these
three tasks were predominantly also correlated between the
two sessions, which indicates that strategic components of
the decision-making process were consistent between the
two sessions. For example, we found that participants who
showed higher non-decision times in session one not only
showed lower response caution within that same session to
compensate for the time taken, but also in session two. The
correlations across sessions between the same cognitive con-
structs and between strategic components together provide
evidence that EAMs capture a high degree of similarity in
behavior of the RL-SAT, RB, and MSIT.

In contrast to the three other tasks, for the RL-Rev, we did
not find these patterns of high between-session correlations
between the same constructs or strategic components. In the
RL-Rev, participants learned to identify to most rewarding
stimulus within a pair of stimuli; however, roughly halfway
through each block, the least rewarding stimulus of the pair
became the most rewarding and vice versa (Behrens et al.,
2007; Costa et al., 2015). This reversal is not explicitly
instructed to the participants. Thus, the dissimilarity between
the two sessions is potentially caused by the participants
slightly adjusting their behavior in the second session in
anticipation of the reversal, and the reversal learning task
might not be suitable for between-session aims.

Between Tasks

Our primary interest was to test to what extent the latent
cognitive constructs as proposed by EAMs were related
between different decision-making domains. To that end, we
constructed a joint hierarchical factor model that captured
the relationships between the parameters of four differ-
ent decision-making tasks using latent factors (Innes et al.,
2022). We found that the relationships between the parame-
ters of the joint model were best described using two factors.

Our first factor indicated that an individuals’ ability to
discriminate information quickly was related between the
different types of decisions they faced in three of our four
tasks. Furthermore, we also found that for the cognitive con-
trol task and working memory task, individuals who were

good at information processing subsequently also demon-
strated less response caution, potentially because of their
ability to discriminate the correct from incorrect choices
more quickly. Information processing ability in the rein-
forcement learning speed-accuracy trade-off task did not load
highly on the first factor, but rather the sensitivity to the over-
all available reward. Potentially, the speed pressure of the
speed emphasis trials shifted the decision-making mechan-
ics to be more sensitive to the overall reward.

The second factor in our hierarchical factor model pro-
vided support that strategic components were not fully
consistent across all tasks. Namely, the second factor indi-
cated that participants who demonstrated a stronger sense
of urgency, an evidence-independent part of the evidence
accumulation process (Miletić & van Maanen, 2019), also
showed higher response caution, but only in the two rein-
forcement learning tasks. The concept of urgency as defined
in our models has comparable effects on predicted behav-
ior as the concept of collapsing bounds in EAMs (Miletić &
van Maanen, 2019; Cisek et al., 2009; Thura & Cisek, 2016;
Hawkins et al., 2015). Thus, presumably participants that
exhibited a stronger sense of urgency had to compensate this
urgency by setting higher thresholds. Note that urgency and
thresholds have unique contributions to the decision-process.
High urgency paired with high response caution yields lower
accuracy with increasing response times compared to the
combination of low urgency and low response caution (True-
blood et al., 2021; Miletić & van Maanen, 2019). Thus, we
found evidence that a strategic component of time manage-
mentwas related across the two reinforcement learning tasks,
but not the other two decision-making tasks.

Furthermore, on an exploratory basis, we also separately
studied the first and second sessions of all tasks in two sepa-
rate factor models.We found similar results for both sessions
pooled together. However, we found that for the data of the
second session, the behavior on the reversal learning task did
not show any consistencies with the behavior of the other
tasks. This again corroborates our findings on the between-
session analysis of the reversal learning task, that behavior
changed between the first and second sessions, potentially
because of an anticipated reversal.

The results of our analyses are in keeping with earlier
work showing that the drift rate, which maps onto the latent
cognitive process of information processing ability or cogni-
tive efficiency, is mostly consistent across decision-making
domains (Lerche et al., 2020; Schubert et al., 2016; Weigard
et al., 2021; Schmiedek et al., 2007). The current work
builds on the aforementioned approaches, first by taking into
account more complex decision-making tasks from various
domains. Second, by employing the joint modelling frame-
work, specifically a joint hierarchical factor analysis (Innes
et al., 2022), that explicitly takes into account relationships
between the parameters of our models to reduce attenuation
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of the estimated relationships and to therefore obtain more
accurate estimates.

Although we did find information processing ability to be
mostly related between different types of decisions across our
tasks, we found strategic differences between the two rein-
forcement learning tasks and the other tasks. A limitation of
the current work is that we cannot rule out whether these
inconsistencies are caused by the dissimilarity in behavior
between these tasks or by the dissimilarity in the modelling
architecture, since we could not apply the exact same model
to all four tasks. Although we attempted to keep the task-
specific models as similar in architecture as possible, the
inherent differences between the different tasks also required
distinct modelling choices. Within the definition of an EAM,
psychologists attribute meaning to parameters of the model.
However, with complex tasks, we could only keep these
parameters as similar in mathematical definition as possi-
ble, and we were limited by the differences in the designs of
the tasks.

Nevertheless, this limitation holds for any analysis aimed
at comparing relationships of cognitive processes between
different types of decisions. Even in studies that performed
subtraction analysis of response times, these subtractions are
mapped onto inferred latent states, which can show even
weaker consistency compared to the latent constructs as pro-
posed by EAMs (Weigard et al., 2021; Price et al., 2019).

The current study highlights that interpretation of inferred
latent states between decision-making tasks must be done
with proper caution, since what can be referred to as urgency
in one task could map onto a different cognitive process
in another. Possibly, to take response caution, for example,
people could employ different response caution mechanisms
for different types of decisions, which is why we did not
find strong relationships between response caution across
all four tasks. Alternatively, people do employ the same
response caution mechanism across different types of deci-
sions, but our models failed to isolate this mechanism in
our response caution parameters, and different cognitive
processes partiallymapped onto our response caution param-
eters. The absence of a one-to-one mapping of processes
to parameters is of course to be expected, since models are
inherently simplifications (Marr & Poggio, 1977; Guest &
Martin, 2021). However, it becomes problematic when the
processes-to-parameter mapping differs between different
models, which could explain the inconsistencies in relation-
ships estimated between our parameters. Future work could
structurally explore to what extent the cognitive constructs
proposed byEAMsdiffer between taskswith varying degrees
of similarity, both in terms of modelling architecture and
design.

In summary, in the current work, we found that an individ-
ual’s ability to process information quickly and accurately
was related between the different types of decisions they

faced in our four tasks. Furthermore, three of our four tasks
showed high consistency in the proposed cognitive pro-
cesses across individuals, and the fourth task had an element
of surprise that was potentially lost in the second session.
Because of the flexibility of the proposed framework, our
methods can be easily extended to include models of neu-
ral data to study cortical and sub-cortical networks involved
in decision-making. Therefore, we believe that the joint
modelling framework should be utilized to study cognitive
processes at the core of decision-making.

Appendix 1. Design

Reinforcement learning tasks

Two of the four decision-making tasks were replications of
probabilistic instrumental learning tasks (Frank et al., 2004)
described in Miletić et al. (2021). Here, we describe the
general paradigm, after which we will highlight the differ-
ences between the two tasks. On each trial, participants chose
between two abstract symbols that were both associated with
a fixed probability of returning reward when chosen. Within
that pair of stimuli, one of the choice options always had a
higher chance of returning reward than the other. The aim for
the participant was to maximize returns, by learning through
trial and errorwhich of the two symbolswas associatedwith a
higher chance of returning reward. If a choice was rewarded,
the reward was equal to 100 points.

After each choice, participants received feedback con-
sisting of two components: an outcome and a reward. The
outcome refers to the outcome of the probabilistic gamble,
whereas the reward refers to the number of points the partic-
ipant actually received. If the participant responded in time,
the reward was equal to the outcome.

Reinforcement learning reversal learning task

In the reinforcement learning reversal task (RL-Rev), we
used the above-described paradigm with the following set-
tings. Participants completed two sessions, each with two
blocks and 128 trials per block. Two pairs of symbols with
associated reward probabilities 8/.2 and.7/.3 were presented
in a block, randomly interleaved. Between trials 61 and 68
(sampled fromauniformdistribution) of eachblock, the asso-
ciated reward probabilities within a pair were switched, such
thatwhat used to be themost rewarding stimuluswithin a pair
now became the least rewarding of the two stimuli. No sym-
bols were repeated between the blocks. Participants were not
informed of the reversal in the instructions of the experiment.
On each trial, the pair of symbols was presented until a par-
ticipant made a response, but with a maximum of 2000 ms.
Following stimulus presentation, the choice was highlighted
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for 500 ms after which feedback was presented for 750 ms.
One session of the RL-Rev was always paired with a ses-
sion of the reference-back task. The order of the tasks within
session and between the two sessions was counterbalanced
between participants.

On each trial, the pair of symbols was presented until a
participantmade a response, butwith amaximumof 2000ms.
Following stimulus presentation, the choice was highlighted
for 500 ms after which feedback was presented for 750 ms.

One session of the RL-Rev was always paired with a ses-
sion of the reference-back task. The order of the tasks within
session and between the two sessions was counterbalanced
between participants.

Reinforcement learning speed-accuracy trade-off task

In order to manipulate the speed-accuracy trade-off, a cue
and a deadlinemanipulation were added to the reinforcement
learning paradigm (Frank et al., 2004). Prior to each trial,
a cue instructed participants to emphasize response speed
(“SPD”) or accuracy (“ACC”). Participants did not earn a
reward in speed trials if they responded slower than 600 ms.
Speed and accuracy trials were randomly interleaved.

Participants completed two sessions with each having 324
trials with 108 trials per block. In each block, three different
pairs of symbols were each presented 36 times, with asso-
ciated reward probabilities 0.8/0.2, 0.7/0.3, and 0.6/0.4. No
symbols were repeated between the blocks. On each trial,
the cue was presented on screen for 1500 ms, after which
the pair of symbols was presented until a participant made a
response, but with a maximum of 1500 ms. Following stimu-
lus presentation, the choice was highlighted for 250 ms after
which feedback was presented for 1000 ms.

Reference-back

Our third task was a replication of the reference-back task
as described in Rac-Lubashevsky and Kessler (2016a). Par-
ticipants compared the stimulus presented on screen to a
stimulus held in working memory (the reference stimulus).
Two types of trials exist. In comparison trials, the partici-
pant only compared the stimulus to the previous reference
trial. In reference trials, the participant not only compared
the stimulus to the reference stimulus, but subsequently also
updated the current stimulus as the new reference stimulus
in working memory. Stimuli could be either a white “X” or
“O.” A blue frame around the stimulus indicated that the
current trial was a comparison trial. A red frame around the
stimulus indicated that the current trial was a reference trial.
Reference and comparison trials were randomly interleaved.
An example trial sequence is shown in Fig. 2.

At the start of each trial, a blank screen was presented
for 1000 ms, after which a fixation cross was presented for

1000 ms. Then, the stimulus was presented until a response
was made. Participants completed 192 trials per session. One
session of the RB task was always paired with a session
of the RL-Rev task. The order of the tasks within session
and between the two sessions was counterbalanced between
participants.

MSIT

The multi-source interference task is a cognitive control task
in which participants have to identify the unique number out
of three numbers presented on screen (Bush et al., 2003;
Isherwood et al., 2022).

In the “Flanker” condition, the two non-target stimuli have
the identity of another valid response. Furthermore, in the
“Simon” condition, the position of the stimulus and the iden-
tity of stimulus are incongruent (Simon).

In total, we can derive five different conditions from our
MSIT design (Fig. 2). In condition 1, the identity of the target
is congruent with its position, and the other two stimuli are
equal to 0. Since 0 is not a possible response option, there is
no response conflict in these trials. In condition 2, the iden-
tity of the target and its position differs, resulting in Simon
interference. In condition 3, there are Flankers that suggest
a different response than the target stimulus, but the posi-
tion and identity of the target are congruent. In condition 4,
there is both Flanker and Simon interference; however, the
Flankers point towards a different response than the Simon.
Lastly, in condition 5, there is again both Flanker and Simon
interference; however, both the Flanker and the Simon inter-
ference point towards the same incorrect response.

Participants completed 265 trials per session. On each
trial, after the response window, feedback of either “in time”
(responses less than 600 ms), “too slow” (responses between
600 and 900 ms), or “very slow” (for responses more than
900 ms) was shown. One session of the MSIT was always
paired with a session of the stop-signal task. The order of
the tasks within session and between the two sessions was
counterbalanced between participants.

Appendix 2. Model comparisons

Here, we describe themodel comparison studywe performed
for the reference-back (RB) task and multi-source interfer-
ence task (MSIT). For both tasks, we pooled the data of the
two sessions together and estimated different models to that
data. Model comparisons were made using the Bayesian pre-
dictive information criterion (BPIC;Ando, 2007), rather than
Bayes factor estimates using I S2, since in contrast to the
joint models, the individual likelihoods were of main inter-
est rather than the group-level distributions, in which case the
BPIC is far more computationally efficient. Note that con-
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Table 4 BPIC results for the different models compared for the
reference-back experimental data

Model Type Response Stimtrans T yptrans BPIC

1 V0 δ B V0 3642.5

2 V0 δ V0 B 4009.0

3 V0 δ B B 3530.6

4 δ δ B V0 3247.8

5 δ δ V0 B 3866.9

6 V0 δ B δ 3563.1

Each column in the table corresponds to a manipulation in the data for
which there were two conditions. The parameter mentioned in that col-
umn entails that for the model corresponding to that row, that parameter
was varied between those two conditions. Type refers to reference vs
comparison trial. Response refers to the same versus different trials.
Stimtrans refers to whether the current trial was a switch or repeti-
tion of stimulus (“X” or “O”) compared to the previous trial. T yptrans
refers to whether the current trial was a switch or repetition of trial type
(“reference” or “comparison”) compared to the previous trial

trary to Bayes factors and marginal log-likelihood estimates,
for the BPIC lower is better.

Reference-back

For the different RB models, we limited our model search
space byonly comparingmodelswhere allmanipulations and
sequence effects as described in the “Cognitive Modelling”
section were captured. Furthermore, we limited ourselves
to ten parameter models, which was the minimal amount
of parameters to describe all facets of the data, while
considering the cognitive plausibility and assumptions of
the effect-to-parameter mapping within the framework of
evidence accumulationmodelling. TheBPIC scores are sum-
marized in Table 4.

Table 5 BPIC results for the different models compared for the multi-
source interference task experimental data

Model Simon Flanker Target pos BPIC

1 v v v −21242.8

2 B v v −20948.1

3 v v start −21326.6

4 B v start −21041.1

For the Simon and Flanker conditions (columns), the parameter esti-
mated corresponded to the difference between baseline and that
condition. For the Target pos(ition), a different parameter was included
for each of the three positions where the target could be in. Position 3
was fixed to 0, for scaling constraints. Note that raising the start point
by a fixed amount is equivalent to lower the threshold by a fixed amount
within EAMs

Multi-source interference task

For the different MSIT models, the behavioral effects our
model was to capture were the Flanker manipulation, the
Simon manipulation, and the observed differences between
the left and right presentation of the target stimulus. Again,
we limited our model search by excluding mappings of
these effects to EAM parameters that violated assumptions
about these parameters. The BPIC scores are summarized in
Table 5.

Fig. 5 Posterior predictives for the reversal learning task. Top row:
choice proportions over trials, with choice option A defined as the high-
probability choice before the reversal in reward contingencies. Bottom
row: 10th, 50th, and 90th RT percentiles. Shaded areas correspond to
the 95% credible interval of the posterior predictive distributions of the
joint model and the model fit individually
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Appendix 3. Model fits

Here, we present posterior predictives for the different EAMs
we constructed. We summarize accuracy and correct and
error response time (RT) distributions of the four different
decision-making tasks. For each task,we plot these quantities
for the conditions of interest in the experiment. Through-
out, we plot the 10th, 50th, and 90th percentile of the RT
distributions. The 50th percentile corresponds to the central
tendency, and the smaller difference between the 10th and
the 50th percentile compared to the difference between the
90th and the 50th percentile summarizes the positive skew
generally found in RT distributions. For the RL tasks, we
visualize the effect of learning by dividing the trials in bins
and plotting the bins along the x-axis. All data are collapsed
across participants. To assess the overlap between the pre-
dictions of the joint model and the models fit individually,

we plot the posterior predictives of the joint model in green
and of the single, or individually fit, model in blue. We find
that the joint model generally predicts very similar behavior
as the models fit individually.

For the reinforcement learning reversal task, we found that
similar to Miletić et al. (2021), the model underestimates the
speed with which participants learn or adjust the stimulus
value representations both in terms of response times and
accuracy (Fig. 5). Still, the model captures the tendencies in
the data well.

The posterior predictives of the reinforcement learning
speed-accuracy trade-off task showed that the model under-
estimates the speedwithwhich participants learn the stimulus
value representations, which is specifically noticeable in the
accuracy condition (Fig. 6).

In the posterior predictives of the multi-source interfer-
ence task, we found that the correct RTs across all conditions

Fig. 6 Posterior predictives for
the reinforcement learning
speed-accuracy trade-off task.
Left: the data for all the trials
where the speed cue was
presented. Right: the trials
where the accuracy cue was
presented. The top row depicts
accuracy over trial bins. The
middle and bottom rows show
10th, 50th, and 90th RT
percentiles for the correct
(middle row) and error (bottom
row) response over trial bins.
Shaded areas in the middle and
right column correspond to the
95% credible interval of the
posterior predictive distribution
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Fig. 7 Posterior predictives for
the multi-source interference
task. a The data aggregated
across the three different target
identities. b The data aggregated
across the three different
positions where the target could
be presented, which is the Simon
distractor if it does not have the
same identity as the target. c
The data aggregated across the
different possible identities of
the Flanker distractors. The top
row depicts accuracy over trial
bins. The middle and bottom
rows show 10th, 50th, and 90th
RT percentiles for the correct
(middle row) and error (bottom
row) response over trial bins.
Shaded areas in the middle and
right column correspond to the
95% credible interval of the
posterior predictive distribution

and the accuracy across the position of the stimulus and the
identity of the Flanker match the behavioral data (Fig. 7). We
also found that the model underestimated the accuracy when
the target stimulus was position 1 and 3. Furthermore, the
error response time distributions were consistently overesti-
mated in the model. This misfit is most likely because of the
low percentage of errors in the behavioral data.

In the posterior predictives of the reference-back task, we
observed slight underestimations in the accuracy across the
experimental conditions (Fig. 8). The correct RT distribu-
tions generally matched the behavioral data. However, the
error RT distributions were mostly underestimated. Again,
this is likely because of the low percentage of errors in the
behavioral data.
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Fig. 8 Posterior predictives for the reference-back task. a The data
aggregated across the two different correct possible responses. b The
data aggregated across the two different trial types. c The data aggre-
gated across the different transitions in trial type compared to the trial
type of the previous trial. d The data aggregated across the different
transitions in stimulus identity compared to the stimulus identity of the

previous trial. The top row depicts accuracy over trial bins. The mid-
dle and bottom rows show 10th, 50th, and 90th RT percentiles for the
correct (middle row) and error (bottom row) response over trial bins.
Shaded areas in the middle and right column correspond to the 95%
credible interval of the posterior predictive distribution
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