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Abstract
Humans explore to learn the structure of our environment. However, it remains unclear how consistent humans are in the 
exploration strategies we use and how often we explore across different environments which vary in their volatility. Using 
a within-subjects design, participants (n = 30) completed (1) a non-stationary bandit task where the reward values changed 
throughout, and (2) a stationary bandit task where one option always gave better reward. We used a series of reinforcement 
learning models to understand the exploration strategies humans adopted in the two tasks. We found that most participants 
adopted a behavioural heuristic strategy (Win-Stay, Lose-Shift) in the non-stationary bandit task. In contrast, most partici-
pants adopted a probabilistic, random exploration strategy (Softmax) in the stationary bandit task. We compared our results 
when fitting models individually within each task to when fitting models across both tasks—that is focusing on long-term 
predictions. When fitting across both tasks we found that most participants solely adopted a probabilistic, random explora-
tion strategy. In addition, we found a moderate, positive relationship between exploration rate in each of the two bandit 
tasks. Our findings show that humans can flexibly adopt different exploration strategies depending on task demands, which 
we suggest is because the two bandit tasks assessed different aspects of learning and required different levels of cognitive 
flexibility. In addition, we speculate that the relationship between exploration rate could reflect a personality trait such as 
risk-taking. In sum, we found evidence for the flexible use of exploration strategies, while also observing evidence of the 
generalization of exploration across tasks.

Keywords  Reinforcement learning · Explore-exploit · Learning · Decision making · Computational modeling · Exploration 
strategies

An Examination of the Explore‑Exploit 
Dilemma in Different Learning Environments

We learn through the act of exploration. To gain knowledge, 
humans search their environments to learn the causal rela-
tionships between stimuli, responses, and outcomes (Ber-
ridge, 2000). When we choose to explore, we balance the 
trade-off between what we know and our expectations of 
our other options—we attempt to solve the explore-exploit 
dilemma. Importantly, how we gain knowledge and solve the 
explore-exploit dilemma is related to the strategies we use to 
explore. For example, consider what strategies you could use 
when choosing a film to watch. If you are only considering 
two or three options, you might adopt a strategy to spend 
time reading reviews, deciding if you enjoyed prior work by 
the director, and considering the cast. If instead there were 
many options, such as when using a streaming service, then 
you might instead rely on a heuristic like “I enjoy neo-noir 
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movies” rather than considering all options individually. We 
posit that the strategies we use to explore depend on the 
context in which we are making the decision.

Here we rely on two pieces of evidence to suggest 
that humans can flexibly use different exploration strate-
gies across tasks. First, computational modeling work has 
highlighted a variety of exploration strategies that humans 
can adopt (e.g., Daw et al., 2006; Payzan-LeNestour & 
Bossaerts, 2012; Schulz et al., 2018a, b) and people use 
different exploration strategies concurrently within a task 
(Wilson et al., 2014). Second, evidence suggests that the 
same group of people can adopt different exploration strate-
gies depending on task demands (Schulz et al., 2018b; Wu 
et al., 2020). Thus, in the present work, we sought to expand 
our understanding of how and why different exploration 
strategies are used by comparing exploration within learn-
ing environments which differed in their volatility. Being 
able to modulate learning under conditions of environment 
volatility is a key aspect of learning, and unsurprisingly, 
humans adapt their learning by modulating action-outcome 
relationships depending on environmental volatility (e.g., 
Behrens et al., 2007; Browning et al., 2015). Here we hoped 
to extend these findings by examining exploration in an envi-
ronment where reward values changed throughout (a volatile 
environment, i.e., non-stationary) and an environment where 
reward values were unchanging (a consistent environment, 
i.e., stationary).

Further, we investigated whether aspects of exploratory 
behaviour—in the present work, exploration frequency—are 
consistent across tasks. While no prior work has investigated 
whether people are consistent in the frequency with which 
they explore, there is evidence that switching rates across 
tasks and sessions is moderately correlated (Yechiam, 2020). 
We do note that while switching and exploration are likely 
correlated, switching to another choice can reflect choos-
ing the highest value option while exploration does not. 
That is, while someone may switch to another option due 
to a decrease in value of their previous choice, exploration 
involves investigating an option that currently has a lower 
value compared to the previously selected option. Although 
the specific reasons why there is a consistency in switching 
rates are unclear, it could be related to personality trait dif-
ferences across people (as suggested by Yechiam, 2020). 
For example, someone who is more willing to tolerate risk 
might be more likely to explore across different contexts 
when compared to someone who is less tolerant of risk. 
Moreover, there is evidence in a consistency in risk taking 
across multiple sessions within paradigms that assess learn-
ing (Yechiam & Telpaz, 2013).

Methods adapted from reinforcement learning provide a 
means to investigate exploration strategies, and the drive 
for knowledge more generally. As noted by Niv (2009), 
reinforcement learning models are one of the few modeling 

approaches which provide a solution to Marr’s three levels 
of analysis for cognitive systems (Marr, 1982). Ideas gleaned 
from reinforcement learning models demonstrated the role 
of the dopaminergic system in guiding feedback learning 
(Schultz et al., 1997) and helped reveal the electrophysi-
ological signals involved in feedback processing (Holroyd 
& Coles, 2002). More relevant for the present work, tasks 
adapted from reinforcement learning provide a means of 
investigating the explore-exploit dilemma (Sutton & Barto, 
2018). For example, the application of reinforcement learn-
ing models to “multi-arm bandit paradigms” have provided 
a framework for understanding exploration in both artifi-
cial and human agents. In a multi-arm bandit task (Robbins, 
1952; Thompson, 1933), an agent makes selections from a 
series of options (known as arms), receives feedback from 
their selections, and attempts to learn which arm allows the 
agent to maximize reward long-term. Within the multi-arm 
bandit task, the agent must effectively trade-off between 
exploring to gain knowledge about the arms and exploiting 
when the arm which provides the best long-term feedback 
is found. As has been highlighted elsewhere (e.g., Cohen 
et al., 2007), finding a computationally tractable solution to 
a multi-arm bandit task can be difficult due to the complex-
ity of correctly modeling future decisions (Gittins & Jones, 
1974). Luckily, reinforcement learning models provide a 
means of approximating a solution to the multi-arm bandit 
problem (Lattimore & Szepesvári, 2020; Sutton & Barto, 
2018), and these models have been effective at modeling 
human choices in multi-arm bandit tasks (Daw et al., 2006; 
Gershman, 2019; Li & Daw, 2011).

As to the strategies which humans use to explore, an ini-
tial question in the literature was whether humans explore 
by biasing their selection to options that are more uncertain 
or whether humans simply explore randomly using value. 
In fact, the initial evidence on whether humans explored 
using uncertainty was mixed (e.g., Daw et al., 2006 observed 
no evidence of uncertainty-guided exploration while Knox 
et  al., 2012 did). However, an important methodologi-
cal insight led to the observation that humans in fact use 
multiple forms of exploration concurrently when learning 
(Wilson et al., 2014). Specifically, Wilson and colleagues 
(2014) argued that uncertainty-based exploration has not 
been consistently observed due to conflation of value and 
information within bandit paradigms. That is, the options 
which have high value estimates also tend to have been 
options that have been sampled more often in the past. In 
fact, careful experimental design separating information and 
value during learning led to the observation that humans use 
both “random” and “directed” exploration strategies (Wilson 
et al., 2014). Random exploration is the stochastic selection 
of options that is not tied to considerations of stimuli infor-
mation and uses random sampling to learn about options. 
That is, under random exploration competing exploratory 
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decisions typically have the same likelihood of being cho-
sen. In contrast, directed exploration is the exploration of a 
specific choice due to that choice having higher values of 
information, and the highest uncertainty.

Importantly, work has extended the finding that humans 
use both directed and random exploration. Specifically, 
humans use both directed and random exploration in a two-
armed bandit task which differed in the levels of risk associ-
ated with each arm, and both strategies were shown to coex-
ist to determine how exploration occurs (Gershman, 2019). 
In addition, work has shown that humans also use both 
directed and random exploration in a more ecologically valid 
bandit paradigm which included a larger decision space and 
spatial relationships between reward values—as might be 
seen in real-world learning (Wu et al., 2018). That humans 
can use both directed and random exploration speaks to the 
importance not only of the application of flexible behav-
ioural strategies but the importance of being able to detect 
when to apply these strategies. Given the evidence provided 
by Wilson and colleagues (and others) that humans can use 
both random and directed exploration strategies within a 
single task, it seems likely then that task and environmental 
demands can determine when specific exploration strategies 
are used.

Random and directed exploration strategies have been 
operationalized using a variety of choice selection models. 
In some cases, random exploration has been investigated 
using a model known as ε-Greedy (e.g., Barron & Erev, 
2003). In the case of the ε-Greedy model (Sutton & Barto, 
2018), an agent (whether human or artificial) typically 
chooses the highest value option but will explore the remain-
ing options randomly per an exploration parameter from the 
model. In addition, a probabilistic exploration model that 
usually chooses the highest value option but explores the 
remaining options proportionally to their value (Softmax 
model; typically considered as a form of random explora-
tion) has been applied to human choice data. In fact, within 
a non-stationary bandit task humans were found to use prob-
abilistic, random exploration (that is, their behaviour was 
best fit by the Softmax model) and there was no evidence 
of humans exploring using uncertainty (Daw et al., 2006).

However, further work has indeed shown evidence that 
humans use uncertainty-guided exploration strategies within 
a non-stationary bandit paradigm (e.g., Speekenbrink & 
Konstantinidis, 2015). Speekenbrink and Konstantinidis 
found that a strategy akin to Thompson Sampling (Neimark 
& Shuford, 1959; Thompson, 1933) combined with a Bayes-
ian update rule (the Kalman Filter; Kalman, 1960) provided 
the best fit of participants’ behaviour—a model that was 
not considered in the original investigation by Daw and col-
leagues (2006). We do note that within the bandit paradigm 
of Speekenbrink and Konstantinidis, a subset of partici-
pants continued to adopt different variants of probabilistic, 

random exploration (Softmax). Relatedly, models which 
incorporate Thompson sampling have been used as a means 
of operationalizing random exploration in stationary ban-
dit paradigms as well (Gershman, 2019). Within the same 
paradigm, Gershman (2019) operationalized directed explo-
ration using a model known as the Upper Confidence Bound 
model (Auer, 2002), which adds an information bonus tied to 
uncertainty to exploration. Finally, hybrid models combining 
both random and directed exploration are used across the 
literature (Softmax with an exploration bonus model; Meder 
et al., 2021; Schulz et al., 2018a, 2018b; Speekenbrink & 
Konstantinidis, 2015; Wu et al., 2020).

While random and directed explorations have been key 
constructs in our understanding of exploration strategies, 
there is a wide variety of approaches used to study explora-
tion within bandit tasks. For example, humans adopt dif-
ferent exploration strategies depending on the environment 
(Schulz et al., 2018a). That is, in a simple bandit task—
where binary cues predicted outcomes—humans used an 
exploration heuristic tied to utility while in a more complex 
bandit task—where continuous cues predicted outcomes—
people used both random and directed exploration strate-
gies. Gradient approaches (R. J. Williams, 1992)—compu-
tational models which calculate action preferences rather 
than directly estimating action values—are also effective 
at modeling human behaviour in tasks that require explo-
ration (Li & Daw, 2011; Zhang & Yu, 2013), Moreover, 
Gradient models may be more plausible when compared to 
models that specifically estimate action values, given the 
lack of evidence for direct economic computations of value 
within the brain (Bennett et al., 2021; Hayden & Niv, 2021). 
Lastly, behavioural heuristics such as Win-Stay, Lose-
Shift—which do not assume any learning about the long-
term reward values of options—have proven to be effective 
at modeling both human Iowa Gambling Task performance 
(Worthy et al., 2013) and bandit task performance (Bona-
witz et al., 2014), and have been used to examine explora-
tion (Wu et al., 2018).

Although the above evidence suggests that humans 
can adopt different exploration strategies, the problem of 
whether exploration strategies are used consistently across 
environments remains under investigated. In fact, how we 
explore appears to not always be consistent across tasks. 
Two prior investigations have shown that humans can flex-
ibly change their exploration strategy across environments 
(Schulz et al., 2018b; Wu et al., 2020). For example, when 
learning in a risky environment (where points could be 
lost) participants adopted an exploration strategy where 
they avoided risky choices (a “probability of being safe” 
strategy). However, when the same group of participants 
were learning in a safe environment (where no points could 
be lost) they instead adopted both directed and random 
exploration (Schulz et al., 2018b). That the introduction of 
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risk would change how humans explore and sample their 
environment makes sense—the introduction of adversity 
should change behaviour by encouraging participants to 
avoid exploring certain options when they carry risky out-
comes. Further work has compared learning within spatial 
and non-spatial environments and found that the same group 
of participants can adopt different strategies across multiple 
experimental sessions (Wu et al., 2020). Wu and colleagues 
found that humans used more directed exploration in the 
spatial environment while showing a decrease in directed 
exploration and a concomitant increase in random explora-
tion in the non-spatial environment. These two results high-
light that even the same group of participants can indeed 
adopt different exploration strategies depending on the task 
demands and structure. There has been a lack of work in 
humans examining whether exploration strategies change 
depending on environmental volatility. Thus, we hope to 
extend these two findings of flexible exploration strategy 
use to learning under different conditions of volatility.

In the present work, we investigated how humans 
explored two distinct multi-arm bandit tasks which differed 
in their level of environmental volatility. Our main goal was 
to investigate whether humans are consistent in the explora-
tion strategy they adopt across two bandit environments. We 
tested participants in a non-stationary bandit task where the 
reward values changed throughout the task, and in a station-
ary bandit task where one arm always had a higher reward 
probability. We included a series of models which approxi-
mate exploration in different ways to better understand how 
humans explore in non-stationary and stationary bandit 
environments—including several state-of-the-art methods 
widely used in reinforcement learning (though ours are sim-
plified and specialized to our bandit setting). Specifically, 
we compared a series of seven computational models (and 
an additional baseline) in their ability to correctly fit human 
behaviour in the two bandit paradigms.

Briefly we discuss the rationale for the inclusion of 
each non-baseline model. Given the importance of both 
directed and random exploration in our understanding of 
human exploration, we included models which used these 
approaches for exploration and action selection. We included 
a random exploration model (ε-Greedy; Sutton & Barto, 
2018), a directed exploration model (Upper-confidence 
bound; Auer, 2002), and a hybrid model which included both 
directed and random, probabilistic exploration (Softmax 
with Exploration Bonus; Daw et al., 2006; Speekenbrink & 
Konstantinidis, 2015). We also examined a random, proba-
bilistic exploration model which explored using value (Soft-
max), which has proven to be effective at modeling human 
exploration in a non-stationary bandit paradigm (Daw et al., 
2006). Moreover, we included a Bayesian learner (Kalman 
Filter with Thompson sampling) because it has also been 
shown to be effective at modeling human learning within 

non-stationary bandit paradigms (Speekenbrink & Kon-
stantinidis, 2015). We also examined two types of models 
that have been under-investigated in human exploration. We 
examined a probabilistic exploration model that explored 
using action preferences (Gradient bandit algorithm; R. J. 
Williams, 1992) given that Gradient models can provide par-
simonious explanations for human learning (Hayden & Niv, 
2021). We also examined a behavioural heuristic (Win-Stay, 
Lose-Shift), a model which has received comparatively lit-
tle examination in human exploration studies (although see 
Wu et al., 2018 for an example) but can provide effective 
accounts of human learning in bandit-style task (Bonawitz 
et al., 2014; Worthy et al., 2013).

For our main goal of determining whether exploration 
strategy use is consistent across tasks, we expected that 
humans would flexibly use different exploration strategies 
depending on the task. This finding would extend prior work 
showing humans adopt different exploration strategies across 
experimental conditions (Schulz et al., 2018b; Wu et al., 
2020). In addition, we investigated whether there were any 
differences when fitting models within each bandit task indi-
vidually as compared to fitting the models using the com-
bined data across each task. This sort of method is important 
because it allows for the investigation of how an approach 
might lead to more generalizable models (the combined 
fitting approach across both bandit tasks) and can provide 
complementary results when compared to fitting the mod-
els individually within each bandit task. Lastly, we investi-
gated whether there was any relationship in the frequency of 
exploration rate across tasks. Given recent concerns raised 
over the generalizability of reinforcement learning model 
parameters and the underlying relationship between these 
parameters and cognition in humans (Eckstein et al., 2022), 
we hoped to determine if there are generalizable aspects of 
human exploratory behaviour. Given prior work showing a 
moderate correlation between switching rates in a bandit-
style task (Yechiam, 2020), we expected that there would 
be a relationship between exploration frequency in the two 
bandit paradigms.

Method

Participants

In the present experiment, a total of 30 participants (15 
males, 15 females; age range 18 to 40, mean age = 21.37, 
95% CI [19.69, 23.05]) were recruited from the University of 
Victoria. The participants we analyzed were in fact recruited 
for a separate study that examined the effect of acute stress 
on learning (Ferguson & Krigolson, in-prep) and the anal-
yses here should be considered post hoc. All participants 
reported in the present work were in the control condition 
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and did not undergo an acute stressor. However, as the sam-
ple was selected from an experiment examining the effect 
of acute stress, we used exclusion criteria adapted from 
research on acute stress (Shields, 2020). Specifically, par-
ticipants were excluded if they had any reported neuropsy-
chological or health issues, regularly smoked cigarettes, 
were on hormonal birth control, or if they had eaten a large 
meal, exercised, or had smoked for at least two hours prior 
to the experiment. Participants provided written informed 
consent prior to the completion of the experimental session, 
and participants either received course credit for a Psychol-
ogy course for their participation or were compensated at a 
rate of 15.00$ Canadian per hour. The Human Research Eth-
ics Board at the University of Victoria approved all experi-
mental procedures (Date: 25-Sep-2019; #19–0230), and all 
research was performed in line with the principles of the 
Declaration of Helsinki.

Apparatus and Materials

Participants completed two tasks (Fig. 1): (1) a non-station-
ary bandit task (Berry & Fristedt, 1985; Daw et al., 2006) 

and (2) a stationary bandit task (Krigolson, 2018; C. C. 
Williams et al., 2021). Testing occurred in a soundproof 
room, where participants were seated 12 inches in front 
of a 23-inch monitor (1680 by 1050 pixels). Stimuli were 
presented in MATLAB (Version 9.6, Mathworks, Natick, 
U.S.A.) using the Psychophysics Toolbox extension (Brain-
ard, 1997; Pelli, 1997). For both bandit tasks, all instructions 
were presented on the computer itself. An experimenter was 
present to clarify any questions from the participants.

Non‑Stationary Bandit

In the non-stationary bandit task, four options (i.e., “arms”) 
were presented to participants. Prior to starting the task, par-
ticipants were given instructions of the task demands and 
an example of the arms’ continuous reward (points) prob-
abilities. Participants were told that their goal for the task 
was to maximize reward and that the number of points the 
arms gave would be slowly changing across trials. The four 
arms were visualized as different colour squares—the four 
colours were randomized for each participant—presented 
against a black background. Participants used the mouse to 

Fig. 1   Methods. A Task structure for the non-stationary bandit task. B Example reward distributions for three sample runs of the task. C Task 
structure for the stationary bandit task. Trials progressed from left to right for both A and C
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select an arm. In the non-stationary bandit task, the four 
arms remained in the same location on the display through-
out the task. Participants completed 400 trials of the task 
and were given a rest-break after the completion of each 
block of 100 trials. If the participant did not select an arm 
within 2000 ms, then the participants were shown a message 
stating “TOO SLOW” for 1000 ms and were not given any 
feedback. These too-slow trials were considered invalid.

For the non-stationary bandit task, we used the random-
walk parameters from (Daw et al., 2006). Thus, the start-
ing point values for the four arms were randomly selected 
between 1 and 100 points. Point values were then drawn 
from a Gaussian distribution with a mean ( �k,t ) and a stand-
ard deviation which was equal to four. To calculate the mean 
of the Gaussian distribution for each arm (k) and each trial 
(t), the point values of the arms were updated using a Gauss-
ian random walk:

where � was a decay parameter equal to 0.9836, � was the 
decay center (equal to 50), and v was a diffusion noise param-
eter. On each trial, the diffusion noise parameter was sampled 
from a Gaussian distribution with a mean of zero and a stand-
ard deviation of 2.8. The point values of the four arms were 
always rounded to the nearest integer and were never allowed 
to fall below one or exceed 100. For each participant, these 
reward values were randomly generated prior to complet-
ing the task. The underlying reward values of the arms did 
not reset at the beginning of each block, instead, the reward 
values continued drifting per the random walk parameters.

Stationary Bandit

The participants also completed a stationary, two-armed ban-
dit. Participants were given instructions that their goal was to 
maximize reward by identifying and selecting the bandit arm 
that won the most often. Following a selection, participants 
received “WIN” feedback or “LOSS” feedback. Participants 
were informed that they had to select between two arms and 
that the two arms differed in their win percentage. If par-
ticipants did not select in time, then the trial was considered 
invalid, while if they selected prior to the go cue then they 
received feedback that said “TOO FAST”. Prior to beginning 
the task, participants completed two practice rounds of ten 
trials each to ensure they understood the instructions. In the 
first practice round, one arm would provide win feedback 
100% of the time it was selected while the other arm would 
provide win feedback 0% of the time. In the second practice 
round, one arm would provide win feedback 75% of the time 
it was selected while the other arm provided win feedback 
10% of the time. For the task itself, one arm provided win 
feedback on 60% of the trials it was selected while the other 

(1.1)�t+1,k = �t,k + (1 − �)� + v

arm provided win feedback 10% of the time. Participants 
were told the underlying win probabilities for the two arms 
but were informed that they would have to learn which arm 
corresponded to which win probability. For each trial, the 
arms were randomly assigned to either the left or the right 
side of the screen. Each side of the screen required a different 
response – to select the left arm participants had to press the 
“f” key and to select the right arm participants had to press 
the “j” key. At the conclusion of each block of trials, the 
colours of the two arms changed, and the participants had 
to re-learn which arm won more than the other. Participants 
completed 5 blocks of 20 trials each.

Protocol

We had all participants complete the non-stationary bandit 
task before beginning the stationary bandit task. On average, 
the non-stationary bandit task took between 15 and 20 min 
to complete. In contrast, the stationary bandit task took 
between 8 and 10 min to complete.

Computational Modeling Approach

To determine what action-selection strategy participants 
used in the two tasks, we modeled participants’ behav-
iour using eight different models. The eight models we 
used were: (1) a bias model to provide a baseline (Love & 
Gureckis, 2007; Wilson & Collins, 2019), (2) an ε-Greedy 
model, (3) an Upper-Confidence Bound model, (4) a Soft-
max model, (5) a Gradient model, (6) a Win-Stay Lose-Shift 
model, (7) a Kalman filter with Thompson Sampling Model, 
and (8) a Softmax with exploration bonus model.

Non‑Stationary Models

Bias Model  To ensure we had a proper baseline (Love & 
Gureckis, 2007; Wilson & Collins, 2019), we created the 
bias model. In the bias model action selection was based 
on a bias parameter. That is, on each trial (t) the probability 
of making an action ( a) was fit to a parameter biased to 
select one arm (k) over the others. Thus, the model attempted 
to account for whether participants were biased to select 
one arm over the others (for example if they preferred the 
color) regardless of feedback. To select an action, the model 
selected the “bias arm” when the bias parameter ( �) was 
greater than a randomly sampled value from a uniform dis-
tribution between 0 and 1:

If the model did not select the “bias” arm, then one of the 
other three arms was selected randomly. As well, the bias 

(1.2)Pt

(

ak
)

=

{

� if ak is the bias arm
(

1−�

3

)

otherwise



677Computational Brain & Behavior (2023) 6:671–696	

1 3

arm was pre-determined by the model as the arm selected 
the most often by the participants. Thus, the bias model 
does not involve any trial-by-trial updating of parameters 
from the feedback obtained or estimates of the arm’s reward 
value (Ahn et al., 2008). For the bias model, we only fit 
a single bias parameter (�) for each participant (see the 
parameter optimization section below).

ε‑Greedy Model  The ε-Greedy model utilized a near-
greedy approach to select an action. To select an action, the 
ε-Greedy model usually chose the arm with the highest value 
per the model. However, on a sub-set of trials proportional 
to the exploration parameter (�), the model chose an arm 
randomly. On each trial (t) the probability of selecting an 
arm (k) was determined by:

Thus, a larger value for the exploration parameter meant that 
the model explored more, while a smaller value meant that the 
model explored less and chose the highest-valued arm more 
often. We initialized all arm values ( qt ) to 0 and the values for 
the selected arm were updated using the following formula:

With � being the learning rate and �t being a prediction 
error with the following formula:

In this case, rt is the reward value obtained from the 
selected arm divided by 100 (60 points would thus be 0.60).1 
We divided the points by 100 to avoid excessively large val-
ues when calculating the choice probabilities, as large val-
ues can introduce arithmetic problems caused by rounding 
errors or memory errors in the scripting language we used 
(Python). For the ε-Greedy model, we fit two parameters: the 
exploration rate parameter and the learning rate parameter.

Sliding Window Upper Confidence Bound  The sliding 
window upper confidence bound model computed a confi-
dence bound (uncertainty estimate) around the reward esti-
mate which was then modulated through a sliding window 
parameter (Garivier & Moulines, 2008). The sliding win-
dow parameter added a fixed time horizon to ensure that the 
model was more heavily weighted towards recent rewards by 
only including rewards obtained within the window chosen. 

(1.3)Pt

(

ak
)

=

{

(1 − �) if k = argmax
(

qt
)

�

3
otherwise

(1.4)qt+1,k = qt,k + � ∗ �t

(1.5)�t = rt − qt,k

Thus, the model can account for the non-stationary nature of 
the task. The model computed two values: a reward ( qt ) and 
an uncertainty value ( ct ) as per the sliding window param-
eter ( � ). Using the estimated reward and uncertainty values, 
the model then chose the arm with the maximal value:

In turn, the reward values were estimated using the fol-
lowing formula:

where Xs(k) is the history of the reward when arm k was 
selected within the sliding window. The uncertainty value 
was estimated as:

where ξ is a constant value that we set to 0.95. Thus, on each 
trial for each arm, the model computed a reward estimate 
using the history of the actual rewards obtained ( rs) across the 
total number of times the arms were selected within the slid-
ing window. Note that B in Eq. 1.8 is an exploration param-
eter that we held constant across all participants using a value 
of 0.1. The inclusion of the uncertainty term in the sliding 
window upper confidence bound model meant that the model 
explored arms that have the highest level of uncertainty—that 
is, the arms which had been selected less. For the sliding win-
dow upper confidence bound model, we only fit the sliding 
window parameter for each individual participant.

Softmax Model  For the Softmax model, action selection was 
determined using a Softmax equation. Like the ε-Greedy 
model, the Softmax model typically chose the highest value 
arm although it explored the other stimuli per the tempera-
ture parameter ( � ). Thus, on each trial, the probability of 
selecting an arm was divided by the sum of all possible 
actions given by the Softmax formula:

 where the temperature � controls the amount of exploration. 
A higher temperature meant that the model explored less 
while a lower temperature meant that the model explored 
more. The value of the arm chosen was then updated as per 
the update rule specified in the ε-Greedy model. Thus, for 
the Softmax model, we fit two parameters: the temperature 
parameter and the learning rate parameter.

(1.6)Pt
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qt(� , k) + ct(� , k)
∑

qt + ct

�

(1.7)

qt(� , k) =
1

Nt(� , k)

t
∑

s=t−�+1

Xs(k)�{Ks=k}
,Nt(� , k) =

t
∑

s=t−�+1

�{Ks=k}

(1.8)ct(� , k) = B

�

ξlog(t
⋀

�)

Nt(� , k)

(1.9)Pt

�

ak
�

=
exp(� ⋅ qt,k)

∑

j exp(� ⋅ qt,j)

1  In the non-stationary task, we always divided the points values 
obtained by 100 for all models where reward estimates were required 
(ε-Greedy, Softmax, Sliding Window Upper Confidence Bound, Gra-
dient; Kalman Filter with Thompson Sampling).
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Gradient Model  In comparison to the previous models, the 
Gradient model (R. J. Williams, 1992) computed action pref-
erences for all the arms, which were updated on a trial-by-
trial basis for both chosen and unchosen arms. To do this, 
the model computed the action preference using a Softmax 
distribution with the following formula:

Following this, we used the gradient policy (�t(a)) to 
update the action preferences of the model:

where Ht

(

At

)

 was the action preference of the chosen arm, 
Ht(a) were the action preferences of the unchosen arms, α1 
was the first step size parameter and Rt was the exponentially 
weighted reward average which was calculated using:

To account for the non-stationary nature of this bandit 
task, we computed a second step-size parameter using a 
reward trace:

where α2 was a second, fit step-size parameter, and ot was 
the reward trace tied to the reward obtained on trial t. The 
reward trace works by starting with a value of 0, which is 
then updated to weigh the reward trace with a bias towards 
more recent rewards. Thus, on each trial, the reward trace 
is updated by taking the previous trial’s reward trace and 
modifying it using the second step-size parameter. That is, 
rather than solely relying on a constant step-size parameter 
across the task, the reward trace allows the second step-size 
parameter to change across the task, which is then used to 
update how reward estimates are treated using more recent 
outcomes in the reward history. The reward trace allows for 
the Gradient model to account for the non-stationary aspect 
of an environment. For the Gradient model, we fit two step-
size parameters ( α1 and α2).

Win‑Stay, Lose‑Shift Model  The Win-Stay, Lose-Shift model 
only depended on the previous trial’s feedback. Thus, in 
comparison to the ε-Greedy and Softmax models, the long-
run values of each of the stimuli were not considered. The 
selection of an arm used the following simple rules: (1) if 
the reward ( rt ) given by the arm on the trial was greater 
than or equal to the 50 (the long-run average reward of the 
arms; Hassall, 2019) then the same action is selected with 

(1.10)Pt

�

ak
�

=
eHt(a)

∑k

b=1
eHt(b)

= πt(a)

(1.11)
Ht+1 = Ht

(

At

)

+ α1(rt − Rt)(1 − �t
(

At

)

) and

Ht+1 = Ht(a) + α1

(

rt − Rt

)

πt(a)for all a ≠ At

(1.12)Rt+1 = Rt + β(rt − Rt)

(1.13)

β =
α2

ot
ot = ot−1 + β

(

1 − ot−1
)

, for t ≥ 0 with ot0 = 0

the probability P(stay|win) and (2) if the reward given by the 
arm on the trial was less than the long-run average reward 
of the arms then the action was avoided with the probability 
P(shif t|loss) . Thus, two parameters were computed—the 
probability of staying following a win ( P(stay|win)) and 
the probability of shifting following a loss ( P(shif t|loss)) . 
The probabilities of the other two possible actions (shifting 
following a win, staying following a loss) were simply the 
opposite probabilities of win-stay and lose-shift respectively.

Kalman Filter with Thompson Sampling  The Kalman Filter 
with Thompson sampling model has been shown to be an 
effective model in non-stationary bandit tasks (Speekenbrink 
& Konstantinidis, 2015). Specifically, the model can account 
for the changing nature of the environment and reward 
distributions through the calculation of the Kalman Gain 
(Kalman, 1960). To select amongst options, the Kalman Fil-
ter with Thompson sampling model samples from a normal 
distribution and selects the arm with the greatest value:

 where there are means (m) and variances (v) for each of the 
four arms (k). We assume both the prior and posterior are 
drawn from a normal distribution and on each trial, the mean 
and the variance of the normal distribution are updated by 
using a Kalman filter:

while the Kalman Gain was updated by:

where �2

�
 and �2

�
 are the innovation variance and error vari-

ance respectively. To fit the model in the non-stationary task, 
we assumed a prior mean of 0.50 (the long-run average of 
the arms divided by 100) and a prior variance of 10. On each 
successive trial, the mean and variances of the chosen arms 
were updated using the update rule specified above per the 
participant’s arm choice and reward obtained. For the 
Kalman filter with Thompson sampling model, the only 
parameters fit were the innovation variance ( �2

�
 ) and the 

error variance ( �2

�
).

Softmax with Exploration Bonus Model  For the Softmax 
with Exploration Bonus model (Daw et al., 2006; Speeken-
brink & Konstantinidis, 2015), action selection was deter-
mined using a Softmax equation with the addition of an 
exploration bonus term. That is, the exploration bonus term 
added uncertainty to the standard Softmax equation. The 
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0 otherwise
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Softmax with exploration bonus model chose the highest 
value arm (both value and uncertainty) but on a subset of tri-
als explored the other arms using the temperature parameter 
( � ) and the exploration bonus term ( B ). Thus, on each trial, 
the probability of selecting an arm was divided by the sum 
of all possible actions given by:

As per Speekenbrink and Konstantinidis (2015), we 
adopted a simple heuristic whereby the uncertainty of each 
arm increased in a linear manner following the last trial the 
arm was selected:

where Tk is the last trial where arm k was selected, t is the 
current trial, and �◦ is the initial exploration bonus param-
eter. The value of the arm chosen was then updated as per 
the update rule specified in the ε-Greedy model. We were 
unable to get the step-size parameter to recover during model 
validation, and the step-size parameter was set to a constant 
value of 0.50. Thus, for the Softmax with exploration bonus 
model, we fit two parameters: the temperature parameter and 
the initial exploration bonus parameter.

Stationary Models  For the stationary bandit task, we used a 
nearly identical set of models as in the non-stationary bandit 
task. The first major difference between the models was that 
rather than deciding between four arms, only two arms were 
presented. The second major difference is that in the sta-
tionary bandit task, participants received wins and losses as 
feedback, rather than point values. The obtained reward ( rt) 
was instead 1 for a win and 0 for a loss. Below, we outline 
the other changes we made to the models.

ε‑Greedy Model  In the stationary bandit task, the ε-Greedy 
model functioned virtually identically to how it functioned 
in the non-stationary bandit task. During parameter recovery, 
we were unable to recover a constant learning rate param-
eter using simulated participants; thus, each participant was 
given a constant step size value of 0.20 (similar to prior 
investigations using stationary bandit paradigms—e.g., Guo 
& Yu, 2018). The only parameter fit for the ε-Greedy model 
in the stationary bandit task was the epsilon parameter ( �).

Upper Confidence Bound  For the Upper Confidence Bound 
model, we used the UCB1 algorithm (Agrawal, 1995; Auer, 
2002). Thus, the model selected an action per the following rule:

(1.17)Pt
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∑

j exp(� ⋅ qt,j + Bt,j)

(1.18)Bk = Bo[t − Tk]
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 where B is the exploration parameter, t is the trial number, 
and Nt(k) is the number of times that the specified arm had 
been selected. Thus, the only parameter we fit for each par-
ticipant was the exploration parameter.

Softmax Model  As with the ε-Greedy model, we were 
unable to recover a constant learning rate parameter using 
simulated participants, thus, a constant step size value of 
0.20 was used. The only parameter fit for the Softmax model 
was the temperature parameter ( �).

Gradient  For the gradient model, the only major difference 
was how the reward values were calculated. That is, the model 
continued to update action preferences for both the chosen and 
unchosen arms on each trial following selection and receiving 
reward. Specifically, rather than having to calculate exponen-
tially weighted reward for the baseline of the model, we instead 
relied on the formula more appropriate for stationary cases:

 where rt is the reward obtained on the current trial and Rt is 
the average reward. Thus, for this form of the gradient model 
the only parameter fit was the first step-size parameter ( α1).

Win‑Stay, Lose‑Shift  In contrast to the Win-Stay, Lose-Shift 
model in the non-stationary bandit task, the Win-Stay, Lose-
Shift model in the stationary bandit task only included one 
parameter to fit—a win-stay parameter. Thus, the selection of 
an arm used the rules that (1) if the reward ( rt ) given by the arm 
on the trial was a win then the same action is selected with the 
probability P(stay|win) or else the opposite arm was chosen. If 
instead the reward obtained on the previous trial was a loss, then 
the model switched to another arm with the probability of (1 – 
P(stay|win ). We only included the win-stay parameter because 
during parameter recovery we were only able to recover the 
win-stay parameter effectively (see Supplemental Materials).

Kalman Filter with Thompson Sampling  The only major dif-
ference between the two forms of Kalman Filter with 
Thompson Sampling models was that in the stationary ban-
dit task, we were unable to recover the error variance ( �2

�
 ), 

and we instead included the error variance as a constant 
value (10). The only parameter fit on an individual basis was 
the innovation variance ( �2

�
).

Softmax with Exploration Bonus Model  To adapt the Soft-
max with exploration bonus model to the stationary bandit 
task, we modified how we calculated the uncertainty esti-
mate to account for the stationary nature of the task, which 
was identical to the Upper Confidence Bound model in the 
stationary bandit task:

(1.20)Rt+1 =
(rt + Rt)

t
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Thus, identical to the non-stationary bandit task, we fit 
two parameters in the stationary bandit task for the Softmax 
with exploration bonus model: the temperature parameter 
( τ ) and the exploration parameter ( B0).

Model Validation

To validate the models, we both examined each of the mod-
els in a testbed environment identical to the bandit tasks the 
human participants completed and conducted parameter recov-
ery. To determine if the chosen models could learn the tasks, 
we simulated the models across a series of parameter values 
to determine the parameter values which led to the best perfor-
mance. Following this step, we simulated (n = 30) participants 
to complete both the non-stationary and stationary bandit tasks. 
All models showed evidence of learning in both bandit tasks 
(see Supplemental Materials Figure S1). In addition, we ensured 
that model parameters could be recovered effectively in both the 
non-stationary bandit task (all r > 0.74) and stationary bandit 
task (all r > 0.83; see Supplemental Material Figure S3 and S4). 
We also note that the model parameters did not show evidence 
of trading off against each other (Daw, 2011; Wilson & Collins, 
2019) as there were no meaningful correlations between model 
parameters during recovery (all | r < 0.23 |).

Parameter Optimization

Parameters were optimized using an optimization algorithm 
from the SciPy package (Version 1.91) in Python (Version 
3.9), using the “trust region constrained” algorithm. To 
avoid local minima, optimization was conducted multiple 
times using a randomized starting parameter space (n = 10; 
see Table S1 and Table S2 in the Supplementary Materi-
als for the distributions and values used). Model parameters 
were optimized individually for each of the thirty partici-
pants. We optimized individual participant parameters for 
each of the eight models and across both bandit tasks. Using 
the computed choice probabilities from each of the models 
in combination with the choices human participants made 
and the rewards the human participants obtained, we applied 
a posteriori estimation and optimized the values based on the 
minimization of the negative log-likelihood (Daw, 2011):

During action selection the Kalman Filter with Thomp-
son Sampling model sampled from a normal distribution 
once (see Eq. 1.14). To calculate the log-likelihood, we 
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instead used a Monte-Carlo strategy and sampled from the 
normal distribution 10,000 times for each arm on each trial, 
and calculated the trial-by-trial log-likelihood as being the 
number of times each arm was maximal across the 10,000 
samples.

While most of the models had a choice probability that 
could be extracted on a trial-by-trial basis, the Win-Stay, 
Lose-Shift model did not as it was a simple behavioural heu-
ristic. The calculation of the negative log-likelihood differed 
in the case of the Win-Stay Lose-Shift model. Specifically, 
to calculate choice probabilities for each trial and for each 
arm (which summed to one), we relied on using the win-stay 
and lose-shift parameters fit on an individual basis. Thus, 
when participants stayed following a win, we simply input 
the likelihood as being the win-stay parameter.

In contrast, if participants switched following a win, we 
instead took 1 minus the win-stay parameter divided by the 
number of arms minus one:

Identical logic was applied to the lose-shift parameter on 
cases where participants lost and either shifted or stayed:

In the stationary bandit task where we only used a win-
stay parameter and the task only has two arms, the calcula-
tion of log-likelihood was:

Model Comparison

To determine model effectiveness, we compared whether 
each model could successfully replicate the behaviour of 
the participants. To do this, we simulated 30 participants 
using each model across both bandit tasks. To simulate a 
participant, we used the optimized parameters of the models 
for each “human participant” and ran the model on the point 
values of the four arms (in the non-stationary bandit task) 
or the win probabilities of the two arms (in the stationary 
bandit task) that the participants experienced. Thus, each 
model selected an arm and received feedback by using the 
optimized parameters of that participant to determine action 
selection. The above approach was repeated individually for 
each model and for each task.

(1.23)Lwin−stay = log(P(stay|win))

(1.24)Lwin−shif t = log(
1 − (P(stay|win)

3
)

(1.25)
Llose−shif t = log(P(shif t|loss))

Llose−stay = log(
1−(P(shif t|loss)

3
)

(1.26)
Lwin−stay = log(P(stay|win))

Llose−shif t = log(1 − P(stay|win))
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As a second method of determining model effectiveness, 
we compared the models using Bayesian Information Crite-
rion (BIC). We used BIC as it provides a method of penal-
izing greater levels of model complexity (Lewandowsky & 
Farrell, 2011). We calculated BIC per the following formula:

where L was the negative log-likelihood of the model, K 
was the number of parameters of the model, and N was the 
number of datapoints that the likelihood was calculated 
from. BIC values were computed across all participants and 
models. Then we calculated a pseudo-R2 value (e.g., Ludwig 
et al., 2022) using the following formula:

As per Ludwig and colleagues (2022), the R2 value indi-
cates whether each model provides a better fit than the bias 
model (the baseline model). Larger R2 values thus indicate 
that the model is a better fit.

Trial Classification

As our principal goal was to investigate how humans 
explored different bandit environments, we used the mod-
els to classify each individual trial of the human data as an 
exploitation or exploration. To do this, we ran the human 
choice data through the models, which was repeated across 
both tasks individually. For four of the models (ε-Greedy, 
Softmax, Upper Confidence Bound, and Softmax with 
exploration bonus), we defined an exploit trial as any trial on 
which the participant selected the highest value choice per 
the model while an explore trial was one on which they did 
not select the highest value choice. For the Gradient model, 
we defined an exploit trial as any trial where the participant 
selected the highest action preference per the model while an 
exploration was any trial where the participant did not select 
the highest action preference choice per the model. For the 
Kalman Filter with Thompson Sampling model, we defined 
an exploit trial as any trial where participants selected the 
arm which produced the maximal value from the normal 
distribution across the 10,000 samples, while an explore trial 
was when they selected an arm that was not the maximal 
value arm. For the Win-Stay Lose-Shift model, trials were 
classified as exploitation if the participant completed a Win-
Stay (selecting the same arm after gaining more points than 
the previous trial) or a Lose-Shift (selecting a different arm 
after gaining less points than the previous trial). Trials were 
classified as explorations if either of the opposing strategies 
are observed (Win-Shift and Lose-Stay). We did not use the 
bias model to classify trials as exploitation trials or explora-
tion trials as we considered it our baseline.

(1.27)BIC = −2L + KlnN

(1.28)R2 = 1 −
BIC(non − bias models)

BIC(bias model)

Fitting Approach Comparison

We also investigated to what extent our results depend on 
whether we fit within each bandit task individually (indi-
vidual model fitting) or using the data from both bandit 
tasks simultaneously (combined model fitting). Thus, we 
conducted a model fitting procedure where we input the 
participant’s data from each bandit task and fit the models 
across the two tasks (see Table 1 for a summary of the com-
parison between the modeling fitting approaches).

Because the number of trials differs between the two bandit 
tasks (400 in the non-stationary bandit, 100 in the stationary 
bandit task), during combined model fitting the non-stationary 
task was overrepresented in the negative loglikelihood cal-
culation for each model. To counter this problem, we used a 
simple approach whereby we increased the number of times 
we fit the stationary bandit task to four times. This approach is 
known to help model fitting in machine learning during cases 
of class imbalance where one task has more data than another 
task (Japkowicz & Stephen, 2002). That is, when fitting the 
model to determine the participant’s parameters and negative 
log-likelihood, we repeated the stationary bandit task fitting 
four times using the participant’s choices and rewards in the 
stationary task. We then repeated the model comparison and 
trial classification in an identical manner to what we did when 
fitting the models individually within each task.

Data Analysis

Behavioural

To examine participants’ behaviour in the two bandit tasks, 
we analyzed two measures of performance. In the non-sta-
tionary bandit task, we measured participants’ total points 
averaged across all 400 trials and the number of trials they 
selected the arm with the highest point values divided by 
the total number of valid trials (optimal arm selection). 
To determine whether participants performed better than 
chance, we then compared the participants’ average points 
obtained to the long-run average of the arms (50 points). 
Relatedly, to determine whether participants were able to 
identify the optimal arm at a level greater than chance, we 
compared the participants’ optimal arm selection to 25% as 
there were four arms.

In the stationary bandit task, we examined how often the 
participants won divided by the total number of trials (win 
percentage), and how often they selected the optimal arm 
(the arm that won 60% of the time). To determine whether 
participants performed better than chance, we compared 
their win percentage to what would be expected if partici-
pants selected arms randomly (35%) which was calculated by 
taking the expected win percentage if participants selected 
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the 60%-win arm on half of the trials and the 10%-win arm 
on half of the trials. As well, we compared participants’ 
average optimal arm selection to 50% as there were only two 
arms. For all behavioural comparisons, we used one-sample 
t-tests, measured effect size with Cohen’s d, and measured 
variability with 95% between-subject confidence intervals.

Computational Modeling

To compare each of the models’ ability to fit behaviour, we 
examined how well the simulated participants from each 
model were able to perform the task when compared to the 
human participants’ data. In the non-stationary bandit task, 
we examined the ability of the models to correctly replicate 
the points obtained by the human participants. In the station-
ary bandit task, we instead examined the win percentage. 
In the non-stationary bandit task to determine whether the  
models were able to simulate task performance, we com-
pared performance using between-subjects ANOVAs with 
nine levels—the “simulated participants” from the eight 
models, and the human participants’ actual performance. 
To determine whether there were any differences between 
the model performance and the human performance, we 
then followed up each ANOVA by comparing the average 
performance of the human participants to the simulated 
participants using between-subject pairwise comparison 
t-tests with a Benjamini–Hochberg correction (Benjamini 
& Hochberg, 1995). As a final check, we then compared the 
best-fitting models for each participant and whether they 
differed in performance from the human data. Specifically, 

we compared performance using between-subjects t-tests 
for both the non-stationary and stationary bandit tasks to 
compare the performance of the “simulated participant” 
per the best-fit model to the human participants, measured 
effect size with Cohen’s d, and measured variability with 
95% between-subject confidence intervals.

In addition, we also examined trial-by-trial performance by 
examining optimal arm choice across the task. To calculate 
the optimal arm chosen across trials, we computed a running 
average of the percent of trials the participant selected the 
optimal arm and divided that by the total number of trials. 
We repeated this calculation across each participant and then 
took the average for the simulated participants and the human 
participants. We examined qualitative fit by visually compar-
ing each model’s curve to the human participants’ curves to 
determine whether they overlapped. In the non-stationary ban-
dit task, we examined optimal arm choice across all 400 trials, 
while in the stationary bandit task we averaged across the five 
blocks and instead examined trials 1 to 20. The reason we 
choose to average across blocks in the stationary bandit task 
was that at the beginning of each block, the colors of the two 
squares were randomly changed and the participants had to 
re-learn which arm was best. In contrast, in the non-stationary 
case, the feedback values changed slowly across the entire task 
but did not reset at any point.

To determine which model provided the best fit of the 
human data, we first computed each of the model’s R2 val-
ues on a participant-by-participant basis. Following this 
calculation, we classified a participant as having used the 
model’s action selection strategy by selecting the model 

Table 1   Model parameters when using individual or combined model fitting approach

Italicized entries marked with * indicate parameters that were shared between the models in the combined model fitting procedure. WSLS Win-
Stay, Lose-Shift; UCB Upper Confidence Bound; KFTS Kalman Filter with Thompson Sampling

Model Individual model fitting Combined model fitting

Non-stationary Stationary Non-stationary Stationary

Bias Bias ( �) Bias ( �) Bias (�)* Bias (�)*
ε-Greedy Epsilon ( �) Epsilon ( �) Epsilon (�)* Epsilon (�)*

Step Size ( �) Step Size (�)* Step Size (�)*
Softmax Temperature ( �) Temperature ( �) Temperature (�)* Temperature (�)*

Step Size ( �) Step Size (�)* Step Size (�)*
WSLS P(stay|win) P(stay|win) P(stay|win)* P(stay|win)*

P(shift|loss) P(shif t|loss)

UCB Window Size ( �) Explore (B) Window Size (�)
Explore (B)* Explore (B)*

Gradient Step Size ( �1) Step Size ( �1) Step Size (�1)* Step Size (�1)*
Step Size ( �2) Step Size ( �2)

KFTS Innovation Variance ( �2

�
) Innovation Variance ( �2

�
) Innovation Variance (�2

�
)* Innovation Variance (�2

�
)*

Error Variance ( �2

�
) Error Variance ( �2

�
)

Softmax w/ explo-
ration Bonus

Temperature ( �)* Temperature ( �)* Temperature (�)* Temperature (�)*
Explore (B) Explore (B) Explore (B)* Explore (B)*
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which had the largest R2 value. We calculated the R2 indi-
vidually for each participant in each of the two bandit tasks. 
A participant could be classified as using one exploration 
strategy in the non-stationary bandit task while being clas-
sified as using a different exploration strategy in the sta-
tionary bandit task.

In addition, we investigated whether there was any 
relationship between how often participants explored the 
two bandit tasks. To investigate this relationship, we cal-
culated the exploration rate across all models except the 
Bias model. The exploration rate was defined as the per-
centage of explore trials divided by the total number of 
valid trials, in the two tasks. We then ran between-subjects 
ANOVAs for exploration rate across the seven, non-base-
line models in each task and followed-up each ANOVA 
using between-subject pairwise comparison t-tests with a 
Benjamini–Hochberg correction (Benjamini & Hochberg, 
1995). To ensure model agreement in terms of which tri-
als were classified as explorations and which trials were 
classified as exploitations, we compared whether the 
models—except the baseline model—overlapped in their 
classification of each trial across all participants on a trial-
by-trial basis. We conducted this overlap analysis for both 
the non-stationary and stationary bandit tasks individually.

To choose which model to use to extract the participants’ 
exploration rate, we used the best-fit model per the R2 calcu-
lation above on a participant-by-participant and task-by-task 
basis. Following this, to determine whether explore trials 
per the best fitting model were associated with less value 
than exploit trials per the best fitting model (e.g., Hassall 
& Krigolson, 2020), we then compared participants’ per-
formance on explore trials to their performance on exploit 
trials. For the non-stationary bandit task, we compared their 
average points obtained, and for the stationary bandit task, 
we compared their average win percentage. We compared 
explore and exploit trial performance using within-subjects 
t-tests for both the non-stationary and stationary bandit 
tasks, measured effect size with Cohen’s d, and measured 
variability with 95% between-subject confidence intervals. 
Following this, we computed a Pearson correlation between 
the two exploration rate values of each participant per the 
best-fitting model and then tested this correlation for signifi-
cance. We then computed Pearson correlations between the 
exploration rate of the best-fitting model and performance 
(optimal arm choice) within each of the two bandit tasks and 
tested the correlations for significance.

Combined Model Fitting

We repeated the above analyses in the Computational Mod-
eling section for the combined model fitting approach. That 
is, we repeated each analysis when fitting each model using 

the combined data from both tasks (rather than individu-
ally within each task as we initially did). Thus, following 
parameter tuning on each individual participant using each 
combined model we examined average performance on 
each bandit task using between-subject ANOVAs and fol-
low-up between-subject pairwise comparison t-tests (Hoch-
berg corrected; Benjamini & Hochberg, 1995). Following 
this, we examined trial-by-trial optimal arm choice curves 
within each bandit task. We examined model fit across the 
two tasks by examining the R2 values and finding the model 
which had the highest R2 value on a participant-by-partic-
ipant basis. Next, we examined the exploration rate across 
the models within each of the two bandit tasks using both 
between-subject ANOVAs and follow-up between-subject 
pairwise comparison t-tests (Hochberg corrected; Benja-
mini & Hochberg, 1995). We then computed a Pearson 
correlation using the two exploration rate values across 
each task. Lastly, we then computed Pearson correlations 
between the exploration rate of the best-fitting model and 
optimal arm choice within each of the two bandit tasks.

For all significance testing, we used an � value of 0.05. 
For each between-subjects ANOVA and for each between-
subjects t-tests, we applied Levene’s Test (Levene, 1960) 
to determine whether the data violated the assumption 
of homogeneity of variance. None of the ANOVAs were 
found to violate the assumption of homogeneity of vari-
ance. For any t-tests where the assumption was violated, 
we instead computed Welch’s t-test with adjusted degrees 
of freedom calculation. All statistics were completed in R 
(version 4.2.0; R Core Team, 2022).

Results

Behavioural Analysis

Prior to modeling the participants’ data, we investigated 
the performance of the human participants in the two ban-
dit tasks. In the non-stationary bandit task, human partici-
pants performed better ( X = 60.43 points, 95% CI [58.24, 
62.62]) than the long-run average of the arms across the 
task (50 points; t(29) = 9.31, p < 0.001, d = 1.72). In addi-
tion, in the non-stationary bandit task, human participants 
were able to identify the optimal arm ( X = 58.21%, 95% 
CI [53.59, 62.84]) at a level greater than chance (25%; 
t(29) = 14.06, p < 0.001, d = 2.57). In the stationary bandit 
task, human participants obtained a higher winning percent-
age ( X = 48.13%, 95% CI [45.39, 50.87]) than chance (35%; 
t(29) = 9.40, p < 0.001, d = 1.71). In addition, human partici-
pants in the stationary bandit task were able to identify the 
optimal arm ( X = 81.03%, 95% CI [77.79, 84.28]) at a level 
greater than chance (50%; t(29) = 18.74, p < 0.001, d = 3.42).
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Computational Modeling

We first examined the ability of the models to accurately 
replicate the human performance in the non-stationary 
bandit task (Fig. 2A and 2C). Specifically, the between-
subjects ANOVA revealed a difference in non-stationary 
bandit task performance when comparing the human and 
simulated participants (F(8, 261) = 12.06, p < 0.001, �2 = 
0.27). Follow-up pairwise comparisons confirmed what 
was evident visually—that the simulated participants from 
both the Bias model (t(58) = 7.59, p < 0.001, d = 1.96) per-
formed worse than the human participants. None of the other 
models differed in terms of performance when compared 
to the human participants’ performance (all other models’ 
adjusted p > 0.91). Comparing non-stationary task perfor-
mance using the best-fitting model individually for each par-
ticipant revealed no difference between human and model 

performance (t(56) =  − 0.15, p = 0.87, d =  − 0.04). The trial-
by-trial findings revealed that both the Bias model and the 
ε-Greedy were unable to replicate the optimal arm choice 
curves across the non-stationary bandit task and were not 
considered as possible best-fitting models due to their inabil-
ity to replicate behaviour (Palminteri et al., 2017).

When considering which model best accounted for the 
behaviour in the non-stationary bandit task (Fig. 2B), we 
found that the Win-Stay, Lose-Shift model provided the best 
fit for most of the human participants. Given the inability of the 
ε-Greedy model to correctly simulate the human participants’ 
behaviour for both average and trial-by-trial performance, we 
only considered the Win-Stay, Lose-Shift, Softmax, Sliding 
Window Upper Confidence Bound, Gradient, Kalman Filter 
with Thompson Sampling, and the Softmax with exploration 
bonus models for classifying participants’ exploration strat-
egy. Specifically, the Win-Stay, Lose-Shift model provided the 

Fig. 2   Model fit in the non-stationary bandit task. A Average task 
performance in terms of points acquired. B R2 values are in arbitrary 
units and indicate the difference between each of the five models and 
the bias model. C Trial-by-trial performance where dashed lines indi-
cate the human participants (identical across all the eight subplots) 
and the colors indicate simulated participants. For A and B, the col-

oured dots indicate real participants (human data) or simulated par-
ticipants (the eight models), while the black dot indicates the mean. 
All error Bars are 95% confidence intervals. Note: WSLS = Win-Stay, 
Lose-Shift; UCB-SW = Sliding Window Upper Confidence Bound; 
KFTS = Kalman filter with Thompson sampling; SM-UCB = Softmax 
with exploration bonus
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best fit for 20 human participants (66.67%). In addition, the 
Kalman-Filter with Thompson Sampling model provided the 
best fit for the remaining 5 participants (16.67%), the Softmax 
model provided the best fit for 4 human participants (13.33%), 
and the Sliding Window Upper Confidence Bound model pro-
vided the best fit for the remaining participant (3.33%).

For the model’s ability to fit behaviour in the station-
ary bandit task (Fig. 3A and 3C), the between-subjects 
ANOVA revealed a difference when comparing the human 
and simulated participants’ average task performance (F(8, 
261) = 21.62, p < 0.001, �2 = 0.40). Follow-up pairwise 
comparisons showed that only the simulated participants 
from the bias model (t(50.17) = 6.30, p < 0.001, d = 1.62) 
and the Win-Stay, Lose-Shift model (t(58) = 7.75, p < 0.001, 
d = 2.00) performed worse than the human participants’ 
performance (all other model’s adjusted p > 0.82). Interest-
ingly, the simulated participants per the upper confidence 

bound model performed better than the human participants 
(t(58) =  − 3.13, p < 0.05, d =  − 0.80). When comparing the 
performance using the best-fitting model individually for 
each participant, we found no difference between human 
performance and model performance (t(58) =  − 1.29, 
p = 0.20, d =  − 0.34). The trial-by-trial echoed the findings 
we observed when examining the average win percentage, 
as both the Bias model and the Win-Stay, Lose-Shift mod-
els were unable to replicate the optimal arm choice curves 
across the stationary bandit task.

In the stationary bandit task, when examining which 
model best accounted for exploratory behaviour (Fig. 3B), 
we found that the Softmax model provided the best fit for 
most participants. Specifically, the Softmax model pro-
vided the best fit for 20 human participants (66.67%). In 
addition, the Softmax with exploration bonus provided the 
best fit for 9 participants (30.00%) while the Kalman Filter 

Fig. 3   Model fit in the stationary bandit task. A Average task perfor-
mance in terms of win percentage. B R2 values are in arbitrary units 
and indicate the difference between each of the seven models and the 
bias model. C Trial-by-trial performance where dashed lines indicate 
the human participants (identical across all the eight subplots) and 
the colors indicate simulated participant. For A and B, the coloured 

dots indicate real participants (human data) or simulated participants 
(the eight models), while the black dot indicates the mean. All error 
Bars are 95% confidence intervals. Note: WSLS = Win-Stay, Lose-
Shift; UCB1 = Upper Confidence Bound; KFTS = Kalman filter with 
Thompson sampling; SM-UCB = Softmax with exploration bonus
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with Thompson Sampling model provided the best fit for 
the remaining participant (3.33%). That the Softmax model 
provided the best fit for most human participants in the sta-
tionary bandit task stands in contrast to the finding that the 
Win-Stay, Lose-Shift model provided the best fit for most 
participants in the non-stationary bandit task.

We then examined the proportion at which each model 
explored in both bandit tasks (Fig. 4A and Fig. 4B). In the 
non-stationary bandit task, the between-subjects ANOVA 
revealed a difference when comparing the simulated par-
ticipants’ exploration rate (F(6, 203) = 10.69, p < 0.001, �2 
= 0.24). Follow-up pairwise comparisons showed that the 
simulated participants from the Gradient model explore 
more often than the other four models (all p < 0.001). In 
addition, simulated participants per the Sliding Window 
Upper Confidence Bound model explored more often than 

the Win-Stay, Lose-Shift model (p < 0.05). There was no 
difference in the Softmax, ε-Greedy, Win-Stay, Lose-Shift, 
Kalman Filter with Thompson Sampling, and Softmax with 
exploration bonus models (all p > 0.23). In addition, we 
found high agreement between the models in their classifi-
cation of which trials were explorations except for the Gra-
dient model, which was only in agreement for trial classi-
fication ~ 60% of the time with the other models (Fig. 4B).

In the stationary bandit task, the between-subjects 
ANOVA revealed a difference when comparing across the 
simulated participants’ exploration rate (F(6, 203) = 50.50, 
p < 0.001,  �2 = 0.60). Follow-up pairwise comparisons 
showed that the simulated participants from the Win-Stay, 
Lose-Shift model explored more often than the other six 
models (all p < 0.001). In addition, simulated participants 
from the Kalman Filter with Thompson Sampling model 

Fig. 4   Exploration of the two tasks. A, B Exploration percentage 
across the seven models in the bandit tasks. The coloured dots indi-
cate real participants (human data) or simulated participants (the 
seven models), while the black dot indicates the mean. Error Bars 
are 95% confidence intervals. C, D Trial classification overlap per-
centages in  the two bandit tasks. The left panels are from the non-

stationary task while the right panels are from the stationary bandit 
task. Note: WSLS = Win-Stay, Lose-Shift; UCB-SW = Sliding Win-
dow Upper Confidence Bound, UCB1 = Upper Confidence Bound; 
KFTS = Kalman filter with Thompson sampling; SM-UCB = Softmax 
with exploration bonus



687Computational Brain & Behavior (2023) 6:671–696	

1 3

also explored more often than the simulated participants 
from the other models (all p < 0.001). There was no differ-
ence in exploration rate between the Softmax, ε-Greedy, 
Upper Confidence Bound models, Gradient, or Softmax 
with exploration bonus models (all p > 0.10). We also 
found high agreement between the models in their clas-
sification of which trials were explorations, except for the 
Win-Stay, Lose-Shift model (Fig. 4D).

As a behavioural check of our classification of explore 
trials, we found that exploit trials were associated with 
better performance than explore trials per the best-fitting 
models. Participants obtained more points on exploit tri-
als ( X = 66.11 , 95% CI [64.34, 67.88) when compared 
to explore trials ( X = 48.79 95% CI [46.43, 51.15]) in 
the non-stationary bandit task (t(28) = 16.23, p < 0.001, 
d = 3.02). Moreover, participants had a higher win per-
centage on exploit trials ( X = 46.77%, 95% CI [45.71, 
47.84]) than explore trials ( X = 37.02%, 95% CI [31.81, 
42.23]) in the stationary bandit task (t(29) = 3.16, 
p < 0.005, d = 0.94). Lastly, we investigated whether 
there was a relationship between how often human par-
ticipants explored in the non-stationary bandit task and 
how often they explored in the stationary bandit task 
(Fig. 5). Interestingly, we found evidence of a medium, 
positive relationship between the exploration rate in the 
two tasks. That is, participants who explored more often 
in the non-stationary bandit task also explored more often 
in the stationary bandit task (r(28) = 0.44, p < 0.05). In 
addition, we found that participants who explored more 
often in the non-stationary task had worse performance 
in terms of optimal arm choice within the non-stationary 
bandit task (r(28) =  − 0.55, p < 0.005). A similar finding 
was found in the stationary bandit task—participants who 
explored more often selected the optimal arm less often 
(r(28) =  − 0.87, p < 0.001).

Combined Model Fitting

To determine whether the combined model fitting approach 
was valid, we examined the ability of the models to accu-
rately replicate the human performance in the two bandit 
tasks. The between-subjects ANOVA revealed a difference 
in non-stationary bandit task performance when comparing 
the human and simulated participants (F(8, 261) = 10.24, 
p < 0.001, �2 = 0.24). Follow-up pairwise revealed that only 
the simulated participants from the Bias model (t(58) = 7.46, 
p < 0.001, d = 1.96) performed worse than the human par-
ticipants. None of the other models differed in terms of 
performance when compared to the human participants’ 
performance (all other models’ adjusted p > 0.18). When 
comparing the performance using the best fitting model 
individually for each participant, we found no difference 
between human performance and model performance 
(t(58) = 0.95, p = 0.34, d = 0.24; Fig. 6A). The trial-by-trial 
findings revealed that both the Bias model and the ε-Greedy 
were unable to replicate the optimal arm choice curves 
across the non-stationary bandit task (Fig. 6B) and were not 
considered as possible best-fitting models.

For the model’s ability to fit behaviour in the stationary 
bandit task, the between-subjects ANOVA revealed a differ-
ence when comparing the human and simulated participants’ 
average task performance (F(8, 261) = 29.84, p < 0.001, �2 = 
0.48). Follow-up pairwise comparisons showed that the 
simulated participants from the bias model (t(48.79) = 7.03, 
p < 0.001, d = 1.81), and the Win-Stay, Lose-Shift model 
(t(58) = 6.23, p < 0.001, d = 1.60), both performed worse 
than the human participants’ performance (all other model’s 
adjusted p > 0.05). When comparing the performance using 
the best fitting model individually for each participant, we 
found no difference between human and model performance 
(t(48.82) =  − 1.96, p = 0.06, d =  − 0.51). The trial-by-trial 

Fig. 5   Exploration  rate relationships. A Correlation between the 
exploration rates (percentage of total trials) across each of the two 
bandit tasks (non-stationary and stationary) per the best-fitting model. 

B Correlation between non-stationary exploration rate and non-sta-
tionary task performance. C Correlation between stationary explora-
tion rate and stationary task performance
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results demonstrated that the Bias model, and the Win-Stay, 
Lose-Shift models were both unable to replicate the optimal 
arm choice curves on the stationary bandit task and were not 
considered as possible best-fitting models.

When instead considering which combined model best 
accounted for the behaviour across the two bandit tasks 
(Fig. 7), we found the Softmax model provided the best fit 
for 22 human participants (73.33%) while the Softmax with 
Exploration Bonus model provided the best fit for 8 human 
participants (26.67%).

We then examined the proportion at which each model 
explored in both bandit tasks. In the non-stationary bandit 
task, the between-subjects ANOVA revealed a difference 
when comparing across the simulated participants’ explora-
tion rate (F(6, 203) = 18.99, p < 0.001, �2 = 0.36). Follow-up 
pairwise comparisons showed that the simulated participants 
from the Gradient model explore more often than the other 
six models (all p < 0.001). In addition, simulated participants 
from the Sliding Window Upper Confidence Bound model 
explored more often than the other models (all p < 0.05). 
There was no difference in the Softmax, ε-Greedy, Win-Stay, 
Lose-Shift, Kalman Filter with Thompson sampling and the 
Softmax with exploration bonus models (all p > 0.07).

In the stationary bandit task, the between-subjects ANOVA 
also revealed a difference when comparing the simulated 
participants’ exploration rate (F(6, 203) = 105.99, p < 0.001, 
�2 = 0.76). Follow-up pairwise comparisons showed that the 

Fig. 6   Model Performance  for the  combined model fitting. A Over-
all best fitting model performance in terms of points (non-stationary 
bandit top) or win percentage (stationary bandit; bottom). B Trial by 
Trial performance where dashed lines indicate the human participants 
(identical across all the eight subplots) and the colors indicate sim-
ulated participants. The top panels are data from the non-stationary 

bandit task while bottom panels are data from the stationary bandit 
task. All error bars are 95% confidence intervals. Note: WSLS = Win-
Stay, Lose-Shift; UCB1 = Upper Confidence Bound; KFTS = Kalman 
filter with Thompson sampling; SM-UCB = Softmax with exploration 
bonus

Fig. 7   Model R2 values  for the combined  model fitting. R2 values 
are in arbitrary units and indicate the difference between each of the 
seven models and the bias model. The coloured dots indicate simu-
lated participants, while the black dot indicates the mean. All error 
Bars are 95% confidence intervals. Note: WSLS = Win-Stay, Lose-
Shift; UCB1 = Upper Confidence Bound; KFTS = Kalman filter with 
Thompson sampling, & SM-UCB = Softmax with exploration bonus
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simulated participants from the Win-Stay, Lose-Shift model 
explore more often than the other six models (all p < 0.001), 
as did the Kalman filter with Thompson sampling model (all 
p < . 001). There was no difference in exploration rate between 
the Softmax, ε-Greedy, Gradient, Upper Confidence Bound, 
and Softmax with exploration bonus models (all p > 0.10).

Lastly, we investigated whether there was a relationship 
between how often human participants explored in the non-
stationary bandit task and how often they explored in the 
stationary bandit task (Fig. 8A). Much like our individual 
model fitting analysis, we found evidence of a medium, 
positive relationship between the exploration rate in the two 
tasks (r(28) = 0.48, p < 0.01; Fig. 8B). In addition, we found 
that participants who explored more often in the non-sta-
tionary task had worse performance in terms of optimal arm 
choice within the non-stationary bandit task (r(28) =  − 0.88, 
p < 0.001). A similar finding was found in the stationary 
bandit task—participants who explored more often selected 
the optimal arm less often (r(28) = -0.83, p < 0.001; Fig. 8C).

Discussion

In the present work, we investigated the consistency of both 
exploration strategies and the frequency of exploration rate 
across two multi-arm bandit tasks. For our behavioural 
results, we found that participants were able to success-
fully perform each task at a level above chance. In terms 
of the computational analysis, we found that the best fitting 
models for each participant were able to effectively model 
both average and trial-by-trial behaviour, a finding which 
was observed in both bandit tasks (Figs. 2 and 3). Moreo-
ver, within each task, the models that provided a good fit of 

behaviour had a high level of agreement on which trials the 
models classified as explorations (Fig. 4). These two findings 
suggest that our best-fitting models were effective at captur-
ing behaviour and determining when participants explored. 
More importantly, we found that most participants were best 
fit by the Win-Stay Lose-Shift model (a behavioural heuris-
tic) in the non-stationary bandit task while most participants 
were best fit by the Softmax model (probabilistic, random 
exploration) in the stationary bandit task. The difference in 
exploration strategies used between the two tasks suggests 
that humans adopt different exploration strategies depend-
ing on task demands. When instead conducting a combined 
model fitting approach across the two tasks, we found that the 
Softmax model (probabilistic, random exploration) and the 
Softmax with exploration bonus (hybrid directed and proba-
bilistic, random exploration) provided the best fit of human 
behaviour (Figs. 6 and 7). Lastly, we found that exploration 
frequency was correlated across the two bandit tasks—partic-
ipants who explored more in the non-stationary task explored 
more in the stationary task (Figs. 5 and 8). We propose that 
the relationship in exploration rate across tasks could reflect 
an underlying personality trait such as risk taking or could 
be tied to the hierarchical control of behaviour by the mid-
cingulate cortex, although further work is needed.

We found support for the claim that humans adopt differ-
ent exploration strategies depending on whether they were 
in a non-stationary bandit or a stationary bandit. This finding 
supports a wealth of research that has shown that humans 
use different exploration strategies (Dubois & Hauser, 2022; 
Gershman, 2019; Wilson et al., 2014). Our finding extends 
prior work showing that the same groups of humans can 
adopt different strategies when learning in different envi-
ronments (Schulz et al., 2018b; Wu et al., 2020) to chang-
ing (non-stationary) versus consistent (stationary) learning 

Fig. 8   Exploration rate  relationships for the combined model fitting. 
A Exploration rates (percentage of total trials) across each of the two 
bandit tasks (non-stationary and stationary) per the best-fitting model 
across both tasks. B Non-stationary exploration rate and non-station-

ary task performance. C Stationary exploration rate and stationary 
task performance. Task performance was measured as the optimal 
arm choice percentage across all trials
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environments. Thus, the use of within-subject comparisons 
is an important, and sometimes overlooked, aspect of human 
exploratory behaviour. Importantly, we believe that our 
results can be interpreted within a framework that differ-
ent neural and behavioural systems can control exploratory 
behaviour depending on the context.

Three lines of evidence dovetail together for us to make 
this claim that different control systems guide exploratory 
behaviour in a flexible manner. First, multiple controllers of 
exploratory behaviour can be dissociated both by the neural 
substrates involved in that behaviour and by the information 
which these different controllers process and use (Dayan, 
2013). Second, Costa and colleagues (2016) have shown 
differences in the neural substrates needed to guide learn-
ing in stationary and non-stationary bandit tasks in rhesus 
macaques. Specifically, ventral striatum lesions impaired 
non-stationary task performance but not the stationary 
bandit task. Thus, if performance in non-stationary bandit 
paradigms can be impaired by ventral striatum lesions while 
performance in the stationary task is maintained, this could 
suggest different cognitive processes are at play in the two 
types of bandit tasks. In the present work then, it seems 
possible that we assessed different aspects of learning when 
comparing the non-stationary and stationary bandit tasks (a 
point suggested by Costa et al., 2016 for their own work). 
Third, per the model of Yu and Dayan (2003), decisions 
made in the non-stationary bandit task may be modulated 
by a different form of uncertainty compared to decisions 
made in the stationary bandit task. Specifically, unexpected 
uncertainty may be present in the non-stationary bandit 
task as the reward values of the arms are always changing, 
while expected uncertainty may be present in the stationary 
bandit task as the participants are aware of the stable win 
percentage differences between the arms. These two dis-
tinct forms of uncertainty involve different neuromodulator 
systems – unexpected uncertainty involves phasic norepi-
nephrine bursts to update behaviour while expected uncer-
tainty involves tonic acetylcholine to ensure the relationship 
between stimulus and outcome is maintained (Dayan & Yu, 
2006; Yu & Dayan, 2003, 2005). These three lines of evi-
dence suggest that different control systems can be elicited 
by different task demands, and in turn, help guide behaviour 
in a flexible manner.

Both task complexity and differences in the required 
cognitive flexibility between the two tasks could contribute 
to explaining the exploration strategy differences. That is, 
participants might adopt the Win-Stay, Lose-Shift strategy 
in the non-stationary bandit rather than computing value 
estimates on a trial-to-trial basis due to the more complex 
task structure. In the simpler stationary bandit participants 
can instead compute estimates of the two arms leading to 
probabilistic exploration due to the fact that the task struc-
ture is simpler and fewer arms need to be explored. Thus, 

given that humans tend to avoid the effort to remain efficient 
and preserve cognitive resources (e.g., Kool & Botvinick, 
2018), perhaps participants adopted a simpler exploration 
strategy in the non-stationary bandit to preserve resources. 
Although cognitive constraints decrease how often humans 
explore to maintain resources (Brown et al., 2022), no prior 
work has specifically investigated whether cognitive con-
straints also shift what exploration strategies humans use. 
However, humans perform better when they adopt simpler 
decision-making strategies during harder tasks but can adopt 
more complex decision-making strategies during easier tasks 
while maintaining performance (Mone & Shalley, 1995). 
The difficult nature of the non-stationary bandit task caused 
greater cognitive constraints on the participants, in turn, pos-
sibly causing them to adopt a simpler, behavioural heuristic 
strategy not tied to direct estimates of arm value. In fact, 
prior work using the Iowa Gambling Task (which also has 
four selection options) has shown a Win-Stay, Lose-Shift 
model provides a better fit of behaviour when compared to 
reinforcement learning models (Worthy et al., 2013).

A separate explanation for this different strategy adoption 
between the two tasks is that the instructions given in the 
stationary bandit task led to slower learning and discouraged 
the use of a Win-Stay, Lose-Shift strategy. In the set-up of 
the stationary bandit task, participants were told that the two 
arms had a win percentage of 60% and 10% respectively. 
We chose to include these instructions because during pilot-
ing a group of participants reported that they thought the 
stationary bandit task was unlearnable and, consequently, 
they did not show a preference for one arm over the other. 
However, by including the specific reward values of the two 
arms, we likely reduced the need for learning within the sta-
tionary bandit task. Two pieces of evidence suggest that this 
inclusion could have changed participants’ behaviour. First, 
changes to task instructions differences can impact the type 
of learning strategies adopted by participants (e.g., Feher da 
Silva et al., 2023) and hints about task structure can change 
how participants perform when learning from reinforcement 
(Fernie & Tunney, 2006). Second, humans have a propensity 
to infer volatility when learning in stationary bandit tasks 
(Guo & Yu, 2018). Thus, our decision to include instructions 
showing the specific reward values of the two arms may have 
highlighted possible learning and exploration approaches 
needed for the task. In turn, these instructions might have 
impacted the adoption of a Win-Stay, Lose-Shift strategy (or, 
indeed, other exploration strategies) as participants would 
have understood that receiving multiple wins or losses may 
not reflect the pattern of the arm entirely, in turn, slowing 
learning. Thus, the inclusion of the specific reward values in 
the instructions of the stationary bandit task could explain 
why participants generally adopted a probabilistic, random 
exploration strategy (Softmax) within the stationary bandit 
task rather than another strategy.
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Another alternative explanation for why participants 
adopted different exploration strategies is related to dif-
ferences in how the bandit arms were displayed across the 
two tasks. The differences in how the bandit arms were dis-
played may have led to the influence of spatial-motor codes 
on learning behaviour (Fitts & Seeger, 1953). Specifically, 
in the non-stationary task, the arms did not change position, 
while in the stationary bandit task, the arms could change 
position on a trial-by-trial basis. In the non-stationary task, 
because the arms were always in the same place on the 
screen it could be that spatial-motor codes influenced learn-
ing by reducing performance caused by the desire to repeat 
an action in the same spatial location (e.g., Shahar et al., 
2019). That is, outcome-irrelevant features such as the spa-
tial position of an option and the motor response required 
can change learning behaviour by causing participants to 
assign value to these outcome-irrelevant features. In the non-
stationary bandit task, because participants did not have to 
worry about the spatial position of the arms, this may have 
led to participants repeating the same action more easily. 
Conversely, participants in the stationary bandit task had to 
consider the spatial location of each arm (and respond with 
a different key press), meaning participants would have to 
spend time considering the location prior to responding. Dif-
ferences in task-induced spatial and motor codes have been 
shown to be related to how much cognitive control is imple-
mented (e.g., Ferguson et al., 2021). Thus, the strategies 
adopted by participants in the two tasks could be explained 
by spatial and motor code differences between the non-sta-
tionary and stationary bandit tasks. That is, the possibility 
that the arms switched position in the stationary bandit task 
may have encouraged participants to use more “thoughtful” 
strategies (e.g., Softmax) and could explain why they did not 
adopt a simpler Win-Stay, Lose-Shift strategy as occurred in 
the non-stationary bandit task.

When instead using the combined fitting approach 
across the two bandit tasks, we found that participants 
were best fit by a Softmax model (probabilistic, random 
exploration) and a Softmax with Exploration bonus model 
(a hybrid directed and probabilistic, random exploration 
model). When considering an approach that more strongly 
weights generalizability—the ability to fit both tasks rather 
than each task individually—we found that models which 
can perform well in both bandit tasks led to the best fit of 
behaviour. The result from our combined model fitting 
across both tasks stands in contrast to our findings that 
participants adopted different exploration strategies, in 
turn perhaps suggesting participants did not flexibly use 
different exploration strategies (although of course, the 
combined model fitting inherently meant that no strategy 
switching could occur). Thus, the present findings depend 
on the nature of the predictions the models are used to 
understand (Ahn et al., 2008). That is, which model is 

chosen as providing the best fit can depend on whether 
a researcher is interested in “short-term” or “long-term” 
predictions.

Our primary analysis in the present work was attempting 
to model short-term predictions—that is, the model which 
best captured trial-by-trial behaviour within each of the two 
bandit tasks. However, once we adopted an analysis bet-
ter suited for long-term predictions (the combined model 
fitting approach), we found that the best fitting models 
could account for behaviour in both tasks and that under 
this approach participants would not have shown evidence 
of adopting different strategies. Given concerns over how 
reinforcement learning models generalize in human learn-
ing (e.g., Eckstein et al., 2022), researchers who are more 
interested in long-term predictions might adopt an approach 
where models are fit to the data from multiple tasks simulta-
neously. However, had we adopted such an approach solely, 
then we might have not observed evidence suggesting differ-
ent strategies may have been used across tasks. In essence, 
we would have missed an important finding from our work. 
Ultimately it is up to the researcher to decide what approach 
to use, and which approach is more beneficial for their inter-
ests—that is, whether they are interested in long-term as 
compared to short-term model predictions.

In addition, we note that there are other possible 
approaches to investigating the issue of model generalizability 
which do not rely on the comparison between combined and 
individual model fitting. For example, prior work has adopted 
approaches where the data from one task is used to fit the 
models in a separate task using techniques such as the “gener-
alization criterion method” (e.g., Ahn et al., 2008; Busemeyer 
& Wang, 2000). The generalized criterion method is useful 
because it provides a specific metric for measuring how gen-
eralizable models are from one task to the other. Another pos-
sible solution to the problem of determining how to quantify 
the best fit across tasks when considering short and long-term 
predictions is the application of hierarchical reinforcement 
learning models (Barto & Mahadevan, 2003; Botvinick, 2012) 
where specific sub-routines can be used depending on task 
demands. Hierarchical reinforcement learning might provide 
a means of accounting for both short-term and long-term pre-
dictions and provide an answer for why and when different 
exploration strategies are instituted. We do note that a key 
feature of hierarchical reinforcement learning is that it tends 
to involve the abstraction across much longer timescales and 
more complex environments than were used in the present 
work. The future investigation of exploration using a task 
structure where participants learn across multiple hierarchi-
cally organized bandit tasks might be revealing (e.g., like the 
design in Diuk et al., 2013).

Furthermore, we note another aspect related to the mod-
eling approach that we used in the present work related to 
how we classified participants as using a specific exploration 
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strategy. In the present work, participants were classified as 
using one strategy across a task (or across both tasks in the 
case of the combined model fitting) without consideration 
given to strategy switching within a task. We should not 
imply that participants are only using one strategy (for exam-
ple that they are only using directed or random exploration). 
In fact, a wealth of evidence shows that humans use directed 
exploration and random exploration within a task as needed 
(Gershman, 2019; Wilson et al., 2014; Wu et al., 2020). It is 
a consequence of the model-fitting approach that we used in 
the present work which led to us classifying participants as 
one strategy or the other. In addition, that some participants 
did not engage in directed exploration in the stationary ban-
dit task could be due to the conflation between information 
and value within the stationary bandit task (Wilson et al., 
2014).

Another major finding from the present work was that 
the exploration rate was correlated between the two learning 
environments. The relationship between exploration rates 
across tasks is an indication that exploratory behaviour can 
generalize across environments—even if the exploration 
strategies differ. The positive correlation between explora-
tion rates was maintained regardless of whether we used the 
individual or combined model fitting approaches—although 
given the high overlap in trial classification between models 
perhaps this is unsurprising. Our work extends prior inves-
tigations showing moderate correlations in switching rates 
across tasks and sessions (Yechiam, 2020) to exploratory 
behaviour specifically.

One explanation for the exploration correlation in the pre-
sent work is that exploration rate could reflect personality 
traits such as risk taking, propensity for mind-wandering, or 
impulsivity, all of which have been suggested to be tied to 
exploratory behaviour (risk taking: Saragosa-Harris et al., 
2022; mind-wandering: Sripada, 2018; impulsivity: Dubois 
& Hauser, 2022). For example, participants with a higher 
preference for risk-taking might be more inclined to explore 
as they have a greater willingness to forgo rewards to gain 
knowledge about their environment. To this point, the explo-
ration rate in both tasks was negatively correlated with per-
formance. While there have been no direct examinations of 
exploration rate consistency across tasks and its relationship 
to personality traits, ethological findings indicate that a link 
between personality traits and exploration rate could be a 
realistic suggestion. Specifically, consistent foraging behav-
iour across contexts in lemurs has been shown to be related 
to boldness (Dammhahn & Almeling, 2012). We necessar-
ily remain agnostic on which underlying traits specifically 
could explain our correlation in exploration rate due to a 
lack of questionnaire data to support our claims. However, 
we believe that any of the traits specified would be ideal 
candidates for further investigation into why exploration rate 
can be correlated across tasks.

A separate, though not necessarily competing, explana-
tion for this relationship in exploration rate across tasks is 
that exploratory behaviour is controlled in a hierarchical 
manner. Specifically, the mid-cingulate cortex has been 
argued to act as a hierarchical controller of motivated, 
goal-directed behaviour and the mid-cingulate cortex will 
select specific behavioural plans and the neural circuits to 
carry out those plans (Holroyd & Yeung, 2012). In addi-
tion, the mid-cingulate cortex uses prediction errors signaled 
by dopaminergic activity to determine which controller of 
behaviour should be implemented (Holroyd & Coles, 2002). 
The mid-cingulate cortex may act as a hierarchical controller 
of behaviour, determining when to apply specific explora-
tion strategies depending on the task. There is evidence that 
exogenous administration of dopamine increases activity in 
the medial pre-frontal cortex (of which the mid-cingulate 
cortex is a part) and changes the meta-cognitive strategies 
adopted by participants (Joensson et al., 2015). Thus, per-
haps the exploration rate reflects a meta-cognitive search 
strategy related to the activity of dopamine and control sig-
nals in the brain (e.g., Cavanagh & Frank, 2014).

Three different approaches would be useful for better 
understanding the results obtained here. Neuroimaging 
could help elucidate whether distinct neural circuits under-
lie these different exploration strategies. There is good rea-
son to believe that this is the case given work showing a 
different neural basis for random and directed exploration 
(Zajkowski et al., 2017) and work highlighting dissociable 
neural circuits in stationary and non-stationary tasks (Costa 
et al., 2016). In addition, the collection of personality trait 
measures such as risk taking could reveal the roles of these 
traits in exploration consistency. Perhaps most importantly, 
the present findings speak to a need for further investigation 
into the reliability and consistency of exploratory behaviour. 
Interesting questions which should be answered include the 
following: (1) do participants use the same exploration strat-
egy in the same environment when tested repeatedly, (2) are 
participants consistent in how often they explore in the same 
environment when tested repeatedly, and (3) does the order 
of tasks matter and is there evidence of positive and negative 
transfer effects with task ordering?

While promising, the present work has several limita-
tions. Perhaps the most concerning is the lack of counter 
balancing, as all participants completed the non-stationary 
bandit task prior to completion of the stationary bandit task. 
Thus, motivational and task engagement changes during 
the experiment could explain the difference in strategy use 
between tasks. For example, work has shown that time on 
task is associated with a reduction in neural signals reflecting 
task engagement (Umemoto et al., 2018). While the authors 
examined performance across two hours and within a single 
time-estimation paradigm, similar changes to task engage-
ment could be occurring in the present work and driving the 
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exploration strategy differences. A related limitation is that 
both the number of arms (four vs two) and the feedback type 
provided (points vs wins/losses) differed between the two 
bandit tasks. The difference in both the number of arms and 
feedback type meant that the two bandit tasks differed across 
three factors total when considering the stationary and non-
stationary task set-up. As such, it remains impossible to dis-
tinguish which of these three factors impacted the type of 
strategies adopted. As an example, point feedback provides 
a greater amount of information when compared to win-loss 
feedback, possibly driving the strategy participants adopted 
to attempt to solve the task. Thus, future work would do well 
to consider only varying one of these factors (e.g., stationary 
vs non-stationary) and keeping the other two factors (feed-
back information, number of choices) consistent.

Conclusions

In sum, we present three key findings. First, using our indi-
vidual model fitting analysis people’s exploration strategy 
varies between tasks—replicating prior work showing that 
people will adopt different strategies due to task demands 
(Schulz et al., 2018b; Wu et al., 2020). We speculate that the 
differences in exploration strategies reflect differences in the 
type of learning assessed or cognitive flexibility needed to 
successfully complete the two bandit paradigms. Our find-
ings provide evidence of the flexible use of exploration strat-
egies depending on task demands. Second, we found that 
when instead attempting a combined model fitting approach 
using data from both tasks concurrently—rather than indi-
vidually—we could effectively model behaviour across both 
tasks without showing evidence of exploration strategy 
switching (inherent to the combined model fitting approach). 
We thus note that researchers using such an approach must 
determine whether long-term (across both tasks) or short-
term (within a task) predictions are their focus. Third, we 
found that exploration rate across tasks was correlated which 
we argued could depend on a personality trait such as risk-
taking. Alternatively, these findings could be explained by 
the hierarchical control of behaviour by the mid-cingulate 
cortex. Although promising, it is evident that future work 
replicating and extending these findings is needed. Extend-
ing these findings beyond bandit tasks to more ecologically 
valid tasks such as spatial navigation tasks or multi-stage 
decision tasks will provide an exciting avenue for future 
investigation (e.g., Brändle et al., 2022). We believe that the 
present work reveals the importance of flexibility in human 
exploratory behaviour while highlighting evidence for gen-
eralization in how we explore across contexts.
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