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Abstract
Bayesian theories of cognitive science hold that cognition is fundamentally probabilistic, but people’s explicit probability
judgments often violate the laws of probability. Two recent proposals, the “Probability Theory plus Noise” (PT+N; Costello
and Watts Psychological Review, 121, 463–480, 2014) and “Bayesian Sampler” (Zhu et al. Psychological Review, 127,
719–748, 2020) theories of probability judgments, both seek to account for these biases while maintaining that mental
credences are fundamentally probabilistic. These models differ in their averaged predictions about people’s conditional
probability judgments and in their distributional predictions about their overall patterns of judgments. In particular, the
Bayesian Sampler’s Bayesian adjustment process predicts a truncated range of responses as well as a correlation between
the average degree of bias and variability trial-to-trial. However, exploring these distributional predictions with participants’
raw responses requires a careful treatment of rounding errors and exogenous response processes. Here, I cast these theories
into a Bayesian data analysis framework that supports the treatment of these issues along with principled model comparison
using information criteria. Comparing the fits of both models on data collected by (Zhu et al. Psychological Review, 127(5),
719–748 2020), I find these data are best explained by an account of biases based on “noise” in the sample-reading process
but in which conditional probability judgments are produced by a process of conditioning in the mental model of the events,
rather than in a two-stage mental sampling process as proposed by the PT+N model.
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Bayesian theories of cognition offer a unified formal
framework for cognitive science (Tenenbaum et al., 2011)
that has had remarkable explanatory successes across
domains, including in perception (e.g. Kersten et al.,
2004), memory (e.g. Anderson, 1991), language (e.g. Xu
& Tenenbaum, 2007), and reasoning (e.g. Lu et al., 2012).
At the heart of the Bayesian project is the idea that
cognition is fundamentally probabilistic: that people reason
according to subjective degrees of belief which follow
the laws of probability and, in particular, that they are
revised in light of evidence according to Bayes’ Rule. It
is somewhat embarrassing then, that these theories have
often been accused of failing to describe human “beliefs”
of the simple and everyday sort, such as beliefs like “it will
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rain tomorrow”, “vaccines are safe”, or “this politician is
trustworthy” (Chater et al., 2020).

Trouble starts as soon as we attempt to measure
beliefs. According to Bayesian theories of cognition and
epistemology (Jaynes, 2003), the degree to which people
believe in various propositions, or their credences, should
reflect subjective mental probabilities. So, asking people to
express beliefs in terms of probability seems only natural.

Unfortunately, people’s explicit probability judgments rou-
tinely violate the most basic axioms of probability theory.
For example, human probability judgments often exhibit
the “conjunction fallacy”: people will often judge the con-
junction of two events (e.g. “Tom Brady likes football
and miniature horses”) as being more probable than one
of the events in isolation (e.g. “Tom Brady likes minia-
ture horses”), a plain and flagrant violation of probability
theory (Tversky & Kahneman, 1983). Other demonstra-
tions of the incoherence of probability judgments include
disjunction fallacies, subadditivity or “unpacking” effects
(Tversky & Koehler, 1994), and a number of others (for an
accessible review, see (Kahneman, 2013). Altogether, these
findings have led many researchers to abandon the notion
that degrees of belief are represented as probabilities.
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Recently however, two groups of researchers have
proposed theories of human probability judgments that
account for biases in these judgments while maintaining that
mental credences are fundamentally probabilistic (Costello
& Watts, 2014; Zhu et al., 2020). Both of these theories
build on the increasingly popular notion that a variety
of human reasoning tasks are accomplished by a limited
process of mental “sampling” from a probabilistic mental
model (see also Chater et al. 2020, Dasgupta et al., 2017).1

Two Probabilistic Theories of Probability Judgment

Costello & Watts (2014, 2016, 2018) have proposed a
theory of probability judgment they call the “Probability
Theory plus Noise” theory (PT+N). In the PT+N model,
mental “samples” are drawn from a probabilistic mental
model of events and are then “read” with noise, so that
some positive examples will be read as negative and some
negative examples read as positive with some probability
d . The end products are probability judgments reflecting
probabilistic credences perturbed by noise. In their model,
the probability that a mental sample for an event A is
correctly read as A is the probability that the sample truly
is A, p(A), and that it is correctly read (1 − d), plus the
probability that the sample is not A, 1 − P(A) and that it is
incorrectly read (d), or:

P(read as A) = (1 − d)P (A) + d(1 − P(A)) (1)

= (1 − 2d)P (A) + d

Thus under the simplest form of the PT+N model, the
expected value of probability judgments is:

E[P̂PT +N(A)] = (1 − 2d)P (A) + d (2)

By assumption, a maximum of 50% of samples can be
misread on average, so d is a number in the range [0, 1/2].
The overall consequence of the sample-reading noise will
be to shrink probability estimates toward .50 in proportion
to d . The PT+N theory provides a unified account for
a wide variety of biases in probability judgment that
were previously attributed to different types of heuristics,
as well as novel biases identified based on the model’s
predictions (Costello & Watts 2014, 2016, 2017, 2018). For
example, the PT+N theory offers an explanation for many

1It is worth noting that other non-sampling based approaches have
been proposed to account for distortions in people’s use of explicit
probabilities in decision-making (e.g. Zhang & Maloney, 2012, Zhang
et al., 2020). Further theorizing might extend these accounts to also
describe the generation of probability estimates, so that a probabilistic
account of beliefs might not rest entirely on the assumption of
sampling from mental models.

instances of “conservatism” (Costello & Watts, 2014)—
people’s tendency to shy away from extreme probability
judgments near 0 and 1, even when strong evidence warrants
such judgments (e.g. Edwards, 1968, Erev et al., 1994).

Meanwhile, Zhu et al. (2020) have proposed a Bayesian
model of probability judgment they call the “Bayesian
Sampler”. Under this model, probability judgment is itself
seen as a process of Bayesian inference. To judge the
probability of an event, a limited number of samples are
again drawn from a mental model of the event. Then,
those “observed” samples are integrated with a prior over
probabilities to produce a probability judgment. This prior
takes the form of a symmetric Beta distribution,Beta(β, β).
After observing S(A) successes and N − S(A) failures,
the posterior over probabilities is distributed Beta(β +
S(A), β + N − S(A)). Zhu et al. (2020) assume that people
report the mean of their posterior probability estimates. For
any Beta distribution x ∼ Beta(a, b), E[x] = a

a+b
. So, the

expected probability estimate is a linear function of S, N,
and β.

P̂BS(A) = S(A)

N + 2β
+ β

N + 2β
(3)

The expected value of the estimate can then be written
in terms of the expected number of successes, or P(A) · N .
Under the simplest version of the Bayesian Sampler model,
this gives the following formula:

E[P̂BS(A)] = N

N + 2β
P (A) + β

N + 2β
(4)

Like the PT+N model, the Bayesian Sampler model
accounts for a wide array of biases in probability judgments,
including the novel biases identified by Costello and
Watts (Costello and Watts, 2014, 2016). In fact, important
equivalencies can be drawn between the two models. Zhu
et al. (2020) show that the N and β parameters of their
model can be related to the d parameter of the PT+N model
via the following bridging formula:

d = β

N + 2β
(5)

Thus, in many cases the effect of a Bayesian prior is
identical to the effect of noise in the PT+Nmodel (at least in
expectation). A caveat to this is that the Bayesian Sampler
theory restricts the parameterization of the equivalent d

parameter compared to the PT+N model. Whereas PT+N
assumes d ∈ [0, 1/2], the Bayesian Sampler theory assumes
an uninformatative prior parameter β ∈ [0, 1], which in turn
restricts the equivalent parameterization of d ∈ [0, 1/3].
But beyond this subtle difference of parameterization, there
is a larger difference in interpretation: rather than merely
perturbing people’s probability judgments, this prior can be
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seen as regularizing these judgments away from extreme
values. Zhu et al. (2020) argue that such regularization can
be adaptive in cases where only a small number of mental
samples can be drawn. For instance, consider someone
estimating the probability that they can swim across a lake,
outrun an animal, or win a hand of poker: if a mental
simulation of these events produces two samples indicating
success, one might conclude these are all certain victories
and thereby be too willing to assume risk. A regularizing
prior pushes these estimates away from extremes, thereby
promoting better decision-making when mental samples
are sparse. However, this hedging comes at the cost of
systematic incoherence and biases.

Differentiating Between theModels

The model’s predictions can be distinguished on two levels:
First, the models have distinct accounts of conditional
probability judgments that make different predictions in
terms of expected values. Second, the models present
different process-level accounts of probability judgment
that entail different predictions about the shape of the
distribution of responses across trials.

Different Accounts of Conditional Probability Judgments

By explaining the incoherence of human probability
judgments using coherent mental probabilities, both models
have the potential to rescue the larger project of Bayesian
cognitive science as applied to everyday beliefs (Chater
et al., 2020). However, the two models diverge substantially
in their treatment of conditional probability judgments.
Bayesian cognitive theories are fundamentally theories of
inductive reasoning: Bayes’ rule describes how existing
beliefs should be updated conditional on the observation
of different kinds of evidence. So, treatment of the
conditioning of beliefs is at the heart of these theories.

According to the Bayesian sampler model, conditioning
is something that happens in the mental model of
the events, not as part of the process of rendering
probability judgments. By not assigning any special status
to conditional probability judgments, the Bayesian Sampler
theory fits neatly into the larger project of Bayesian
cognitive science: probability judgments are simply another
judgment process applied to the outputs of other (ideally
Bayesian) mental models (Chater et al., 2020).

In contrast, the PT+N model presents a constructive
account of conditional probability judgments that is
fundamentally non-Bayesian (Costello & Watts, 2016).
According to the PT+N model, conditional probabilities
P(A|B) are estimated by a two-stage sampling procedure:
first both events A and B are sampled with noise, and then
a second noisy process computes the ratio of the events

read as A and B over events read as B. Schematically, the
estimated probability can be written as:

Pe(A|B) = P(read as A|read as B) (6)

= P(read as A|B)P (B|read as B)

+P(read as A|¬B)P (¬B|read as B)

Substituting terms according to the PT+N model and
then simplifying, the PT+N model predicts conditional
probability estimates using the following equation:

Pe(A|B) = (1 − 2d)2P(A ∧ B) + d(1 − 2d)
(
P(A) + P(B)

) + d2

(1 − 2d)P (B) + d
(7)

This non-Bayesian account of conditional probability
judgments separates the PT+N theory quite fundamentally
from the Bayesian Sampler and the larger project of
Bayesian cognitive science.

Different Process-Level Accounts and Predicted Response
Distributions

Although the model’s predictions for unconditional prob-
ability judgments are identical in expectation (as seen via
the bridging condition), the models posit different psy-
chological processes underlying those judgments: sample
reading noise in the PT+N model and Bayesian inference
in the Bayesian Sampler model. These process-level differ-
ences imply different predictions about the distributions of
people’s judgments.

The models make qualitatively different distributional
predictions on two fronts. First, the Bayesian Sampler
predicts a clear relationship between the degree to which
responses are shrunk toward .50 and the trial-by-trial
variability in those responses. In both models, the amount
of variability in trial-level responses is related to the
number of mental samples drawn, N . In the Bayesian
Sampler model, assuming β is relatively small, N should
also help to determine the degree to which responses are
shrunk toward .50. In contrast, in the PT+N model the
variance across responses and degree of shrinkage are
reasonably considered to be independent. Second, because
the Bayesian Sampler describes a process of adjustment
after the sampling process, in which people report the
mean of their mental posterior over probabilities, the model
also predicts a truncation of the response distribution in
proportion to β and N (Chater et al., 2020; Sundh et al.,
2021). That is, even when zero positive or negative samples
are drawn, the mean of the posterior is drawn away from
extreme responses of zero and one.

Modeling the distributions of raw responses holds clear
promise for disentangling the models. However, there are
at least three challenges to directly modeling raw human
response data. First, both models are, strictly speaking,
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discrete and so make a limited set of discrete predictions
while assigning zero probability to responses outside that
set. Second, and similarly, the truncation in the Bayesian
Sampler model also assigns zero probability to responses
beyond the truncated range. And third, from a cursory
glance it is clear that a majority of human responses are
rounded by some unknown degree, with most seemingly
rounded to the nearest 5 or 10%. Given the combination of
these factors, if fit directly to raw human data the posterior
probability of both models is likely to be zero. I return to
these challenges and my approaches to addressing them in
the results.

Prior Comparisons of theModels

Comparison of Participant-Level Query-Averaged
Responses

Zhu et al. (2020) compared their Bayesian Sampler model
against Costello and Watts’ (2014, 2016, 2017, 2018) PT+N
model as explanations for human probability judgments
in two experiments. Unfortunately, their results were
somewhat equivocal.

Zhu et al. (2020) measured participants’ judgments for
each query (e.g. “what is the probability that it will be
rainy”) on three repeated trials. Their primary quantitative
analysis fit the models separately to participants’ average
response to each query (averaged over three trials). These
analyses compare human responses to the models’ predic-
tions in expectation. After fitting, Bayesian Information
Criteria (BIC) values were computed for each participant,
which were then used to approximate the posterior probabil-
ity of each model for each participant, assuming a uniform
prior. The researchers found that a preponderance of partic-
ipants’ responses were best-captured by the Bayesian Sam-
pler model. However, a substantial number of participants
were instead more strongly fit by the PT+N model.

Given that these models are proposing quite basic
psychological processes, we might expect the same process
to be shared across all people. But, the authors do not report
on the overall posterior probability of each model if one
model is assumed to explain all participants’ responses.
Such a comparison with these methods would likely be
limited in a few ways. First, as they note (Zhu et al.,
2020), BIC cannot fully account for the differences in the
competing models’ complexity (also see Piantadosi, 2018).
Further, their “unpooled” analysis likely exaggerates the
complexity of the models overall and may therefore affect
comparisons between them. In contrast, hierarchical models
with partial pooling offer a solution that balances between
ignoring individual variation and allowing all parameters

to vary freely, allowing for an accounting of heterogeneity
without over-penalizing in cases where heterogeneity is
low.

Comparison of Distributional Model Predictions

Rather than computing query-level averages across trials
for each participant, examining the models’ distributional
predictions requires modeling participants’ raw trial-by-trial
responses. As mentioned above, this presents substantial
challenges. To address these, Zhu et al. (2020) estimated
discrete versions of the Bayesian Sampler and PT+N
models by minimizing the Wasserstein distance between
participants’ raw responses and model predictions. The use
of Wasserstein distance rather than a proper likelihood-
based measure of model fit helped to minimize issues
created by rounding and out-of-support responses, which
could otherwise lead both models to assign probability zero
to many observations.

Still, the results of this analysis were largely inconclusive
with respect to differentiating the models (Zhu et al.,
2020). Specifically, the quality of the fit for each model
depended heavily on the maximum number of samples that
is assumed possible. For small numbers of samples, the
Bayesian Sampler model is clearly superior, but for larger
numbers of samples, the PT+N model was found to better
fit the data. Presumably, this is because with small numbers
of samples the PT+N model is extremely constrained in
the distinct discrete responses it can predict. For small N,
both models predict only a limited set of distinct values are
possible. However, whereas the size of that set is the same
for each model, in the Bayesian Sampler the continuous
β parameter can shift exactly what those discrete values
are, providing it much greater flexibility. Yet, this additional
model flexibility goes unpunished in comparisons based on
Wasserstein distance.

In later work, Sundh et al. (2021) examined the
distributional properties of participants’ responses using
indirect means, by regressing the variance of participants’
responses across trials on their mean response for each
query type. Their findings suggest that earlier fits with
Wasserstein distance may have produced biased results
(Sundh et al., 2021). They reported evidence for the
truncation of responses and a correlation between variance
and shrinkage parameter estimates across participants.
However, their analysis did not enforce that the underlying
probabilities driving participants’ judgments be coherent
(simply estimating the true probability as the mean across
trials), nor did they evaluate how frequently participants
gave out-of-support judgments that would be inconsistent
with the Bayesian Sampler theory.
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The Present Work

Here, I cast both the Bayesian Sampler and PT+N models
into a Bayesian data analysis framework that may permit a
more decisive comparison. Two sets of analyses compared
different aspects of the models’ predictions: First, the
model’s were examined based on their predictions in
expectation. This analysis allows for a test of their different
accounts of conditional probability judgments and their
parameterizations (i.e. the restriction of d to [0, 1/2] versus
[0, 1/3]). To preview the results, these analyses revealed
the Bayesian Sampler’s account of probability judgments to
be superior, but could not distinguish between the different
psychological processes proposed by the two models. A
second set of analyses examined the model’s distributional
predictions to test their process-level accounts of probability
judgments. As will be described, modeling response
distributions directly presents a number of challenges, and
so this second set of analyses required some minor additions
and modifications to the models to permit their fitting to
experimental data.

Both sets of analyses are supported by the use of a
Bayesian Framework. First, Bayesian analyses allow issues
of model complexity to be addressed through comparisons
of model fit based on modern information criteria, such as
Pareto smoothed importance sampling approximate leave-
one-out cross validation (PSIS-LOO; Gelman et al. 2014,
Vehtari et al. 2017).2 Second, the Bayesian framework
supports straightforward implementation of hierarchical
versions of these models allowing for information about
model parameters to be shared across participants, resulting
in potential improvements to out-of-sample prediction,
reductions in model complexity, and a more realistic
test of the models. Finally, a Bayesian framework also
supports new extensions of these models to directly
model participants trial-level responses while accounting
for rounding and out-of-distribution response errors. These
extensions allow for principled probabilistic tests of the
distributional predictions of the models.

2Rather than estimating model fit and then penalizing for model com-
plexity, PSIS-LOO estimates out-of-sample prediction performance
directly by estimating the expected log predictive density êlpd of the
model, or the expected probability of new unseen data (Gelman et al.,
2014; Vehtari et al., 2017). From these calculations, an estimate of
model complexity p̂LOO can also be derived. However, it is worth rec-
ognizing that formal measures of model complexity will not always
track notions of simplicity or elegance in scientific explanation (for
some related discussions, see (Kuhn, 1977; Piantadosi, 2018; Sober,
2002)

Methods

Data Selection

Zhu et al. (2020) conducted two experiments to com-
pare the PT+N and Bayesian Sampler theories. These
experiments asked participants to judge the probability of
different events in various combinations. Following prior
work by Costello and Watts (e.g. 2016, 2018), both exper-
iments focused on the everyday events of different kinds of
weather.

Experiment 1 asked about the events [icy, frosty] and
[normal, typical] (e.g. “what is the probability that the
weather in England is normal and not typical?”). The
authors’ goal was to ask about highly correlated events,
but the events used are perhaps nearly perfectly correlated.
Because the terms used to describe these events are nearly
synonymous, there is a concern about the interpretation
of the statements evaluated in this experiment. This is
especially clear, as the authors note, for disjunctive query
trials such as “normal or typical,” where “or typical” might
not be read as a disjunction but rather an elaborative clause.
In light of these concerns, I excluded the disjunctive trials
from Experiment 1 from my analyses.

Experiment 2 focused on more moderately correlated
events, [cold, rainy] and [windy, cloudy], that do not admit
these misinterpretations. In addition, a third experimental
condition asking about [warm, snowy] was also included
in the experiment, but was dropped from the analyses
reported in the paper. Exploring the raw responses from this
condition reveals a substantial fraction of “zero” and “one”
responses for certain trials. This may reflect a different
response process than was intended. For instance, some
participants may have engaged in deductive reasoning to
judge that it is not possible for the weather to at once
be warm and snowy, and therefore responded with zero—
failing to properly consider that it is possible (at least
logically) for it to be warm and snowy at different times
within the same day. Given these potentially aberrant
responses, I followed Zhu et al. (2020) in ignoring data from
this condition.

Modeling Results: Participant-Level
Query-Averaged Responses

This first set of analyses compares the models’ ability to
capture participant’s probability judgments in expectation,
averaged over the three blocks on which they made
judgments about each query. These analyses will test the
first points of differentiation between the models: their
different predictions with respect to conditional probability
judgments and their specific parameterizations.
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I implement several variants of the Bayesian Sampler
and PT+N models in a Bayesian framework. These
models were implemented in the probabilistic programming
language Numpyro. All code and results are available
as supplemental materials (https://github.com/derekpowell/
bayesian-sampler).

Bayesian Implementation of Participant-Level
Query-Averaged Response Models

The PT+N model defines expected probability judgments
(Pe) as:

Pe(A) = (1 − 2d)P (A) + d

Pe(A ∧ B) = (1 − d ′)P (A ∧ B) + d ′

Pe(A ∨ B) = (1 − d ′)P (A ∨ B) + d ′

Pe(A|B) = (1 − 2d)2P(A ∧ B) + d(1 − 2d)
(
P(A) + P(B)

) + d2

(1 − 2d)P (B) + d

(8)

In contrast, the Bayesian Sampler model defines
expected probability judgments as:

Pe(A) = N

N + 2β
P (A) + β

N + 2β

Pe(A ∧ B) = N ′

N ′ + 2β
P (A ∧ B) + β

N ′ + 2β

Pe(A ∨ B) = N ′

N ′ + 2β
P (A ∨ B) + β

N ′ + 2β

Pe(A|B) = N

N + 2β
P (A|B) + β

N + 2β
(9)

Fixing d and d ′ or N and N ′ equal yields the “simple”
variant of each of the models, which treat conjunctive
and disjunctive probability judgments identically to simple
probability judgments.

Notice that for each model the probability judgments
depend on underlying subjective probabilities, derived from
a mental sampling process. These subjective probabilities
are unobserved, and must be estimated as a latent variable.
Here, they are represented with a four-dimensional dirichlet
distribution for each subject, �θ , representing the probability
of the elementary events (A∧B,¬A∧B,A∧¬B,¬A∧¬B).

Zhu et al. (2020) implement completely unpooled
models with separate d , d ′, N , N ′, and β parameters
for each participant. Although hierarchical models with
partial pooling might be expected to better account for
the data and offer a better test of the models, for
consistency and comparison with Zhu et al. (2020) analyses,
I first estimated implementations of these unpooled models.
Figure 1 displays the translation of the PT+N model
into the Bayesian framework, along with a plate diagram
representing the dependencies among parameters.

The function fPT +N computes the expected probability
estimate using the underlying subjective probability com-
puted from �θ and the query, the noise parameters d and
d ′, and the relevant equation as defined by the PT+N the-
ory (see supplemental materials for implementation details).
Prior predictive checks were conducted for all models to
select priors that would be uninformative or minimally
informative on the scale of the model parameters d and d ′. 3

Recall that Zhu et al. (2020) identified a bridging
condition relating β and N in the Bayesian Sampler model
to the d parameter of the PT+N model. To support direct
comparisons of the models, I parameterize the Bayesian
Sampler model according to the implied d and d ′, rather
than directly according to its β, N , and N ′ parameters.4 I
constrain d to [0, 1/3] for the Bayesian Sampler model to
reflect the assumption that β ∈ [0, 1]. This allows the same
priors to be used for the corresponding Bayesian Sampler
and PT+N models, simplifying their comparison.

The Bayesian Sampler model is therefore identical to the
PT+N model save for the changes to μijk , d , and d ′ shown
below:

μijk = fBS(
−→
θjk, xijk, dj , d

′
j )

dj = 1

3
logistic(δj )

d ′
j = 1

3
logistic

(
δj + exp(�δj )

)
(10)

Where the function fBS computes the expected prob-
ability estimate as prescribed by the Bayesian Sampler
theory.

Hierarchical Implementations of the Models

Both of these models can also be implemented as
hierarchical models with partial pooling for the d and
d ′ parameters (implicitly, for N and N ′ in the case of
the Bayesian Sampler). This partial pooling can help

3Uninformativeness was sought in order to reduce bias in the posterior
parameter estimates. It should be acknowledged that a uniform prior
does not exactly correspond to what the authors of the PT+N theory
would predict, as they have frequently assumed d to be a fairly small
value (e.g. Costello and Watts, 2017)
4Strictly speaking, under the original form of the Bayesian sampler
model, N and N ′ are discrete parameters representing the number of
distinct independent samples drawn. Given a particular implied d, this
could create constraints on the possible values of d ′, assuming β is held
constant. However, Zhu et al. (2020) also consider the possibility that
people draw non-independent mental samples, in which case N and N ′
would represent the effective number of samples, accounting for their
autocorrelation. In this case, we could treat this effective number of
samples as a continuous quantity, and therefore imagine there are no
clear constraints on d and d ′ except the stipulation that d ≤ d ′. These
ideas will be developed further in the trial-level analyses.
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Fig. 1 Complex unpooled PT+N
model diagram and formula
specifications. Circular nodes
are parameters, shaded nodes are
observations, and squared nodes
are deterministic functions of
parameters. Plates signify values
defined for i trials, j
participants, and k conditions

to regularize parameter estimates and improve out-of-
sample predictive performance. In addition, partial pooling
effectively reduces model complexity, and could support
more realistic comparison between the “simple” and
“complex” variants of the models. Figure 2 displays
the translation of a hierarchical implementation of the
Bayesian Sampler model into the Bayesian framework,
along with a plate diagram representing the dependencies
among parameters. For ease of interpretation, the centered
parameterization is shown below, although the actual

models used a non-centered parameterization to improve
sampling efficiency (Papaspiliopoulos et al., 2007).

Finally, I also explored fitting a hierarchical version of
the Bayesian Sampler model that allowed values of β > 1.
Restricting β to [0,1] restricts the prior distribution of the
Bayesian sampler to the class of “ignorance priors” (Zhu
et al., 2020). However, it is also possible that people bring
informative priors to the probability judgment task. Indeed,
Zhu et al. (2020) acknowledge there are situations where an
informative prior may be warranted (see e.g. Fennell and

Fig. 2 Hierarchical complex
Bayesian Sampler model
diagram and formula
specifications. Circular nodes
are parameters, shaded nodes are
observations, and squared nodes
are deterministic functions of
parameters. Plates signify values
defined for i trials, j
participants, and k conditions
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Fig. 3 Model comparison results
for data from Experiments 1 and
2. Error bars indicate two
standard errors of the estimates.
Typically, a difference of greater
than two standard errors is taken
as clear evidence for the
superiority of the lower-scoring
model (Sivula et al., 2020)

Exp. 1 Exp. 2
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M
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Baddeley, 2012). If β is unrestricted, allowed to fall in the
domain [0, ∞] then the Bayesian Sampler model becomes
more flexible, allowing for equivalent “noise” levels in the
same [0, 1/2] range as the PT+N model. That is, through
the bridging condition, the implied d approaches 1/2 in
the limit as N → 1 and β → ∞. Though it would
seem a more fundamental change, this same model may
also be seen as a version of the PT+N theory that jettisons
its two-stage process of conditional probability judgment.
Thus, fitting this additional unrestricted model allows for
a complete comparison of the models along both of their
differing dimensions.

Simulation studies verified that the complex hierarchical
PT+N and Bayesian Sampler models can correctly and
unbiasedly recover parameters from simulated data (see
Supplemental Materials).

Model Comparison

I fit each of the models specified above to data from
Zhu et al. (2020) Experiment 1 and 2 and estimated the
expected log predictive density with PSIS-LOO (êlpdLOO)
for each combination. Compared with BIC, êlpdLOO offers
a more sophisticated account of model complexity and is

Fig. 4 Posterior density of
population-level d and d ′
parameters estimated from the
unrestricted hierarchical
Bayesian Sampler model for
data from Experiments 1 and 2.
Dashed line indicates theoretical
maximum values for Bayesian
Sampler model with
uninformative priors
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Fig. 5 Participant-level estimated d and d’ values across Experiments 1 and 2. Error bars indicate 95% CIs

more appropriate in the “M-open” case; situations where
we do not know if any of the models being compared are
the “true” model (Vehtari et al., 2019). Model posteriors
were estimated using the Numpyro (Phan et al., 2019)
implementation of the No-U-Turn Hamiltonian Markov
chain Monte Carlo (MCMC) sampler. For each model,
four MCMC chains of 2000 iterations were sampled after
2000 iterations of warmup and all passed convergence
tests according to R̂ (see Gelman et al., 2014). Figure 3
below displays the estimated differences in êlpdLOO scores
for each of the models as compared to the best-scoring
model.

Data from Experiment 1 favor “complex” variants of
the Bayesian Sampler model compared with the “simple”
variants and all versions of the PT+N model (greater values
of êlpdLOO are better). As shown in Fig. 3, the best-scoring
model is an unrestricted variant of the Bayesian Sampler
that allows for people to bring informative priors to the
probability judgment task (i.e. allowing β ∈ [0, ∞]. Data
from Experiment 2 more decisively reveal a single winning
model: the hierarchical “unrestricted” implementation of the
Bayesian Sampler model allowing for informative priors.

This unrestricted BS model differs from the PT+N
model only in its treatment of conditional probability

Fig. 6 Average model predicted
and observed values for the 18
identities. Note that the Bayesian
Sampler but not the PT+N
model is capable of predicting
non-zero values for identities
Z10 through Z13. Error bars
represent 95% CI. In Experiment
1, like participants’ responses,
the model’s estimates are very
slightly positive for {icy, frosty}
and very slightly negative for
{normal, typical}. This pattern
replicates the qualitative pattern
reported by Zhu and colleagues
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judgments and so, from its superior fit, we can infer that the
Bayesian Sample theory provides a better account of human
conditional probability judgments.

Figure 4 (top) shows the posterior distributions of the
population-level d and d ′ parameters inferred from the
unrestricted Bayesian Sampler model. In Experiment 2,
population-level estimates of d ′ are greater than 1/3, as are
a substantial number of participant-level estimates for d (37
of 83), as shown in Fig. 5. These values fall outside the
range implied by the assumption of “ignorance priors” in
the Bayesian Sampler model. Parameters fit to the data from
Experiment 1 are more consistent with this assumption,
although a substantial proportion of individual participants’
d and d ′ estimates also lie outside this range (11 of 59
for d , 18 of 59 for d ′). The finding that there are clear
differences in d and d ′ estimated across experiments suggest
that the mental sampling processes producing estimates vary
in the different conditions, either in terms of the number of
samples that are drawn, the noise in reading those samples,
or the form of the prior distribution assumed by participants
in each context.

Zhu et al. (2020) demonstrated that the Bayesian
Sampler model can capture a set of probabilistic identities
developed by Costello and Watts (Costello and Watts,
2016, 2018) that capture some of the incoherence in
people’s probability judgments. Following the design of the
present experiments, these identities involve combinations
of probability estimates for different combinations of two
events A and B that should all be equal to zero according to
probability theory. Under the Bayesian Sampler and PT+N
theories, however, some of these identities should be zero,
but some are allowed to take on other values. Figure 6
shows the average prediction of the winning model against

the average observed value for each equality. Consistent
with prior findings, this model captures these identities quite
closely.

Finally, it is worth noting that the best of these models pro-
vide quite strong overall fits to the data, not just for the
query averages, but also for the query averages across indi-
vidual participants as seen from the correlations between
predicted and observed responses in Table 1. Figure 7 shows
the correlation between participants’ responses across all
trials and the best-performing model’s predictions.

Results: Raw Trial-Level Response Distributions

The best-fitting model capturing participant’s predictions in
expectation can be seen either as a variant of the Bayesian
Sampler theory allowing for informative priors or as a
variant of the PT+N theory without any special treatment
of conditional versus unconditional probability judgments.
Thus, these prior analyses have not decisively ruled between
the different process-level psychological theories behind
the models. To evaluate the Bayesian Sampler and PT+N
theories’ competing accounts of the psychological processes
behind probability judgments, a second set of analyses
focused on the distribution of participant’s trial-by-trial
responses was conducted.

Recall, in contrast to a noise-based account, the Bayesian
Sampler theory predicts both a truncation of the response
distribution as well as a correlation between the degree
of shrinkage in probability estimates and the variability
of those estimates trial-to-trial (assuming β is relatively
small). Because the Bayesian Sampler applies a Bayesian
adjustment after sampling, it predicts probability judgments
will always lie between d and 1 − d , even when zero pos-

Table 1 Bayesian model comparison results with best scoring model in bold face

Experiment 1 Experiment 2

Model êlpdLOO p̂LOO rquery rquery-avg êlpdLOO p̂LOO rquery rquery-avg

Unrestricted BS hier. 1118.7 259.3 0.884 0.964 1978.6 366.4 0.688 0.878

Bayesian Sampler complex hier. 1088.3 269.6 0.883 0.960 1912.3 395.0 0.675 0.852

Bayesian Sampler complex 1087.8 264.6 0.883 0.961 1876.9 443.4 0.679 0.848

Bayesian Sampler simple 1045.6 253.8 0.874 0.952 1861.2 419.1 0.667 0.831

Bayesian Sampler simple hier. 1039.6 259.1 0.874 0.953 1900.7 377.8 0.667 0.839

PT+N complex hier. 993.0 268.9 0.867 0.946 1902.4 351.5 0.658 0.835

PT+N complex 966.1 259.8 0.864 0.941 1886.9 395.5 0.667 0.840

PT+N simple hier. 864.0 250.0 0.839 0.919 1821.9 305.3 0.617 0.772

PT+N simple 863.5 245.5 0.838 0.918 1821.5 319.5 0.619 0.777

Relative Freq. 649.3 289.4 0.820 0.875 643.8 424.6 0.516 0.639

Models are compared based on ̂extelpdextLOO and the correlation between their predictions for each participants’ query-level average (rquery) as
well as overall query-level averages rquery-avg
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Fig. 7 Posterior predictions for
best-fitting model and
participants responses in
Experiments 1 and 2
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itive or negative mental samples are drawn (see Eq. 12 and
the bridging condition, Eq. 5). First, it bears noting that
the truncated response distribution implied by the Bayesian
Sampler model appears at odds with the raw response data:
participants’ responses frequently lie outside the range
implied by the best estimates of their d parameters (41% in
Experiment 1 and 60% in Experiment 2).

Yet comparing the distributional predictions of the
models more rigorously poses three challenges: (1) the
discrete nature of the models suggests a limited set of
allowable responses, assigning zero probability to all others,
(2) Bayesian adjustment implies truncation of the support of
the response distribution, again assigning zero probability to
other response values, and (3) participants routinely round
their responses, complicating both of the previous issues.

In the following set of analyses I attempt to lay out a
set of reasonable assumptions that permit participants’ trial-
by-trial responses to be modeled and used to compare the
theories’ predictions. To do so, I first extend the models so
as to render them fully continuous in their latent space and
then marry them with a specific model of response errors.
Thus the models compared in the following analyses are not
identical to those originally proposed by Zhu et al. (2020)
and Costello and Watts (2014). However, they do provide
implementations of the theories’ process-level accounts, and
thus a means to test the distributional predictions of models
based on Bayesian adjustment against models based on
sampling noise.

Continuous Extensions of the Models

Under both models, the variability of people’s responses
trial-to-trial is driven by the number of mental sam-
ples drawn: more mental samples produce less-variable
responses. However, if the number of samples is considered
to be a truly discrete quantity, then only a limited num-
ber of discrete responses are possible. As Zhu et al. (2020)

note, this is somewhat implausible on its face and their later
work has abandoned this assumption (Zhu et al., 2021). At
the same time, from a pragmatic perspective it is highly
desirable that all latent parameters within the models be
continuous rather than discrete. The models would be far
more tractable to fit if, rather than including a latent Bino-
mial variable representing the discrete number of samples
drawn, we could instead model a continuous proportion of
samples using, for instance, a Beta distribution.

Zhu et al. (2020) introduce the possibility of an
“autocorrelated” Bayesian Sampler model under which
samples are assumed to be autocorrelated (ideas which were
advanced further in Zhu et al., (2021)). As autocorrelated
samples provide less information than i.i.d samples, they
should be weighted when computing probability estimates.
The idea is that people actually draw N autocorrelated
samples that approximate some smaller effective number
of i.i.d samples (Neff). Assuming the actual number of
autocorrelated samples drawn, N , is allowed to vary
somewhat noisily, then a model based on autocorrelated
samples would no longer be limited to predicting a discrete
set of possible responses. To approximate this as part
of a wholly continuous model, I model the proportions
calculated from such a hypothetical autocorrelated sampling
process using a Beta distribution.

Mixture Modeling: Rounding and Contaminants

Creating continuous extensions of the models makes their
estimation more tractable. However, a specific model of
participants’ response processes and errors is still needed to
capture rounded and out-of-support responses. To address
these challenges, I implemented variants of the PT+N
and Bayesian Sampler models within discrete mixture
models allowing for varying rounding policies as well
as “contaminant” responses generated by noise processes
outside the models.
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First, it is clear that participants have rounded a majority of
their responses. This sort of rounding can be modeled by a
categorical distribution across the discrete possible rounded
responses. Each rounded response category corresponds to
a set of cut points, a and b, with the probability of the
categorical response defined by the cumulative distribution
function of the underlying latent distribution (B).

P([a, b)) = B(a, μN, (1 − μ)N) − B(b, μN, (1 − μ)N)

(11)

As participants were allowed to respond freely with
whole numbers from 0 to 100, the exact rounding policy
for each response is unknown. Nevertheless these round-
ing policies can be estimated via mixture modeling. For
simplicity, rounding to the nearest 5% was enforced for
all responses. Then, the probability of these categorical
responses are computed for 21 and 11 categories (corre-
sponding to rounding to 5% and 10%). These probabilities
were combined along with a uniform probability represent-
ing “contaminants” according to mixing probabilities φ,
distributed with a Dirichlet prior (see Appendix for further
implementation details).

The Bayesian Sampler model predicts a truncated
range of possible responses given β and effective N

(and consequently, implied d). Modeling these different

rounding processes allows for at least some out-of-bounds
responses to be accounted for by rounding processes (e.g.
when an allowable response of .14 is rounded to the
out-of-bounds value of .10). However, some responses
still cannot be accounted for by the model. Instead,
these responses are treated as “contaminants” generated
by a random response process. Modeling “contaminant”
response processes allows the Bayesian Sampler model
to be fit in the presence of true outliers. Identifying the
estimated proportion of “contaminant” responses can also
provide a check on the models: if a model can only be fit by
assuming a large proportion of contaminant responses, this
suggests it is likely not a good model of human behavior.

Trial-Level Noise-Based Model

Compared to the query-averaged model, the trial-level
noise-based model adds two features: mixture components
for rounding and contaminants and subject-level vary-
ing N in place of a fixed K parameter. This model’s
implementation and the implementation of its mixture
components is depicted in Fig. 8. However, note that
N is allowed to vary independently from d , allow-
ing for independence between response shrinkage and
variability.

Fig. 8 Hierarchical complex
trial-level noise-based model
diagram and formula
specifications. ZNB and fNB

are functions that compute the
probability of each categorical
response and the expected
proportion of read-out mental
samples given underlying mental
probabilities and sample reading
noise. See Appendix for further
descriptions of these details
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Trial-Level Bayesian Sampler Model

Approximating an autocorrelated sampling process using a
Beta distribution and starting from the original Bayesian
Sampler model,

P̂BS(A) = S(A)

N + 2β
+ β

N + 2β
(12)

we can replace the number of successes S(A) (distributed
binomial) with the quantity ρ(A)N , where ρ(A) represents
the Beta-distributed sample proportions generated by the
autocorrelated sampling process outlined above.

P̂BS(A) = ρ(A)N

N + 2β
+ β

N + 2β
(13)

Then it is plain that P̂BS(A) is a transformation of ρ(A),
and therefore a transformed Beta distribution (see Appendix
for derivation). Figure 9 diagrams the entire Bayesian Sam-
pler model, now parameterized in terms of β, N , and N ′.

This model assumes that the number of samples drawn
on each trial is fixed as N or N ′ accordingly (modulo
the uncertainty about these parameters). However, it also
seems reasonable to imagine that the number of samples
drawn in fact varies from trial-to-trial. For the Bayesian
Sampler model, this could substantially impact the model’s
fit. As the number of samples drawn affects the truncation
of the response distribution, this may allow the model to
capture some responses that would otherwise be treated
as contaminants. To capture this, the model can be given
one additional extension to allow the number of samples
to vary, by adding a new parameter Ntrial . This parameter
multiplies the number of effective samples as a fraction
of each individual participants’ average number of samples
drawn, e.g. so that a participant might sometimes draw 1.5×
or 2× the number of effective samples they typically draw.
The appropriate amount of variation in Ntrial is constrained
to be fairly small, but is estimated hierarchically: I
assume log(Ntrial) ∼ N(0, σNtrial

) and log(σNtrial
) ∼

(−1, .3).

Fig. 9 Hierarchical complex
trial-level Bayesian Sampler
model diagram and formula
specifications. ZBS and f0 are
functions that compute the
probability of each categorical
response and the expected
proportion of mental samples
given underlying mental
probabilities before Bayesian
adjustment. See Appendix for
further descriptions of these
details
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Model Comparison: Raw Trial-Level Response
Models

Prior to fitting the models, response data were rounded to
the nearest 5%. Nearly all responses (Exp. 1: 93% and
Exp. 2: 89%) were already divisible by five, and this was
necessary to speed model fitting. Even still, estimating
model posteriors for the trial-level mixture models using
MCMC proved intractable. Instead, model posteriors were
estimated using Stochastic Variational Inference (SVI)
with Numpyro (Phan et al., 2019) using a multivariate
Normal guide (e.g. Kucukelbir et al., 2015). Estimating
each model posterior took between approximately 20
to 90 minutes on an Nvidia V100 GPU. Simulation
studies verified that this estimation approach could reliably
recover parameters from simulated data (see Supplemental
Materials).

Table 2 shows the scores of each model fit to the trial-
level data in Experiments 1 and 2. From the quantitative model
comparison it is clear that the noise-based model is superior,
with substantially lower êlpdLOO than both of the competing
Bayesian Sampler implementations in both experiments.

The models’ performance can be better understood by
examining the two main features about which the models’
predictions depart: truncation of the response distribution
and shrinkage-dependent variance of responses.

The non-varying Bayesian Sampler model fits quite
poorly and is estimated to have a large proportion of
“contaminant” responses (43% in Experiment 1, 26%
in Experiment 2). This is likely due to a lack of the
predicted truncation of the response distribution. As with
the trial-average models, the estimates of implied d are
quite high, which would predict substantial truncation.
As mentioned earlier, many of participants’ responses fall
outside the range implied by their most likely implied d
values.

Allowing the effective number of samples drawn to
vary trial-by-trial improves the fit of the Bayesian Sampler
model substantially and somewhat decreases the estimated
proportion of contaminant responses (30% in Experiment
1, 28% in Experiment 2). Nevertheless, these results

still indicate inferior fit compared with the noise-based
model, which has substantially lower êlpdLOO and attributes
far fewer responses to the contaminant process (11% in
Experiment 1, 4% in Experiment 2).

Second, we can examine the shrinkage-variance rela-
tionship. In the noise-based model, N and d were allowed
to vary freely. But if these quantities are actually corre-
lated as predicted by a Bayesian adjustment model, then
we should expect to nevertheless see a correlation between
the subject-level estimates in these parameters. Figure 10
shows scatterplots relating these estimates. Although there
is a slight negative correlation in Experiment 1, this is
driven by only a handful of participants with extreme
values. In Experiment 2 the correlation appears to if any-
thing be positive rather than negative. These findings again
run counter to the predictions of the Bayesian Sampler
theory.

Comparing the d values inferred from the trial-level
model we see they are similar to but generally smaller than
those estimated in the trial-averaged model. It is unclear
exactly why this is, though it could owe at least in part to
the mixture component preventing “contaminant” responses
from affecting the estimates of these parameters.

Discussion

Fit to the average of participants’ responses over blocks,
there is a single clear winner among the competing models:
a model without any special treatment of conditional
probability (ala the Bayesian Sampler model) and allowing
for an implied d parameter ∈ [0, .5]. This model could
be interpreted either as a variant of the Bayesian Sampler
without restriction on its β parameter, or as a variant of
the PT+N model that removes its account of conditional
probability judgments.

In either case, these findings make clear that the Bayesian
Sampler theory provides a superior account of conditional
probability judgments in this task. In keeping with the
larger theoretical framework of Bayesian cognitive science,
the Bayesian Sampler theory assumes that subjective

Table 2 Bayesian model comparison results for trial-level models with best scoring model in bold face

Experiment Model êlpdLOO p̂LOO ̂�elpdLOO SE�LOO

Exp. 1 Noise-based –12256.0 437.9 0.0 0.0

BS: Varying N –14079.7 1617.8 1823.7 74.5

Bayesian Sampler –14866.7 1384.5 2610.7 83.8

Exp. 2 Noise-based –24053.4 574.0 0.0 0.0

Bayesian Sampler –25376.0 1177.3 1322.6 56.0

BS: Varying N –26027.5 2154.6 1974.1 53.9
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Fig. 10 Scatterplots showing the
relationships between subject-
level d and N estimates from the
trial-level noise-based model for
Experiments 1 and 2. Figure for
Experiment 1 excludes some
outlier paricipants who gave
repetitive responses that resulted
in abnormally high N-values.
Error bars indicate 95% CI
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probabilities underlie people’s probability judgments, and
that conditional probability judgments are produced by
Bayesian conditioning occurring in their mental models
of the events in question, rather than as arising from the
probability judgment process (Chater et al., 2020; Zhu et al.,
2020).

At the psychological process-level, the Bayesian adjust-
ment process hypothesized by the Bayesian Sampler model
makes two clear predictions about the distribution of par-
ticipants’ responses. First, it implies a truncated range of
possible responses. Second, assuming that β is constrained
to be a relatively small value, then under the Bayesian Sam-
pler model,N influences both the degree to which responses
are shrunk toward .50 and the variability of those responses
trial-to-trial. Thus, participant’s inferred N values should
be somehow correlated with the noise in their trial-level
responses. In contrast, under the noise-based account of
the PT+N model, there is no truncation of responses and
no predicted correlation between shrinkage and response
variability.

The distributions of participants’ responses are more con-
sistent with the PT+N theory’s account of sampling noise

than the Bayesian adjustment implied by the Bayesian Sam-
pler theory as neither of the Bayesian Sampler’s predictions
appear to be borne out by the data. First, participants’
responses frequently fall outside the truncated range implied
by the parameters estimated under the Bayesian Sampler
model. Fit to the raw data, this requires treating an unrea-
sonably large proportion of responses as “contaminants”.
Second, the degree of shrinkage in participants’ responses
and the variability in those responses are not correlated in
the ways predicted by the Bayesian Sampler theory.

In the end, I find the best overall account of participants’
probability judgments is a modification of the PT+N theory
without its two-stage process of conditional probability
judgments. Like the PT+N theory, this model accounts for
distortions in probability judgments via a process of noisy
sampling. But like the Bayesian Sampler theory, under this
theory, conditional probability judgments are produced by a
process of conditioning in the mental model of the events,
rather than as part of the mental sampling process itself.

Outside of probability judgments, Bayesian conditioning
is a key aspect of the sorts of mental models imagined by
Bayesian cognitive scientists, where cognitive models are
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conditioned on information as part of learning, prediction,
and inference. Within this framework, it seems only natural
to imagine that a similar conditioning process would subserve
probability judgments, rather than conditional probability judg-
ments being made by a distinct two-stage sampling process.

To illustrate the distinction, consider being asked to judge
the conditional probability that it will rain tomorrow in
London given it rained today in London. Now, compare that
with first being told that it rained today in London, and then
being asked to make the simple probability judgment that
it will rain tomorrow in London. The original PT+N theory
would draw a distinction between the two tasks: The first
task would invoke the two-stage sampling process, whereas
presumably the second would involve some change in the
mental model to reflect learning about the day’s weather
followed by only a single stage of sampling. In contrast, the
present findings suggest these tasks would invoke the same
set of mental processes—conditioning of the mental model
followed by the drawing of samples from that model.

Remaining Questions and Limitations

Despite the model’s quantitative success, some more
qualitative questions remain. First, the plausibility of the
parameter values inferred from the model bears consider-
ation. Many participants’ estimated d and d ′ parameters
were quite high—potentially against the spirit of the orig-
inal PT+N model. This model bounds d at .50 in principle,
but a sample-reading process with such high error-rates
may or may not be plausible. In prior work, simulations
have often assumed values of d around .10 (Costello &
Watts, 2017; e.g. Howe & Costello, 2020). Further research
examining what factors might affect the mental sampling
and reading processes (e.g. task complexity, distractions,
prior experience) might help to shed light on the most
plausible range of d values in different contexts.

High estimates of d parameters might also call into
question arguments for the rational utility of such a process.
Zhu and colleagues argue that the regularizing effect of
Bayesian adjustment should be seen as adaptive. They
also consider that “noise” might give an algorithmic-level
solution to the computation-level goals defined by the
Bayesian sampler (Zhu et al., 2020). Even high implied
d values might be consistent with rational inference in
cases where the number of effective mental samples is
very low. For instance, a Beta (2,2) prior is only modestly
informative, but could produce d = .40 if N = 1.
However, in cases where more samples are drawn, high
d values would correspond to potentially inflexible and
suboptimal priors. From the results, it is clear there are
some individuals with both relatively high d and N values,

which may press somewhat against the rational justification
for the desirability of sampling noise. For instance, some
participants are inferred to have N ≈ 20 and d ≈ .30,
implying β ≈ 15.

Finally as noted, the comparisons of these models using
trial-level data rests on a number of elaborating assumptions
to support fitting of the models. It should be recognized that
different assumptions may have produced different results,
and other error processes remain possible. Although other
indirect analysis approaches might be designed to avoid
these concerns (e.g. Sundh et al., 2021), ultimately it seems
crucial that cognitive models at some point be fit to the
actual human behaviors of interest. An important direction
for future elaborations of sampling-based theories are more
rigorous theories of realistic mental sampling processes,
including details of their initialization, autocorrelation, and
amortization (Gershman & Goodman, 2016).

Conclusions

Probability judgments have proven a fruitful testing
ground for sampling-based theories of cognition. But, the
implications of sampling-based models like the Bayesian
Sampler and PT+N theory go well-beyond the probability
judgment task itself: these models have the potential to
extend the success of Bayesian theories of cognition to
develop a probabilistic science of everyday beliefs. Under
such an account, beliefs are not explicitly represented,
stored, or even computed as probabilities, but rather
they are emergent properties of mental models generating
probabilistic samples (Chater et al., 2020; Sanborn &
Chater, 2016).

Nevertheless we might still use the logic of Bayesian
models to understand the operation of these beliefs and how
they respond to evidence. Indeed, by representing the “true”
subjective probabilities as a latent variable in the models
used here, Bayesian data analysis allows those underlying
credences to be inferred. Future research could explore how
estimates of people’s credences might be made more reli-
able, and how inferences about these mental probabilities
might be integrated with other Bayesian models of reason-
ing (e.g. Franke et al., 2016, Griffiths & Tenenbaum, 2006,
Jern et al., 2014). For instance, people’s responses in var-
ious reasoning tasks are often explicitly related to inferred
subjective mental probabilities, so accounting for biases in
those reports may permit more rigorous model testing. One
particularly promising direction could be to integrate these
models with formal models of belief revision, which might
then shed new light on these fundamental cognitive pro-
cesses (e.g. Cook & Lewandowsky, 2016, Jern et al., 2014,
Powell, 2022, Powell et al., 2018).
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Appendix

For the trial-level response models participants’ rounded
responses are modeled as discrete responses with a
categorical (multinomial) distribution. For i ∈ {0, 1, ..., m}
where m = 20 possible responses, define a set of cut points
ai = i

m
− 1

2m and bi = i
m

+ 1
2m . Using x|[0,1] to denote that

x is restricted to the domain [0, 1], the probability of each
response given μ and N is:

pi,5 = P([ai,5, bi,5))

= B(ai,5|[0,1], μN, (1 − μ)N)

−B(bi,5|[0,1], μN, (1 − μ)N)

where B is the appropriate cumulative distribution
function. To capture rounding to 10 we define ai,10 = 2i

m
− 1

m

and bi = 2i
m

+ 1
m
, so that the probability of each response is:

pi,10 =
{

P([ai,10, bi,10)) i is even
0 i is odd

(14)

Next defined a vector of mixture probabilities
−→
φ ,

with the zeroth index indicating a “contaminant” process.
Combining these response processes, we can define the
marginal probability of each response as:

pi = 1

21
φ0 + pi,5φ1 + pi,10φ2

And then responses themselves are distributed Categori-
cal:

yi ∼ Categorical(
−→
p )

For the noise-based model, B is the incomplete
Beta function, the CDF of the Beta distribution. The
computations for the Bayesian Sampler model response
probabilities are identical save that instead of B(x, α, β)

we have B(f −1
BS (x), α, β) when computing the probability

of each response pi , and we use N and N ′ where
appropriate. To see this, let X be the Beta distribution
success proportions from the mental sampling operations,
ρ(A), and let Y be the distribution of resulting probabilities
from the Bayesian sampler model. Then Y = g(X) where g

is the function defined in equation 13 from the manuscript.

P̂BS(A) = ρ(A)N

N + 2β
+ β

N + 2β
(15)

Letting FX and FY be the CDF of X and Y respectively,
we have that:

FY (y) = P(Y ≤ y) = P(g(X) ≤ y)

= P(X ≤ g−1(y)) = FX(g−1(y))

Putting this all together, define ZNB as the function
which calculates the probability of each categorical
response under the noise-based model given the inputs of
μijk, dj , d

′
j and φ. Here, μijk = fNB(

−→
θjk, dj , d

′
j , xijk)

computes the expected probability according to the PT+N
theory except that it treats conditional probability judgments
like simple probability judgments.

Finally, define ZBS as the function which calculate the
probability of each categorical response under the Bayesian
Sampler model. Note that, here, μijk = f0(

−→
θjk, xijk) where

the value of μ depends only on the underlying probabilities
and query asked on a specific trial.
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