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Abstract
The ability to accurately estimate and reproduce the magnitude of stimulus features is critical for many daily tasks. How-
ever, experimental psychology has repeatedly confronted researchers with unexplained estimation biases stemming from 
preceding stimulus features. Serial dependency and central tendency bias are two particularly representative and ubiquitous 
examples. The core commonalities across these two response patterns raise a question: Are these seemingly different con-
structs re-describing a single phenomenon? The current paper tests this possibility by proposing a fidelity-based integration 
model (FIM) and testing it with three single item estimation experiments focusing on the visual features of line length and 
spatial frequency. The critical assumption of FIM is a fidelity-based sampling process that integrates information from both 
the target and recent non-target items. Our results suggest that central tendency bias and serial dependency reflect a single 
underlying process and that the distinct response patterns constituting these two phenomena are a by-product of the analyti-
cal methods traditionally favored within each domain. FIM also suggests that this implicit ensemble bias might be the basis 
for observed accuracy differences across implicit and explicit ensemble coding tasks.
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The ability to accurately estimate and reproduce the magni-
tude of stimulus features is critical for many daily tasks. For 
example, when driving or parking, we need to continually 
estimate the distances between the cars and other objects and 
adjust these distances to desired levels. Failure to do so may 
lead to severe consequences. While healthy populations can 
generally do well on tasks like this, people with schizophre-
nia or autism have shown deficits in magnitude estimation 
in various feature domains (Notredame et al., 2014; Walter 
et al., 2009). This suggests that an understanding of feature 
magnitude estimation may provide critical insights into the 
functioning of normal and abnormal brains.

One of the most commonly used tasks to study our ability 
to estimate stimulus magnitude is the single item estima-
tion task.1 On any given trial, participants are asked to esti-
mate the magnitude of a feature of a single stimulus (target) 

by adjusting an adjustable stimulus (probe). This process 
is then repeated over multiple trials. Nominally, the main 
mechanism an experimenter hopes to recruit is some form 
of individual coding and retrieval of the stored item code. 
Intriguingly, our estimates of feature magnitudes seem to 
be systematically biased toward task-irrelevant preceding 
stimuli (e.g., Fischer & Whitney, 2014; Huang & Sekuler, 
2010; Huttenlocher et al., 2000; Jazayeri & Shadlen, 2010; 
Petzschner et al., 2015; Rahnev & Denison, 2018).

The observed biases in single item estimation tasks are 
interpreted in different and sometimes overlapping contexts, 
such as central tendency bias (Hollingworth, 1910), categor-
ical effect (Huttenlocher et al., 2000), prototypical attrac-
tion (Huang & Sekuler, 2010), serial dependency (Fischer & 
Whitney, 2014), Bayesian updating (Kalm & Norris, 2018; 
Petzschner et al., 2015), or ensemble coding (Crawford et al., 
2019). Critically, many of the theoretical accounts that go 
along with the phenomena listed above contradict each other 
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in the sources of such biasing influences. The central ten-
dency, categorical, and prototype accounts attribute the bias 
to various forms of central tendency representations, while 
the serial dependency or Bayesian updating accounts inter-
pret the bias as a result of integrating perceptual or memory 
traces from recent items. Not surprisingly, there exist dual-
attractor models supporting both sources (e.g., Huang & 
Sekuler, 2010).

Since all the related studies used the same single item 
estimation paradigm, their data shared a similar structure. 
This allowed us to cross-analyze different datasets with a 
set of standardized analysis protocols. Interestingly, in the 
existing studies, different analysis protocols were used 
almost exclusively in their research contexts. For example, 
the analyses typically used to demonstrate central tendency 
effects (left panel in Fig. 1) are rarely used in the sequential 
dependency studies. Why not apply all the primary analyti-
cal tools to all the available data sets? Is it possible that the 
same dataset could reveal evidence for multiple theoretical 
accounts that are seemingly contradictory? Is it possible that 
these different theoretical accounts are describing particular 
ways of looking at the same data? If so, is a single unifying 
account likely?

The current paper aims to answer these questions. We first 
review the major analytical tools used to analyze data from 
the single item estimation task. Then, we evaluate existing 
models instantiating the different theoretical accounts. We 
show that the existing models share more similarities than 

differences and that the core assumptions of most models are 
related to the change in exemplar fidelity over the trials and 
the implicit integration of exemplar information. Based on 
these ideas, we proposed a fidelity-based integration model 
(FIM) that provides a single unifying framework for under-
standing and explaining implicit inter-trial biases. A simu-
lation compares the FIM and existing models’ abilities to 
predict findings in the literature, and we provide additional 
tests of the models through three behavioral experiments.

Implicit Inter‑trial Bias

To promote generalizability across literature, we use implicit 
inter-trial bias as the umbrella term for all the observed 
biases in the single item estimation tasks. We choose this 
term because every theoretical account seems to agree on 
the following three points: (1) such effects are not required 
by the task; thus they are implicit, (2) such effects stem from 
the multiple-trial format, hence inter-trial (further discus-
sion is needed to determine if the bias is from prior stim-
uli, responses, or interactions), and (3) such effects draw 
responses away from the target; thus these effects are a type 
of bias.

Implicit inter-trial bias was found across a variety 
of stimulus feature domains, such as line length (Duffy 
et al., 2010), spatial frequency (Huang & Sekuler, 2010), 
orientation (Fischer & Whitney, 2014), spatial location 
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Fig. 1  The three commonly used analytical approaches for single 
item estimation tasks. Left panel: A linear regression line using 
stimulus values to predict estimation errors. Negative regression 
slopes suggest a central tendency bias, in that participants 
overestimate below-average stimuli and underestimate above-average 
stimuli (Huttenlocher et  al., 2000). Middle panel: Estimation error 
plotted against the relative difference of stimulus value from the 
previous trial. Participants’ responses on the current trials are biased 
toward the stimuli on the previous trials. For circular measures, the 
bias seems to peak and diminish within a certain range, showing a 
Derivative of Gaussian pattern between estimation error and the 
relative value of current and previous values (Fischer & Whitney, 
2014). The peak amplitude of the curve is commonly used as a 

measure of the strength of the bias. Right panel: The estimate of 
the target regressed upon the stimulus values of the target and five 
preceding items. In addition to the target, the most recent few items 
show consistently non-zero regression coefficients, suggesting 
serial dependency on previous non-target items. The bias strength 
estimated from the analysis in the middle panel also shows decaying 
but significant non-zero values for the few recent items (Fischer & 
Whitney, 2014). The left and middle panels were reproduced using 
single-subject data from Duffy et al. (2010) and Fischer and Whitney 
(2014), respectively, with data kindly provided by the authors. The 
right panel was reproduced using Experiment 3 data from the current 
study, which is a replication of the memory condition of Experiment 
1 in Huang and Sekuler (2010)
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(Bliss et  al., 2017; Manassi et  al., 2018), numerosity 
(Fornaciai & Park, 2018), and facial expression (Liberman et al., 
2018), suggesting it may reflect a domain-independent cognitive 
mechanism (Petzschner et al., 2015; Sanborn & Chater, 2016).

The empirical findings in these studies have been granted 
distinct terminologies and theoretical interpretations. Stud-
ies of serial dependency have tended to conclude that the 
observed implicit inter-trial bias is due to a handful of the 
most recent items, sometimes referred to as response assimi-
lation.2 Studies of central tendency bias have interpreted the 
corresponding inter-trial biases as indicative of a categorical 
influence from an arithmetic average, or prototype, com-
puted over all the previously viewed stimuli. We wonder 
whether these two classes of effects might actually reflect a 
single, shared mechanism.

To understand why, there is an important issue to keep in 
mind: The two conclusions about the influence of prior items 
have each been reached via distinct analytical approaches 
that have each been characteristic within but not between 
the two research domains. The two methods in question are 
detailed in Fig. 1.

In analyses of central tendency bias, the estimation error 
(estimate—stimulus) is typically plotted against the stimulus 
values (Allred et al., 2016; Duffy et al., 2010; Huttenlocher 
et al., 2000). The expected data pattern for “central tendency 
bias” is described via a linear regression line through the 
data points with a negative slope. The negative slope indi-
cates that observers generally overestimate stimuli whose 
feature values fall below the mean and underestimate stimuli 
whose values fall above the mean. This analysis is a general 
indicator of bias, but it does not address the source of the 
central tendency bias.

In analyses of serial dependency, item estimates are 
assumed to reflect a pull toward the most recent one or two 
items. The participants’ estimates are thus predicted via 
short-range mechanisms tied to the specific items, such as 
trial-wise criterion shifting (M. Treisman & Williams, 1984) 
or representational leakage (Annis & Malmberg, 2013). The 
expected data pattern is that the current stimulus enjoys the 
majority of influence over responding, but the most recent 
few (one or two) items also have a non-zero influence, an 
influence which drops off rapidly with serial position. Stud-
ies exploring serial dependency often focus on analyses of 
subjects’ estimates of a given stimulus feature as a function 

of the individual features of previous trials, usually extend-
ing only a few trials into the past.

However, recent investigations found a pattern of recency-
weighting in sequential averaging tasks (Hubert-Wallander 
& Boynton, 2015; Tong et al., 2019), suggesting that both 
perspectives are partly correct and partly incorrect. That is, 
participants appear to rely on a “prototype” or moving aver-
age; however, the computation is not an arithmetic average, 
but a weighted average in which the weights reflect the fidel-
ity of items in memory (recency-weighting). If this hypoth-
esis is correct, then a clear prediction arises: Both patterns 
of data, central tendency bias and serial dependency, should 
be demonstrable in the same data set depending only on the 
kind of analysis that is chosen.

To this end, in the current study, we use analytical 
methods from both sides of the conceptual divide to test 
the hypothesis that the corresponding predicted patterns 
could be revealed from the same data, depending only on 
the favored analytic method. Also, we wonder whether it is 
possible to relate implicit inter-trial bias to the more general 
literature of ensemble coding (Alvarez, 2011; Whitney & 
Yamanashi Leib, 2018). Although some types of ensemble 
codes are thought to be formed implicitly (Dubé & Sekuler, 
2015), most ensemble coding studies employed explicit 
ensemble tasks, in which subjects were explicitly instructed 
to summarize multiple stimuli (e.g., mean estimation). 
What, if any, is the relationship between implicit and explicit 
ensemble coding?

Existing Models

Mechanistic models of the implicit inter-trial bias can be 
categorized into central tendency models and serial depend-
ency models. Central tendency models share the assumption 
that implicit inter-trial bias is due to an implicitly formed 
category of all preceding items. The category center or “pro-
totype,” calculated as the moving average of the preceding 
stimulus values, pulls or attracts the memorized current 
stimulus toward the implicit category. The strength of the 
influence of this “category adjustment” process is deter-
mined by the relative variances of the current stimulus’ 
memory representation and that of the memory representa-
tion of the category (Huttenlocher et al., 2000).

The serial dependency models generally assume that 
inter-trial bias is a result of activity or information from 
leftover memory traces of the most recent trials. The logic 
of the corresponding analytic strategy in the correspond-
ing empirical work is that the contributions of these trial 
traces could be evaluated by their regression coefficients 
in multiple regression. The result from such analyses has 
shown that while the current stimulus takes the majority 
of the weight, the most recent one or two items also take 

2 The opposite pattern, response contrast, occurs over longer lags 
in studies of absolute identification but is typically smaller or absent 
in memory data, and is typically only observed in identification 
tasks when feedback is provided (Benjamin et  al., 2009; Malmberg 
& Annis, 2012; Treisman & Williams, 1984). Hence, we focus on 
response assimilation in the current work, though we return to this 
issue in the General Discussion.
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on non-zero weights in generating the response (Huang & 
Sekuler, 2010). From this point of view, the bias is likely to 
be linked to memory, but not perception (Bliss et al., 2017, 
but see Manassi et al., 2018), and the contributions of prior 
trial information are assumed to decay as they become older 
in memory (Kalm & Norris, 2018). In other words, the fall-
off in weights implies that weights are chosen based on the 
resolution or presence of the corresponding items’ memory 
representations (depending on which model of VSTM capac-
ity one assumes; Ma et al., 2014; Zhang & Luck, 2008).

In what follows, we review the existing models of the 
single item estimation task. We started with a “null model” 
(Ideal observer model), followed by a central tendency 
model (Category adjustment model) and serial dependency 
models (Recency-weighted models, Bayesian updating mod-
els), and end with a dual-attraction model.

Ideal Observer Model

An ideal observer in the single item estimation task would 
base his or her responses solely on the current trials. As 
a result, no implicit inter-trial bias should be observed. In 
Eq. 1, R is response, S is stimulus, σ is the noise term, and 
the subscript i is trial number.

Although almost all data from the single item estima-
tion studies contradict the assumptions of an unbiased, ideal 
observer model, this model itself has interesting implica-
tions. Consider that the “ideal” behavior can be caused by 
different underlying mechanisms. For example, one possi-
bility is to have a perfect anti-interference device. Alterna-
tively, a person with a minimal working memory capacity 
(e.g., one hard slot) would also behave like an ideal observer 
in this task. In the following sections, we show that major 
models are flexible enough to account for ideal observer-like 
behaviors.

Category Adjustment Model

In the category adjustment model (CAM, Huttenlocher et al., 
2000), the implicit inter-trial bias is a “pull” from the cat-
egory center. In Eq. 2, ρ is the category center, λ and (1 − λ) 
are the respective weights for the current stimulus and the 
category center. The weightings of the category center and 
the target stimulus (λ and 1–λ in Eq. 2) are modulated by the 
ratio of the standard deviations of the category representa-
tion and the target representation. The function λ = g(σM/σρ) 
was not specified in the original paper, but it was assumed 
to be “a monotonic decreasing function whose range is from 
0 to 1” (Huttenlocher et al., 2000). The original paper used 
the term memory inexactness to refer to the representational 

(1)Ri ∼ Gaussian
(
Si, �

)

variability in the target or category center, qualifying the 
implicit inter-trial bias as a memory-based phenomenon.

The original CAM paper stated that the category center 
is constructed by a Bayesian updating process (Huttenlocher 
et al., 2000), but apparently, CAM was also used in non-
Bayesian ways (Crawford, 2019; Crawford et al., 2019; 
Duffy & Smith, 2018). In Eq. 4, the category center is an 
equally weighted running mean of all the preceding items. 
But regardless of the construction of the category center, 
CAM and related models assume the biasing influence is 
coming from a “category center,” which summarizes all or 
a subset of the preceding trials.

CAM is widely used in a wide range of research areas 
(see a brief review in Duffy & Smith, 2018). However, the 
practical application of this model could be problematic. An 
earlier application to single item estimation suggested that 
the bias is from the category center, but not the recent pre-
ceding items (Duffy et al., 2010). Still, recently the authors 
showed disagreement on their early assessment (Crawford, 
2019; Duffy & Smith, 2018). From a modeling perspec-
tive, none of their analysis in the debate applied the original 
CAM model. Instead, they used simplified versions of CAM 
without the critical function governing the relative weights 
and the Bayesian construction of the category center. The 
analysis in Crawford (2019), Duffy et al. (2010), Duffy and 
Smith (2018) used multiple regression with different sets 
of predictors. Their analysis essentially discarded the core 
mechanism of CAM, which is the critical λ = g(σM/σρ) func-
tion that implies a fidelity-based integration process.

Recency‑Weighted Models

In the serial dependency account, the implicit inter-trial bias 
is from the residual information from the most recent items. 
The contributions of the recent trials are assumed to decay 
quickly as they become older. The response can be modeled 
as a weighted average of the current stimulus and a few pre-
viously shown stimuli. The key model specification is then 
how the weights decay over serial positions.

(2)Ri ∼ Gaussian
(
� ⋅ Si + (1 − �) ⋅ �, �

)

(3)� = g
(
�M∕��

)

(4)� =
1

i − 1

∑i−1

j=1
Sj

(5)Ri ∼ Gaussian
(
S
�
⋅ w, �

)

(6)S
�
= Si−4 ∶ Si
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Equations 5 to 7 show one formalization using an expo-
nential decay function, assuming the influence comes exclu-
sively from the most recent five items. In Eq. 7, r is a decay 
rate over serial positions. r is greater than zero and not 
greater than one. A small r value means a steeper decay over 
serial positions, and the extreme case of a r value infinitely 
close to zero would lead to the ideal observer model. The 
idea of the exponential decay of weights of prior items was 
also implemented in a Bayesian updating framework referred 
to as the mixture model (Kalm & Norris, 2018).

The recency-weighted models were also used to model 
summary tasks like sequential averaging (Tong et al., 2019). 
Unlike single item estimation tasks, sequential averaging 
tasks explicitly ask participants to summarize, i.e., inte-
grate information from prior items. Comparing modeling 
results from weighted-average models between single item 
estimation tasks and mean estimation tasks, we only find 
differences in terms of the degree of information utilization 
(through best-fit parameters, i.e., r in the exponential case 
in Eq. 7), but not mechanistic differences.

The weighted average model implies that the implicit 
integration and the explicit integration of information from 
prior trials are only different in terms of the degree of infor-
mation utilization, but not mechanistically different. This 
hypothesis needs to be tested, since it has been long pro-
posed that human observers apply qualitatively different pro-
cessing modes or mechanisms across these different tasks 
(see a recent opinion on this issue: Baek & Chong, 2020).

Bayesian Updating Models

Sequential influences from prior states naturally fit in 
the Bayesian updating framework. The original CAM is 
assumed to be a Bayesian model, but the Bayesian updating 
occurs in the construction of the category center (Hutten-
locher et al., 2000), making it closer to a central tendency 
bias view. The Bayesian updating models in this section 
are the recency-weighted models constructed in a Bayesian 
updating way, implying a serial dependency view.

What is the proper prior on each new trial? Petzschner 
and Glasauer (2011) simply used the previous state. The 

(7)w = r5∶1∕
∑

r5∶1

(8)P(�|s) ∝ P(s|�) ⋅ P(�)

(9)��|s = ws ⋅ �s + wπ ⋅ �π

(10)ws = 1 − wπ =
1∕�2

s

1∕�2
s
+ 1∕�2

π

information from the previous trial is integrated with infor-
mation from the current trial, with weights determined 
by the relative variance in the representations, shown in 
Eqs. 8–10 (see a review in Petzschner et al., 2015). Kalm 
and Norris (2018) suggested that using only the previous 
state as a prior is not adequate, at least in the circular visual 
feature of orientation (Fischer & Whitney, 2014). Instead, 
a mixture of multiple recent states is suggested (Kalm & 
Norris, 2018). Critically, the function governing the mixing 
coefficients over recent preceding states is also an exponen-
tial decay function.

Setting the differences aside, these Bayesian updating 
models all incorporated the idea of fidelity-based integra-
tion, i.e., that the representation with higher fidelity or 
precision should contribute more in the item integration. 
However, these Bayesian models are still likely to be over-
simplified since they do not specify how participants com-
pute those explicit probabilities. Sanborn and Chater (2016) 
posited that humans might not calculate explicit probabilities 
but rather approximate them with posterior sampling. This 
view characterizes the brain as a rough, error-prone Bayes-
ian sampler (Sanborn & Chater, 2016), rather than a perfect 
analytical Bayesian machine (e.g., Jazayeri & Shadlen, 2010; 
Petzschner et al., 2015).

Dual‑Attractor Model

Huang and Sekuler (2010) used the analytical tools from 
both the central tendency view and the sequential depend-
ency view. By separating the trials with congruent influ-
ences (in which the differences in feature values between 
the target to the mean and between the target and the previ-
ous item have the same direction) and incongruent influ-
ences (different directions), their analysis isolated the influ-
ences from the two sources. More critically, they found that 
the two sources of influence differed in their sensitivity to 
modulators like selective attention and inter-item similarity 
(Huang & Sekuler, 2010). Based on their results, they pro-
posed a dual-attractor model showing that both a prototype 
and recent preceding items yielded biasing influences on a 
current trial’s estimate, acknowledging both the central ten-
dency view and the serial dependency view as explanations 
of the implicit inter-trial biases they observed.

However, the dual-attractor model in Huang and Sekuler 
(2010) is more of a conceptual model than a computational 
model. Thus, in its present form, it is of limited usefulness 
in producing simulations to make model predictions. Also, 
strictly speaking, their experiments using the post-cue condi-
tions are not single item estimation tasks per se, because the 
post-cue condition ensured that more than one stimulus was 
task-relevant at the sensory processing stage. We develop 
this topic further in the General Discussion.
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Fidelity‑Based Integration Model (FIM)

From the model review, we found that different models 
shared many important similarities. The core assumptions 
of most models are related to the exemplar fidelity change 
over the trials and the implicit integration of exemplar infor-
mation. The differences lie in the details of how information 
is integrated.

Here, we detail a fidelity-based integration model (FIM). 
FIM assumes that the observed implicit inter-trial bias is a 
result of an implicit information integration over the preced-
ing items. The fidelity of item representations changes over 
trials, and the contribution of item information is dependent 
on the relative representational fidelity of the item. A fidel-
ity-based sampling process is used to achieve the weighting 
on different sources factored into information integration. 
FIM is also a model framework that is conceptually compat-
ible with many existing models.

FIM Assumptions

Memory representations consist of distributions of response 
potentials over a feature value axis. Representations from 
previous trials, in general, have much lower fidelity than the 
target, but nevertheless, some of the preceding items are still 
precise enough to influence a participant’s response.

When doing the single item estimation task, participants 
generate their responses by sampling from the response 
representation. Ideally, this response representation should 
be solely the target representation; however, an implicitly 

formed ensemble representation, composed of samples from 
the representations of prior items, also has a role in this 
response representation. The relative contributions from the 
target and the ensemble are based on their representational 
fidelity: the number of samples drawn from a given represen-
tation is assumed to be a monotonically increasing function 
of the representation’s fidelity. In this way, the probability 
density distribution of the resulting pooled distribution is 
inferred from fidelity-based samples from the target and the 
stimulus ensemble.

In the single item estimation task, the current trial stim-
ulus, the target, has the highest representational fidelity, 
which is consistent with the task requirement. However, 
the prior trials still have some low fidelity representations, 
which could be integrated to generate the final response.

FIM’s Account for Implicit Inter‑trial Bias

The fidelity-based integration process results in responses 
that incorporate influences from noisy, recency-weighted 
average of prior trial response values. Because the weighted 
average will typically be closer to the arithmetic means than 
any single random value, the model will tend to produce a 
negative slope in the central tendency regression analysis, 
thereby manifesting a central tendency bias.

The same process is also responsible for the sequential 
dependency effect. In Fig. 2, note that the bumps in the prob-
ability density from the prior items are concentrated at the 
relatively high fidelity items (“1” and “2”). This means, in 
the FIM framework, with the assumptions of fidelity change 
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Fig. 2  The red curve is the probability density distribution of the tar-
get. The light blue curves in the backgrounds are probability density 
distributions of the preceding items. The blue curve is the Gauss-
ian mixture of the preceding items. The implicit inter-trial bias is 
decomposed into the influence from recent preceding items (“1,” “2,” 
“3,” and “4” on the axis. “1” means one item before target) on the 
response on the target (the red x on the x-axis). A given target value 
on the right side of the axis is more likely to have its 3–4 prior stimu-
lus values falling to the left, which is the same direction toward the 

stimulus center (left panel) than the opposite direction (right panel), 
so estimates of the targets are overall more likely to be biased toward 
the center. Due to the fidelity change over the trials, the bumps in 
the probability density from the prior items are concentrated at the 
relatively high fidelity items (“1” and “2”). This means, in the FIM 
framework, with the assumptions of fidelity change and fidelity-based 
integration, central tendency bias, and serial dependency are the 
observed outcome of the same information integration process
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and fidelity-based integration, central tendency bias, and 
sequential dependency are the observed outcome of the same 
information integration process.

Instead of calculating the exact probabilities shown in 
Fig. 2, FIM assumes that observers estimate representa-
tions from a finite number of samples, shown in Fig. 3. This 
sampler view from Sanborn and Chater (2016) makes FIM 
predictions to be error-prone on single trials, but given the 
long run, the average will approximate the exact calculation 
(Fig. 3). This assumption represents the conventional notion 
of a limited cognitive resource with a sampling account 
(Schneegans et al., 2020).

The assumption of fidelity change is deeply rooted in 
the memory literature. Here, the notion of a fidelity-based 
weighted sum in memory runs counter to the simple equally-
weighted construction of the “prototype” or “category 
center” in early accounts of single item estimation (Duffy 
& Smith, 2018), as well as in influential memory models 
(Nosofsky & Zaki, 2002; Smith & Minda, 2000). Note that, 
if the “prototype" participants use is not an arithmetic aver-
age, but a recency-weighted average or equivalent (as in 
FIM), this would challenge the conclusions of prior work 
that has rejected prototype models based on goodness-of-
fit. We also addressed this point in explicit sequential mean 
estimation tasks (Tong et al., 2019), and now the same idea 
is applied to the single item estimation task.

Fidelity-based integration also adopts some of the ideas 
of the existing models we discussed in the model review. 
Intuitively, it makes sense to rely more heavily upon more 
reliable sources of information, and on this point, our 
approach philosophically aligns with “rational" models of 
cognition (Anderson, 1990). However, is this method of 

information integration really useful to us? In what follows, 
we generate some model predictions and test the predictions 
with empirical data. In the General Discussion, we expand 
further upon the usefulness to the organism of implicit bias 
and fidelity-based integration.

FIM Specification

A formal statement of the FIM model is straightforward. 
Equations 11–12 state that a vector of length j contains sam-
ples, Eij, that are drawn from Vi, the stimulus value (if it is the 
current trial) or response value (if it is one of the previous 
trials) that was on the ith trial. The number of samples, j, is a 
function of representational fidelity, σi. The fidelity parameter 
σi is a scalar function of time (t), serial position (s), and a 
host of other variables, depending on the particular task and 
stimuli in use. The specific forms of the functions f(·) and g(·) 
are to be determined. Equation 15 shows that samples drawn 
from all stimuli are combined into a sample pool, ER, which 
is then used to make inference about the density distribution 
of the response.3 Equation 16 shows that the response, Ri, is 
a sample from the density distribution of ER.

(11)E
�
=< Ei1,Ei2,… ,Eij >

(12)Eij ∼ Gaussian
(
Vi, �i

)
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Fig. 3  FIM assumes that observers use finite samples and fidelity-
based sampling without calculating the exact probabilities. They 
use density estimates based on the limited number of fidelity-based 
samples from the target and preceding items. The resulting response 
distributions for one trial (left panel) resemble the right panel of 
Fig. 2, but with random errors. The average of the long-run simula-

tions (right panel) resembles the exact probabilities shown in the right 
panel of Fig. 2. For simplicity, Gaussian kernels with “nrd0” smooth-
ing bandwidth were used in the density estimation in the simulations. 
The implementation and interpretation of these parameters in human 
sensory systems are open to investigation

3 We use a set notation here as a tensor representation is difficult to 
implement without zero paddings when the vector lengths are vari-
able across items.
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Figure 4 demonstrates one realization of the FIM frame-
work addressing the single item estimation task. As is clear in 
the figure, both serial dependency and central tendency bias 
arise from the same mechanism in FIM. More specifically, the 

(13)σi = f (t, s,…)

(14)j = g
(
�i
)

(15)E
𝐑
= {E

𝟏
,E

𝟐
,… ,E

𝐢
}

(16)Ri ∼ density
(
E
�

)

assumption of fidelity-based sampling and lag-based changes in 
fidelity result in a response that “depends on” (is sampled from) 
an ensemble representation that is neither an arithmetic average 
of prior stimuli nor a shift in responding based on one or two 
items. Instead, when fidelity drops with lag, the expected value 
of the ensemble representation in question is formally equivalent 
to a noisy, recency-weighted average of prior stimulus values.

FIM as a Model Framework

As we have detailed, the ideas instantiated in FIM are not 
limited to any single model. We view the key FIM assump-
tions as providing a general framework for models that share 
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Fig. 4  A demo implementation of the FIM. In this demo, the fidel-
ity function, f(), uses a logistic function to link representational SD 
and serial lag. To represent the concept of fidelity more intuitively, 
we transform SD into precision (inverse of variance) and show the 
fidelity (precision) curve in Panel 1. The sample function, g(), uses 
an identity function with linear scaling to assign samples according 
to representations’ relative precision. A fixed number of 100 samples 
are used in this simulation. The number of samples are rounded to 
integers at each serial lag. Most serial positions will not be assigned 

to any samples due to low fidelity, as shown in Panel 2. The response 
probability density distribution of one random trial is displayed in 
Panel 3, showing that samples from the current target stimulus and 
the preceding responses together influence participants’ response 
selection. Panel 4 shows that the FIM-simulated data show the “cen-
tral tendency bias,” when FIM does not include any model compo-
nent for an explicit representation of the global central tendency. 
Group-level simulated data from FIM and other models can be found 
in Fig. 7
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these key assumptions but may differ in specific details or 
applications to specific tasks.

For instance, although the ideal observer model does not sat-
isfy any FIM assumptions, the ideal-like estimation behavior is 
the FIM prediction when the target fidelity is much more pre-
cise than the preceding items. This prediction is intuitive: when 
the target representation is much better than those of leftover 
traces, why not just use the target representation? This reserves 
the possibility that in some cases (e.g., cases in which there are 
large changes in context or attention cues), implicit inter-trial 
bias should not be observed.

The Bayesian and recency-weighted models both show 
the idealized generative and observed sides of the FIM 
process. The explicit calculation of probability distribu-
tions in Petzschner and Glasauer (2011) and Kalm and 
Norris (2018) are simplified to finite samples in FIM 
(note that Kalm & Norris, 2018, also used finite samples 
in the actual calculation of their analysis). Figure 5 shows 
that such Bayesian sequential dependency models could 
recover the negative slope patterns (seemingly supporting 
the central tendency view) without any central tendency 
model component. These results confirmed our preference 
for sequential dependency models over central tendency 
models. The difference between FIM and sequential inte-
gration Bayesian models is the construction and integra-
tion of prior and likelihood. Bayesian models rely on full 
integration, assuming posterior to be Gaussian as well. 
The current implementation of FIM simply uses a Gauss-
ian mixture of the density estimated from the finite number 
of samples. FIM shows that a sampling approach could 
simulate results that closely resemble the observed pat-
terns with a finite number of samples (as low as 20 in 
total, as shown in Fig. 6). This shows that full mixture or 
high sample counts are unnecessary and even potentially 
redundant due to its potential high computation cost.

Compared to the Bayesian models and recency-
weighted models, FIM provides more explanatory value 
by specifying the fidelity-based sampling process. FIM 
decomposes this process into two steps (Eqs. 13 and 14), 
making the fidelity of preceding representations the criti-
cal component in modulating the information integration 
process. The finite number of samples implements the 
limited processing capacity of our sensory systems. FIM 
also provided a wider generality, due to the flexible func-
tion construction. For instance, though the demo version 
of FIM (Fig. 4) uses the logistic function as f(), any other 
suitable functions can be tested in the FIM framework.

Model Predictions

FIM predicts many data patterns in experimental investiga-
tions of implicit inter-trial bias. We provide three testable 
predictions in this section. First, FIM models can simulate 
all the typical data patterns introduced earlier in Fig. 1, 
whereas non-FIM models cannot. The second prediction 
states that the relative fidelity difference between target 
and non-targets will modulate the strength of inter-trial 
bias. The third prediction states that in the analysis sepa-
rating the two sources of bias (Huang & Sekuler, 2010), the 
influence from non-targets will generally be larger than the 
influence from the “prototype” in single item estimation.

Prediction 1

We simulated data from three models: FIM, non-FIM (the 
simplified CAM, which models responses as weighted aver-
ages of the targets and running means), and an ideal observer 
model as the null model. Then, we compared the predictions 
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Fig. 5  Bayesian model using only one recent response as prior. Sim-
ulation show that such models could also recover the “central ten-
dency” pattern (right panel) without any explicit central tendency 

model construction. This simulation uses the same fidelity function as 
FIM. Probability integration uses full integration shown in Eqs. 8–10
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from these models in all four analyses introduced earlier. 
The model descriptions can be found in the Existing models 
section.

For each model, we simulated 20 virtual subjects with 
400 trials per subject. The stimulus values were sampled 
from the same uniform distribution (upper = 50, lower = 30). 
For the ideal observer model, the population noise param-
eter, σ, was set to 3. Subject-level variation in the noise 
parameter was set to an SD of 0.3. For the simplified CAM, 
the population means of λ were set to 0.8. Noise term σ 
was set to the same level as the ideal observer model at 3. 
Subject-level λ values were sampled from Gaussian distribu-
tions centered at population means with SDs equal to 10% 
of the population means.

In FIM, the noise levels vary according to a logistic func-
tion with the location parameter of 1 and a scale parameter 
of 1 and linearly transformed to starting noise of 3 (for tar-
get) and a max noise of 10 (representing a guessing level), 
shown in the upper left panel of Fig. 4. The number of sam-
ples is the inverse of exemplar fidelity, rounded to the near-
est integer, and linearly scales to have a total of 65 samples. 
The response is the mean of 10 samples from the response 
density distribution.

Simulated data from the three models (Top row: ideal 
observer; middle row: simplified CAM; bottom row: 
FIM) are shown in Fig. 7. As expected, data simulated 
from the Ideal observer model did not show any inter-
trial bias in any analysis. Data simulated from CAM only 
recovered the first analysis. Although a slight effect of 
prior trials is evident in the data (blue lines), the regres-
sion-based analyses make clear that this stems from a 
small, uniform weighting over the prior items. This is 
an obvious reflection of the CAM’s dependence on the 
arithmetic mean. FIM was able to recover all character-
istic data patterns.

Prediction 2

Prediction 2 states that the relative fidelity difference 
between target and non-targets will modulate the strength 
of inter-trial bias. Figure 8 shows that when the target 
is relatively more precise (left panel), the information 
integrated from previous trials is lower compared with 
the condition when target has lower fidelity (right panel). 
This predicts that task configurations that result in lower 
target fidelity will increase inter-trial bias. This relative 
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Fig. 6  In the FIM framework, the source of inter-trial bias is the rela-
tive precision of previous responses, governed by the fidelity func-
tion. The upper panels show that when the fidelity function has a 
scale parameter of 0.5, which translate to extreme relative precision 
of the target, no or very low inter-trial bias is simulated, when total 
sample count is 20 or 200. Lower panels show that then the scale 
parameter = 2, meaning that the recent few responses have relatively 

low but not extremely low fidelity, some samples will be assigned to 
them, thus causing the inter-trial bias. The total sample count does 
not influence the direction or the magnitude of the bias. The total 
sample count will only affect inter-trial bias when it is very low, so 
that no integer value of samples could be drawn from non-target 
items, as shown in the upper left panels
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fidelity difference can be manipulated in many ways, 
for example, by varying selective attention (Dubé et al., 
2014; Fritsche & Lange, 2019) or target-probe lags (Bliss 
et al., 2017; Corbin et al., 2017). One possible implica-
tion is that increasing the target-probe lag may increase 
implicit inter-trial bias. The FIM implementation is also 
easy: just add a time parameter in f(), as shown in Eq. 13.

On the opposite direction, this prediction also states that 
when the target fidelity is much higher than the preceding 
trials, ideal observer-like behavior is expected. Unlike con-
ventional models like equal model or weighted average mod-
els that offer fixed weights for serial positions, FIM offers 

flexible predictions on information integration, depending 
on the relative fidelity.

Prediction 3

FIM predicts that the estimation error attributes mostly to 
recent non-target trials, rather than the central tendency 
representation. One particular analysis from Huang and 
Sekuler (2010) attempts to separate estimation error from 
prototypical sources and recent trial sources. The key 
assumption of this analysis is that the different sources 
of errors are additive and exclusively responsible for 

Fig. 7  Model predictions from the following models: ideal observer 
model (top row), category center model (middle row), and FIM (bot-
tom row). As expected, data simulated with the Ideal observer model 
did not show any inter-trial bias in any analysis. Data simulated with 

the category center model showed central tendency bias in the first 
analysis and serial dependency in the third analysis, but no inter-trial 
bias in other analysis. FIM recovered all the typical data patterns
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estimation errors. The recent stimulus and prototype are 
in the same direction to the target in the Same direction 
trials (Sdir), and in opposite directions in the Opposite 
direction trials (Odir). By adding the two sources and 
rearranging items in the equation, the two sources can be 
separated by the calculations shown in Eqs. 17 and 18 
(see details in Huang & Sekuler, 2010). The calculation of 
the non-target part is limited to one trial before the target 
trial (lag-1 response). The calculation of the prototype is 
the moving (arithmetic) average of the stimuli preceding 
the target. Note that Experiments 2 and 3 in Huang and 
Sekuler (2010) used a cued reproduction task, and their 
“non-target” is the within-trial item that is not cued, which 
is different from the single item estimation paradigm in the 
current manuscript.

Figure 9 shows such analysis on FIM-simulated data. This 
reflects FIM’s prediction that the majority of bias comes from 
inter-trial information integration, rather than from an explicit 
central tendency representation. Twenty “participants” were 
simulated using the same set of parameters, and the differ-
ences are sampling errors. The absolute bias values are in 
arbitrary scales. Note that this analysis is based on several 
strict assumptions, which might not be fully satisfied in actual 
data. This analysis assumes the total error to be exclusively 
from the two sources, and errors from the two sources are 
additive. However, we are interested to see whether we could 
observe similar patterns in actual single item estimation data.

(17)Biasnon−target =
(
ErrorSdir + ErrorOdir

)
∕2

(18)Biasprototype =
(
ErrorSdir − ErrorOdir

)
∕2

Experiments

We tested the model predictions in three experiments. We 
investigated implicit inter-trial bias in single item estimation 
tasks with features of line length (Experiment 1 and 2) and 
spatial frequency (Experiment 3).
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Fig. 8  FIM’s assumptions of finite samples and fidelity-based sam-
pling predict that the implicit bias is low when the target fidelity is 
relatively high compared to recent items (left panel), and vice versa 
(right panel). The relative fidelity between the target and the non-tar-
gets can be manipulated experimentally, e.g., by varying target-probe 

lag time or the use of selective attention. Note that this figure is a 
one-time simulation. Slight variation may occur in different runs of 
the same simulation, but the basic pattern holds in simulations con-
ducted over the long run
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Fig. 9  A bias separating analysis on FIM-simulated data reveals that 
the estimation error in the FIM process is more from the non-target 
previous trials than the prototypical influences. In this analysis, “Pro-
totype” is calculated as the moving average of all previous trials. 
“Lag-1 non-target” is the immediate preceding trial before the target 
trial. Prediction 3 suggests that similar patterns should be found in 
observed data
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Experiment 1

Experiment 1 uses single item estimation task in the feature 
of line length. We found ideal-observer-like data patterns, 
which align with FIM’s flexible prediction on target fidelity 
modulating implicit inter-trial bias. The results motivate us 
to further test the fidelity-modulating factor in Experiment 2.

Participants

Nineteen undergraduates participated in Experiment 1a. All 
procedures were approved by IRB at the University of South 
Florida (IRB Number: Pro00024055).

Stimuli and Procedure

On each trial, one vertical line (target) was displayed on 
the center of the screen. The target was presented for 0.5 s 
followed by a 1-s blank. After the blank, an adjustable line 
(probe) was displayed on the screen. The task was to repro-
duce the target by adjusting the probe using the mouse. 
When participants moved the mouse up or down, the probe 
increased or decreased in line length. When satisfied with 
their estimates, participants pressed the space bar on the 
keyboard to submit. No time limit was set for the adjust-
ment phase. A trial ended with the participant’s submission, 
followed by a 1-s blank screen before the next trial. Each 
participant completed 360 trials.

The target line length was randomly sampled from a 
uniform distribution between 200 and 400 pixels. The line 
width was set to 4 pixels. For ten participants, the start-
ing values of the probe was set to 984 pixels, which is 
significantly longer than all possible target values. The 
remaining nine participants had a low probe starting value 
(4 pixels). Prior works showed that the initial values had 
no significant influence on participants’ estimates (Corbin 
et al., 2017; Duffy et al., 2010; Huang & Sekuler, 2010).

Results

No implicit inter-trial bias of any sort was observed in 
Experiment 1 (all p > 0.1). Figure 10 showed analysis pat-
terns referring to the analysis tools introduced in Fig. 1. The 
upper left panel showed the regression lines for all partici-
pants using target values to predict estimation error. The 
slopes are not significantly different from zero. The upper 
right panel showed that when using the stimulus values to 
predict the estimate of the target, the target took the majority 
of the total weight, leaving almost no influence on the pre-
ceding items. The bottom panels showed that the estimation 
errors were not biased toward the relative value of the pre-
vious trial, and their regression slopes, as a measure of the 
strength of the serial dependency, did not change over lags.

Results from Experiment 1 were contrary to prior reports 
(Allred et al., 2016; Duffy et al., 2010). We tested out alter-
native versions of the experiment in pilot data using a dif-
ferent probe placement and a normal distribution of target 
lengths. No implicit inter-trial bias was found in either of 
these two alternative conditions.

Experiment 2

Prior work suggests that central tendency bias might increase 
with longer target-probe lags (Corbin et al., 2017). Some 
work also suggests that serial dependency could increase 
with lag (Bliss et al., 2017). However, Huang and Sekuler 
(2010) manipulated the target-probe lag time and found no 
significant difference in implicit inter-trial bias.

These inconsistent results were from studies using dif-
ferent visual features, which precludes a strong conclusion 
regarding general mechanisms. For instance, it is possible 
that different features show different timescales or fun-
damentally different functions for the emergence of lag-
dependent inter-trial bias. Indeed, given the wealth of litera-
ture demonstrating differential decay rates of different visual 
features in short and long-term memory (see, e.g., Carterette 
& Friedman, 1978), it seemed necessary to examine this 
question more closely with respect to the null results for line 
length in Experiment 1.

Therefore, in Experiment 2, we manipulated the target-
probe lag time to test whether prolonged lag might result in 
inter-trial bias in the single item estimation task using line 
length.

Participants

Twenty-nine undergraduates participated in Experiment 2. 
All procedures were approved by IRB at the University of 
South Florida (IRB Number: Pro00024055).

Stimuli and Design

The target-probe lag was manipulated across five levels 
(0, 0.5, 1, 1.5, and 2 s) within subjects. Each participant 
completed 400 trials (80 trials per lag level). We randomly 
assigned the target-probe lag levels in the sequence of trials 
without any notice to the participants. All other configura-
tions are identical to Experiment 1.

Results

Implicit inter-trial bias was found in the prolonged target-
probe lag trials, as shown in Fig. 11. The regression slopes 
(predicting estimation errors with target values) showed a 
trend toward negative values as target-probe lag increased. The 
slopes were significantly different from zero in the 1.5-s trials, 
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t(28) = -2.41, p = 0.02, and the 2-s trials, t(28) = -3.69, p < 0.001. 
Repeated-measure ANOVA was not significant at 0.05, F (2.8, 
78.48) = 2.47, p = 0.07. A larger manipulation in the lag might 
show more significant results. The 1-s condition in Experiment 
1b showed the same non-significant result as Experiment 1, 
which also used a 1-s target-probe lag. The trend suggests that 
longer target-probe lag might induce stronger implicit inter-trial 
bias, which is up to test in future studies.

What caused the target-probe lag’s influence on the 
inter-trial bias? A prolonged lag may reduce the precision 
of the current trial’s target representation, thereby lead-
ing to more reliance on representations from prior trials 
(Crawford et al., 2019), which is also predicted by the 
fidelity-based sampling assumption in FIM. Regarding 
the null effect of lag on implicit influence in Huang and 
Sekuler (2010), one possible explanation is that both their 
long (2400±100 ms) and short (1400±100 ms) lag condi-
tions were long enough to elicit inter-trial bias. Also, it 
is conceivable that the difference between visual features 
(spatial frequency vs. line length) may also produce dif-
ferent functional forms relating lag and inter-trial bias. 
However, our current data do not allow us to map such 
functions out in sufficient detail to test this particular 
notion.

Fig. 10  Observed data in 
Experiment 1, analyzed in four 
ways. The line length data did 
not show inter-trial bias in any 
analysis. The upper left panel 
shows error in responding as 
a function of the target feature 
value; negative slopes indicate 
central tendency bias, which is 
absent here. Each line is one 
participant. Other panels focus 
on serial dependency. Upper 
right shows the aggregate-level 
individual-trial contributions 
to responding, introduced in 
Fig. 1. The bottom panels show 
individual-participant error data 
against the relative stimulus 
value of the prior trial. Positive 
slopes indicate assimilation 
bias, which is absent in Experi-
ment 1. The bottom right panel 
shows the regression slopes 
using lag-1, lag-2, and lag-3 
stimulus at the non-target stimu-
lus in the analysis. No serial 
dependency was found for any 
lag analyzed
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Fig. 11  Prolonged target-probe lag induced implicit inter-trial bias in 
Experiment 2. Negative regression slopes using target to predict esti-
mation error indicate implicit inter-trial bias. The regression slopes 
were significantly different from zero in the longer target-probe delay 
conditions (1.5 s and 2 s) The 1-s condition replicates the results in 
Experiment 1. The dotted vertical line shows zero slope, which indi-
cate no implicit inter-trial bias
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Experiment 3

Experiment 3 aims to replicate a robust effect of implicit 
inter-trial bias and test the FIM’s prediction 3 on source 
separating analysis. We choose the memory condition of 
Experiment 1 in Huang and Sekuler (2010), in which par-
ticipants completed single item estimation task in reproduc-
ing the spatial frequency of Gabor patches. Their original 
analysis used the regression method shown in the right panel 
of Fig. 1. In Experiment 3, we aim to replicate their analysis, 
as well as all other analyses shown in Fig. 1. More interest-
ingly, we are interested to see if the bias separating analysis 
pattern shown in FIM-simulated data (as shown in Fig. 9) 
can be found in empirical data.

Participants

Eleven individuals participated in Experiment 3. All pro-
cedures were approved by IRB at the University of South 
Florida (IRB Number: Pro00024055).

Stimuli and Procedure

On each trial, one Gabor patch (target) was displayed on the 
center of the screen. The target was presented for 0.5 s fol-
lowed by a 1-s blank. After the blank, an adjustable Gabor 
(probe) was displayed on the screen. The task was to repro-
duce the spatial frequency of the target by adjusting the 
probe using the mouse. When participants moved the mouse 
up or down, the probe increased or decreased in spatial fre-
quency. When satisfied with their estimates, participants 
pressed the space bar on the keyboard to submit. No time 
limit was set for the adjustment phase. A trial ended with 
the participant’s submission, followed by a 1-s blank screen 
before the next trial. Each participant completed 168 trials. 
We generated the Gabor patches using Psychtoolbox-3 in 
Matlab. The target spatial frequency was randomly sampled 
from a uniform distribution between 0.5 and 5 cycle/deg. 
The adjustable range of the probe was 0.1 to 6 cycle/deg. 
Both the target and the probe Gabor patches were displayed 
in the center of the screen, subtending 5.15° in visual angle, 
on a black background. Many configurations from Huang 
and Sekuler (2010) were adopted (e.g., size of the Gabor 
patches, range of spatial frequency, number of trials per par-
ticipant). Other configurations (e.g., display durations, ISI, 
and background color) were kept identical to Experiment 1 
in the current manuscript.

Results

We conducted the same analysis as in Experiment 1 and 
recovered all major data patterns of the implicit inter-trial 
bias in Experiment 3, as shown in Fig. 12. For the central 

tendency bias test, the slopes are significantly less than 
zero, t(10) = -7.69, p < 0.0001. The regression coefficients 
in the upper left panel are significantly greater than zero 
for the lag-0 to lag-2 (all p < 0.001) and not significant for 
lag-3 to lag-5. The slopes for the bottom panels are all sig-
nificantly different from zero (p < 0.001), and a significant 
decay of bias strength was found as shown in the bottom 
right panel.

To separate the dual sources of ensemble bias, we modi-
fied the analysis method in Huang and Sekuler (2010) to suit 
our study design, introduced in the model prediction section 
(Prediction 3). Results in Fig. 13 confirmed the FIM predic-
tion regarding the sources of ensemble bias. The magnitude 
of biasing influence is larger from the non-target than the 
“prototype”, t(10) = -3.28, p < 0.01. As discussed earlier in 
Fig. 2, the underlying mechanism in FIM accounted for both 
central tendency bias and serial dependency. The differing 
patterns of “prototype effect” and “central tendency bias” 
were by-products of the analyses rather than distinct under-
lying mechanisms.

General Discussion

The current paper proposed a fidelity-based integration 
model (FIM) of implicit inter-trial bias. FIM simulations 
showed that the observed central tendency bias or serial 
dependency patterns might be different analytical descrip-
tions of the same underlying information integration pro-
cess. FIM’s account is based on a few intuitive assump-
tions rooted in the perception and memory literature, such 
as a fidelity decay over trials, a finite number of cognitive 
resources (samples), and a fidelity-based sampling process 
that prioritizes sampling from high fidelity representations. 
FIM’s model predictions were validated by the successful 
recovering of all the analysis patterns in a simulation and 
three empirical experiments using different types of visual 
stimulus features. In what follows, we discuss the potential 
of this work for understanding and relating shared response 
patterns in estimation and production tasks in visual percep-
tion, visual short-term memory, perceptual categorization, 
and long-term memory.

Inter‑trial Bias in Perception, Categorization, 
Short‑Term Memory, and Long‑Term Memory

As we have noted elsewhere, implicit inter-trial biases are 
prevalent across tasks in many domains of cognitive psy-
chology. This intriguing fact has naturally led many inves-
tigators to suspect an underlying commonality in the pro-
cesses supporting those domains. This may seem natural 
today, but it is important to keep in mind the historical con-
text within which many of the key tasks were developed. For 
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instance, in the 1950s a great deal of energy was directed 
toward the characterization of the perceptual system as an 
encoder/decoder or processor in a digital communications 

system, following Shannon (1948)  which happened to 
include a model of language production using successive 
approximations to English. Tasks such as absolute identifica-
tion, in which the magnitude of a stimulus feature requires a 
previously acquired categorization response, and production 
tasks, which are the recall analogue of identification tasks, 
were used to quantify human processing capacity limits in 
bit units. However, in one highly influential paper by Miller 
(1956), a strict line was drawn between these “perceptual” 
tasks and their recognition and recall analogues in memory. 
Specifically, the author showed that while a bit limit seemed 
to hold for identification and production, no such limit was 
present in short-term memory tasks, which instead appeared 
to be limited by “chunks.” Interestingly, this early work does 
not appear to question the premise that perception and short-
term memory are distinct to begin with.

Despite the bit/chunk distinction, the sharp divide 
between perception and memory implicit in early work 
rapidly crumbled in the ensuing decades. For example, 
Ward and Lockhead (1970, 1971) uncovered inter-trial 
dependencies between responses and prior stimuli and 
responses in absolute identification tasks. Specifically, 
they found that responses are often pulled toward the 
prior response (or stimulus, under particular feedback 

Fig. 12  Experiment 3 recovered 
all four analyses from Fig. 1. 
Experiment 3 is also a replica-
tion of the memory condition 
of Experiment 1 in Huang and 
Sekuler (2010)
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Fig. 13  In Experiment 3, the magnitude of biasing influence is larger 
from the non-target than the “prototype,” confirming FIM’s account 
for ensemble bias. The two sources of bias were separated with the 
analysis in Eqs.  17 and 18. This analysis assumes that the two bias 
sources are additive. For details, see Huang and Sekuler (2010)
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conditions). They referred to the “pull” as “assimilation.” 
The authors also demonstrated a complementary pattern 
holding in relation to more distant trials, referred to as 
“contrast.” These kinds of “sequential dependencies” 
were also observed in visual threshold estimation tasks 
(Howarth & Bulmer, 1956; Verplanck et al., 1952) and 
many perceptual signal detection tasks (Atkinson & 
Carterette, 1964; Carterette et al., 1966; Friedman et al., 
1968; Parducci & Sandusky, 1965; Tanner et al., 1967, 
1970; Treisman & Faulkner, 1984; Treisman & Williams, 
1984; Zwislocki et  al., 1958). These findings inspired 
renewed interest in relating perceptual and memory tasks 
via their patterns of dependencies, which has continued in 
more recent work demonstrating such short-term memory-
based dependencies within long-term memory tasks such 
as judgment of frequency and old/new recognition tasks 
that have similar formats to visual and auditory signal-
detection and absolute identification tasks (Annis & 
Malmberg, 2013; Malmberg & Annis, 2012).

Arguments have also been made in the opposite direction, 
from memory findings to predictions about perception. 
Specifically, powerful models of perceptual categorization 
tasks that closely resemble absolute identification have been 
successfully applied to short-term memory tasks as well 
(Nosofsky et al., 2011). More recent work has also suggested 
that predictions of the Generalized Context Model for short-
term memory tasks could be improved if one allows for 
memory of statistical properties to inform judgments under 
conditions of low representational fidelity (Dubé, 2019).

At present, the most promising models of absolute 
identification frequently include memory processes and/
or memory for statistical properties of stimuli, such as 
the mean, min, max, and range of feature values subjects 
must respond to (Duffy et al., 2010; Huttenlocher et al., 
2000; Petrov & Anderson, 2005; Stewart et al., 2005). 
Clearly, the field has evolved a great deal since the time 
of Miller’s paper, and today perceptual judgment tasks 
of the sort we have described are no longer viewed as 
passive or “memoryless.” In this way, the implicit inter-
trial biases of this literature have suggested that a com-
mon set of memory mechanisms underlies performance 
across all of these tasks. In FIM, we have attempted to 
formalize one such mechanism: the fidelity-driven inte-
gration of recent, low-dimensional memory traces on a 
common feature dimension. We envision this process as 
an operation upon the contents of short-term memory. For 
recent evidence bearing on this STM control hypothesis 
with respect to “ensemble coding” studies, see Zepp et al. 
(2021).

Next, we expand on the subject of sequential or “serial” 
dependency, by demonstrating how our results and modeling 
may help to answer longstanding questions about the inter-
trial biases we see in multiple literatures.

Serial Dependency: Criterion Shifting 
or Representational Change?

In the serial dependency literature, prior approaches have 
often contrasted representational and decision-based mod-
els. For instance, Treisman and Williams (1984) accounted 
for response assimilation with a variable-criterion signal 
detection model. They assumed two processes, a short-term 
tracking process, and a longer stabilization process, that 
moves the response criterion to favor repetitions of the prior 
responses in the short term. The longer-term process pre-
vents the criterion from wandering too far off into the tails 
of the evidence distributions, which would produce extreme 
and suboptimal response biases.

Representational models, on the other hand, generally 
assume that memory representations from prior stimuli 
influence the memory representations of more recent stim-
uli and/or the encoding of response probes. For instance, 
Annis and Malmberg (2013) proposed a REM-based model 
(Shiffrin & Steyvers, 1997) of sequential dependencies in 
memory and perceptual judgments that assumes informa-
tion from feature vectors representing prior test probes car-
ries over into the representations of current test probes. The 
authors interpreted this process as being dependent on the 
state of attention, with greater carryover occurring during 
states of low vigilance during the test and provided some 
empirical evidence in support of this assumption through 
manipulation of the dimensionality of the stimulus materials 
(words vs. pictures).

The FIM is closely aligned to the approach of Annis 
and Malmberg (2013), in that representations supporting 
responses to a probe are composites of current and prior 
test items. Like Annis and Malmberg (2013), we assume 
that most information will be sampled from the strongest 
representations. Although our model does not specify atten-
tional probabilities, we note that decades of research has 
supported the idea that low attention produces low fidelity 
representations (see Ma et al., 2014, for a recent review from 
the standpoint of visual STM). In the Annis and Malmberg 
model, this means the current test probe produces less influ-
ence, and the prior items more impact on responding. In 
FIM, the same logic holds, though the emphasis is placed 
on the passage of time and intervening items without includ-
ing an attentional mechanism. Future work should provide 
a more precise delineation of how FIM sits in relation to the 
memory and attention mechanisms detailed in the Atkinson-
Shiffrin framework and successful mathematical instantia-
tions of its subprocesses, such as REM and SAM (Atkinson 
& Shiffrin, 1968; Raaijmakers & Shiffrin, 1981; Shiffrin & 
Steyvers, 1997).

On the other hand, we note our results and approach are 
inconsistent with criterion variability models such as that 
of Treisman and Williams (1984). Specifically, it is difficult 
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to see how the SDT model, which was designed to account 
for data from experiments using Likert or binary response 
procedures, can possibly account for data from the method 
of adjustment task. In short: How can a criterion shift pro-
duce a recall response that is distorted in the direction of a 
prior stimulus? The information carryover approach of rep-
resentational models, while sharing the limitation of applica-
tion only to absolute identification/Likert scale and binary 
response formats, can at least in principle support the kinds 
of tasks and data used here through their delineation of the 
feature space encoded and sampled from during retrieval in 
the SAM/REM framework.

A Useful Bias?

What, if any, are the benefits of ensemble bias to human 
cognition? The bias has been interpreted as a mechanism 
to maintain visual stability (Fischer & Whitney, 2014). The 
authors found that the magnitude of ensemble bias could be 
modulated by the similarity of the consecutive targets: the 
bias almost equals the relative difference within a certain 
range but starts to decrease when the difference is outside 
the range (middle panel in Fig. 1). In this way, visual stabil-
ity is maintained by discarding small perturbations of the 
targets (bias within a small range), without losing the abil-
ity to detect real changes (less bias when the difference is 
outside the range).

This visual stability mechanism maximizes its benefit 
when the prior stimuli are informative in predicting the next 
stimulus in the sequence. This is often true when the stimu-
lus sequence comprises representations of the same identity. 
For example, the sequence may be a stream of snapshots 
of the same moving object. However, in most single item 
estimation studies, the stimuli are randomly drawn from a 
uniform distribution, making the prior stimuli less informa-
tive about the next stimulus, despite some information about 
the general range.

This distinction relates to the choice of prior in Bayesian 
models: do we use information from all previous trials as 
prior or do we use information from a few previous trials as 
prior, for more general magnitude reproduction? This dis-
cussion might be not only related to data models (Petzschner 
& Glasauer, 2011), but also the item identity concept in the 
nature of the task. The item identity might be a modulating 
factor of the usefulness of this implicit influence. Instead of 
the same identity case, where perceptual stability is useful, 
there are cases in which the sequentially presented items are 
described as different identities. Why do we need to keep 
“stability” in such cases, where the stimuli are not supposed 
to be stable in the first place? Why do we bias our evaluation 
of a person’s emotion toward the previous person?

Most existing ensemble coding studies do not clearly 
state the identities of the items. Could a prior description 

modulate the sequential dependency and biasing effect? 
For example, the same set of stimuli can be described as 
either locations of the same target or the locations of dif-
ferent targets. Will this description difference lead to a 
measurable difference in the biasing effect? Further inves-
tigation is called for to understand the usefulness and 
detriment of this bias and the potential modulators for 
scenarios with different task goals, such as way-finding, 
tracking targets on radar images, or job performance rat-
ing in sequence.

Beyond Single Item Estimation

We initially proposed FIM as an integrated model for both 
implicit and explicit ensemble coding (Tong, 2020). In the 
current paper, the implicit part of the FIM is used to address 
single item estimation tasks.

In the full FIM framework, the single item estimation 
task is categorized as a single-target isolate task, in which 
participants are asked to process items in isolation, and 
every trial has only one target stimulus. The other two 
categories are multi-target isolate tasks (e.g., membership 
identification, Ariely, 2001) and summary tasks (e.g., mean 
estimation, Chong & Treisman, 2003). The three types of 
tasks are categorized by their task requirement, shown in 
Table 1.

One of the critical differences between summary and 
isolate tasks is the relative fidelity of the ensemble repre-
sentation and the exemplar representations. Assuming par-
ticipants deploy their attention among the items in the man-
ner demanded by the task, one expects that in isolate tasks 
(like single item estimation), the ensemble representation is 
not as precise as exemplars. In contrast, in summary tasks, 
the ensemble representations should be more precise than 
exemplars.

Neither multi-target isolate nor single-target isolate 
tasks ask participants to summarize. However, the num-
ber of target stimuli differs in the two tasks. One example 
is the commonly used pre-cue/post-cue manipulation in 
perceptual or memory judgment tasks (Dubé & Sekuler, 
2015; Dubé et al., 2014; Huang & Sekuler, 2010). When 
given the cue before the stimulus, participants know 
which item to attend to and can ignore the rest, thus ren-
dering the task functionally equivalent to a single-target 
isolate task. But when given the cue after the stimulus 
presentation, participants need to process multiple items 
and keep them in the working memory store before the 
cue can guide them to further action. This makes a post-
cue task functionally equivalent to a multi-target iso-
late task. The shared storage of the multiple items in 
multi-target isolate tasks may induce more information 
integration, as shown in membership identification tasks 
(Ariely, 2001; Haberman & Whitney, 2007). However, it 
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is beneficial to isolate item information according to the 
task requirement.

How is this task-dependent characteristic achieved? FIM 
assumes that participants apply different statistical inferen-
tial goals in those two types of tasks. In isolate tasks, they 
make inferences about the distribution of the exemplars, 
whereas, in summary tasks, they make inferences about 
the distribution of the means of the exemplars. The central 
limit theorem tells us that the distribution of the exemplar 
means in the summary tasks will be more precise than the 
distribution of the exemplars.

This task-dependent distinction reconciles existing 
findings in implicit ensemble coding, found with iso-
late tasks such as membership identification and single 
item estimation. The FIM assumption of fidelity-based 
sampling predicts the recency pattern found in explicit 
ensemble tasks such as mean estimation. Critically, it 
points out that the implicitly formed ensemble represen-
tation is the basis of the more precise explicit summary 
ensemble representation. The implicit influence is also 
found in explicit summary tasks (Tong, 2020), suggesting 
a hierarchical structure of item representation and infor-
mation integration, based on the fidelity-based sampling 
principles.

Open Questions

FIM’s unifying account of central tendency bias and 
serial dependency implies that local similarity, rather 
than global similarity, may play a more important role in 
the biasing influences. Does this predict that for the same 
set of stimuli, different sequential order with different 
local similarities may show different levels of implicit 
ensemble bias?

What is the role of a potentially automatically perceived 
range (Ariely, 2001)? In Fig. 3, we corrected the samples 
outside the range to the nearest values within the range. If 
the range perception would relocate the probability den-
sity to areas within the stimulus range, even non-targets 
away from the center would be sampled more toward the 
center, which might be a secondary source of the observed 
ensemble bias.

The models introduced in the current paper do not 
distinguish the roles of prior stimulus values and prior 
responses. In the conventional single item estimation 
design, the high correlation of stimulus and response made 
it difficult if not impossible to separate the influences, but 
recent work showed ways to disentangle the influences 
from past stimuli and responses (Bosch et al., 2020). An 
alternative design, cued single item estimation, in which 
participants are asked to be ready to reproduce the target 
items but only do so when provided with a cue, may be 
useful to address this question.

Feedback has a notable effect on serial dependency 
and on mean estimation. In studies of sequential depend-
ency using absolute identification, feedback appears to 
produce long-range response contrast as well as a greater 
influence of the prior stimulus (as opposed to the prior 
response) on short-term assimilation. In one study of 
mean estimation, feedback reduced recency weighting 
(Juni et al., 2010). Does this suggest that feedback in 
single item estimation would also reduce reliance on 
prior trials, even if the representational fidelity of the 
current target is low? How does feedback modulate 
attention’s role in this process?

The current models do not provide any detailed, bio-
logically plausible mechanism of encoding and retrieval 
of target and non-target information. FIM only assumes 
the representations to be samples, but how are those 
samples drawn from the sensory stream? How are they 
stored and retrieved? This raises the more general ques-
tion of how the FIM mechanisms fit into the larger theo-
retical literature on human memory processing systems 
(Atkinson & Shiffrin, 1968). We aim to address this 
question, as well as the others we have posted here, in 
future work.
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Table 1  FIM’s categorization 
criteria for ensemble coding 
tasks

Summary task Multi-target isolate task Single-target isolate task

Is summarizing 
multiple stimuli 
task-relevant?

Yes No No

Is processing multiple 
stimuli task-rele-
vant?

Yes Yes No

Example tasks Mean estimation, mean 
comparison

Member identification, post-
cue reproduction

Single item estimation, 
pre-cue reproduction
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