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Abstract
The “Full Bayesian Significance Test e-value”, henceforth FBST ev, has received increasing attention across a range of
disciplines including psychology. We show that the FBST ev leads to four problems: (1) the FBST ev cannot quantify
evidence in favor of a null hypothesis and therefore also cannot discriminate “evidence of absence” from “absence of
evidence”; (2) the FBST ev is susceptible to sampling to a foregone conclusion; (3) the FBST ev violates the principle
of predictive irrelevance, such that it is affected by data that are equally likely to occur under the null hypothesis and the
alternative hypothesis; (4) the FBST ev suffers from the Jeffreys-Lindley paradox in that it does not include a correction
for selection. These problems also plague the frequentist p-value. We conclude that although the FBST ev may be an
improvement over the p-value, it does not provide a reasonable measure of evidence against the null hypothesis.

Keywords Full Bayesian Significance Test · Evidence · Optional stopping · Predictive irrelevance ·
Jeffreys-Lindley paradox

Introduction

Over the past decades, the “FBST ev” has been proposed
as a Full Bayesian Significance Test (de Bragança Pereira
& Stern, 1999; de Bragança Pereira et al., 2008) that
offers distinct advantages over both frequentist p-values and
Bayes factors (e.g., Madruga et al. 2003). The FBST ev has
been applied in economics, genetics, signal processing, time
series analysis, biology, astronomy, medicine, and other
fields (see de Bragança Pereira & Stern J. M. in press and
references therein). Recently, the FBST ev has also been
introduced to the field of psychology (e.g., Kelter 2020b;
Kelter in press). However, we believe that the method
has specific limitations that warrant discussion. Below we
first introduce the FBST ev and describe its similarities to
conventional p-values. Next we outline four features that we
perceive to be particularly problematic.
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A Brief Definition of the FBST ev

The FBST ev (sometimes called “e-value” 1) is a posterior
tail probability, where the tail area is defined by a so-called
posterior surprise function, which is defined below. For
concreteness we focus on a point null hypothesis that fixes
a parameter of interest to a specific value: H0 : θ = θ0. The
alternative hypothesis relaxes the restriction on θ , and it is
assumed that a prior distribution π(θ |H1) is assigned to θ ,
which in light of the observed data can then be updated to a
posterior π(θ | y,H1) using Bayes’ rule.

The posterior surprise function is the ratio of the
posterior over a reference function. One of the most
common reference functions, and the one we use throughout
this manuscript, is the prior distribution, and leads to
π(θ |H1, y)/π(θ |H1) — a common Bayesian measure
of evidence or support (e.g., Evans, 2015). The support
associated with the null hypothesis is defined as the largest
support for parameter values restricted by the null, that is,
supθ∈Θ0

π(θ |H1, y)/π(θ |H1), where Θ0 is the parameter
space Θ1 restricted according to H0. For a point null
hypothesis this simply yields π(θ0 |H1, y)/π(θ0 |H1). The
tail area T used to define the FBST ev consists of all

1Not to be confused with the e-values produced by safe tests
(Grünwald et al., 2020), where the e refers to expectation.
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parameter values θ that have posterior support less than the
support associated with the null hypothesis, that is,

T =
{
θ ∈ Θ1

∣∣∣∣ π(θ | y,H1)

π(θ | H1)
≤ π(θ0 | y,H1)

π(θ0 | H1)

}
, (1)

where Θ1 is the unrestricted parameter space. The FBST ev

for H0 : θ = θ0 is defined as the posterior mass in area T ,
that is,

ev =
∫

T

π(θ | y,H1) dθ . (2)

When ev is low, or ēv = 1 − ev is high, the data are said to
cast doubt on H0.

As a concrete example, consider a binomial test of H0 :
θ = 1

2 versus H1 : θ ∈ Θ1 = (0, 1) and a beta(1,
1) prior (i.e., a uniform prior from 0 to 1). The posterior
surprise function then equals the posterior distribution.
Consequently, the set T that defines the posterior tail area
are those θs that lead to a posterior value π(θ | y,H1) ≤
π( 1

2 | y,H1). Equivalently, ēv = 1−ev defines the posterior
probability of T̄ = Θ1 \ T , the complement of the tail area
T .

For observed data consisting of s = 15 successes and
f = 5 failures the posterior is a beta(16, 6) distribution. The
support for the null is π( 1

2 | y,H1) = 0.31 and the area of
parameter values that have more support is T̄ = [ 1

2 , 0.92];
thus, the tail area is T = (0, 1

2 ) ∪ (0.92, 1). The area under
the curve shown in Fig. 1 equals ēv = 1 − ev = .98,
and hence ev = .02, which combined with the standard
threshold of .05 leads to a rejection of the null hypothesis
(de Bragança Pereira et al., 2008, Definition 2.3).

The advantage of the FBST ev is that the procedure
promises to work with non-subjective priors such as
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Fig. 1 Example of the FBST ev for a binomial test of H0 : θ = 1
2

versus H1 : θ ∈ Θ1 = (0, 1) with a beta(1,1) prior for s = 15
successes out of n = 20 observations. Shown is the beta(16, 6)

posterior distribution. Area T̄ = [ 1
2 , 0.92] contains all values of θ with

at least as much support from the data as θ = 1
2 . The posterior mass

on T̄ equals 0.98, and hence ev = 1 − 0.98 = 0.02. Figure based on
the JASP module Learn Bayes

Jeffreys’s transformation-invariant priors (e.g., Jeffreys
1946; Ly et al., 2017), or reference priors (e.g., Berger et al.
2009; Bernardo 1979) as long as the posterior is proper.
In contrast, Bayes factors prohibit the use of improper
priors on the test-relevant parameter, and the construction
of default Jeffreys’s Bayes factors requires the statistician
to select a class of priors that fulfil certain desiderata (e.g.,
Bayarri et al. 2012; Jeffreys 1961; Li & Clyde 2018; Ly
et al. 2016a; Ly et al. 2016b). Hence, the FBST procedure is
more or less automatic whenever non-subjective priors are
available (de Bragança Pereira & Stern J. M., in press), as
it does not require additional difficulties of prior selection.
Moreover, Diniz et al. (2012) mention that it is an advantage
that the FBST procedure avoids the introduction of a prior
probability on the null hypothesis. Below we show that
the automatic use of the FBST can lead to problematic
inferences. The root of the problem, we believe, is due to
the fact that the behavior of FBST ev is similar to that of
p-values.

The FBST ev as an Approximate p-value

Fig. 1 highlights the conceptual similarity between the
FBST ev and the frequentist p-value from null hypothesis
significance testing. One key difference is that the p-value
violates the Likelihood Principle (e.g., Berger and Wolpert
1988; Wagenmakers, 2007), but the FBST ev does not,
because it relies on the posterior distribution. 2

Another key difference is that for p-values the tail event
consists of the set of more extreme outcomes than what is
observed across the sample space, whereas for the FBST
ev the tail area consists of parameter values that receive
less support than the null value. This difference between
the spaces is noticeable in the binomial example, as the
tail event of the p-value is comprised of discrete outcomes,
e.g., the sets {0, 1, 2, 3, 4, 5} and {15, 16, 17, 18, 19, 20},
whereas the tail area for FBST ev consists of two continuous
intervals, e.g., (0, 1

2 ) and (0.92, 1).
There are specific cases where the FBST ev and

the p-value (for a fixed-n sampling plan and without
possible corrections for multiplicity) are exactly equal. In
particular, this occurs when data are normally distributed
with population mean μ and variance σ 2 = 1 and the
null hypothesis is H0 : μ = 0, whereas the alternative
allows μ to vary freely, that is, H1 : μ ∈ R. Using
the (improper) uniform prior (i.e., the “uninformative”
Jeffreys’s transformation-invariant prior) then results in the
FBST ev and the p-value being exactly equal (e.g., Diniz

2The Likelihood Principle holds that “all evidence, which is obtained
from an experiment, about an unknown quantity θ , is contained in
the likelihood function of θ for the given data.” (Berger & Wolpert,
1988, p. 1).
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et al. 2012). More generally, consider Bayesian parameter
estimation for the location parameter μ of a statistical model
from the exponential family. Assume the prior on μ is
uniform on the real line. Then the proportion of the posterior
distribution with mass lower than zero equals the one-sided
frequentist p-value (e.g., Lindley 1965; Pratt et al. 1995).
This means that for a symmetric posterior distribution, the
FBST ev equals the two-sided frequentist p-value. For
non-uniform priors the relation between FBST ev and p-
value is only approximate; however, as sample size grows
the data quickly dominate the posterior distribution (e.g.,
Wrinch & Jeffreys 1921), such that the approximation will
be increasingly close.

The large-sample connection between the FBST ev and the
p-value holds even more generally, whenever the (asymp-
totic) p-value is derived from the (generalized) likelihood
ratio statistic. This connection is made rigorous via Wilks’
theorem (Wilks, 1938), which states that the likelihood ratio
statistic asymptotically has a χ2-distribution, and the Bern-
stein von-Mises theorem (e.g., LeCam 1986; Ghosal & van
der Vaart 2017; van der Vaart 1998), which states that, under
general conditions, the posterior is asymptotically normal.
Both theorems were used by Diniz et al. (2012) to derive the
following (asymptotic) functional relationship

ev
d→ 1 − Fdim(Θ1)[F−1

dim(Θ1)−dim(Θ0)
(1 − p)], (3)

as n → ∞, where p in the right-hand side is the asymptotic
p-value of the generalized likelihood ratio statistic, Fk

and F−1
k are the cumulative distribution function and

the quantile function of a χ2-distribution with k degrees
of freedom, respectively. For instance, for the binomial
example dim(Θ1) = 1, since there is only one parameter
that is free to vary in H1 and dim(Θ0) = 0, since it is
a singleton. As such, whenever dim(Θ1) = dim(Θ1) −
dim(Θ0), Eq. (3) states that the difference between FBST
ev and the asymptotic p-value becomes negligible as the
sample sizes increase.

In the remainder of the paper we highlight how the
FBST procedure can result in problematic inferences. Our
conclusions are to some extent predicated on the notion
that evidence is the degree to which the data change our
conviction about competing accounts of the world (Evans,
2015; Morey et al., 2016).

Problem 1: The FBST ev Cannot Quantify
Evidence in Favor of the Null Hypothesis

Our first demonstration concerns the case of pure induction:
a universal generalization is stipulated and an unbroken
string of n confirmatory instances is observed. The evidence
in favor of the universal generalization ought to increase
with n; we consider this axiomatic. The mathematician

George Polya termed this regularity the “fundamental
inductive pattern”:

“This inductive pattern says nothing surprising. On the
contrary, it expresses a belief which no reasonable person
seems to doubt: The verification of a consequence renders
a conjecture more credible. With a little attention, we can
observe countless reasonings in everyday life, in the law
courts, in science, etc., which appear to confirm to our
pattern.” (Polya, 1954, pp. 4–5)

The FBST ev violates the fundamental inductive pattern.
Concretely, a universal generalization posits that all
instances have property x, that is, H0 : θ = 1 for a
binomial likelihood kernel. Regardless of their number n,
the confirmatory instances are best predicted by θ = 1,
and consequently this value receives more support than any
other value of θ . This means that ēv = 0 and ev = 1
regardless of the number of confirmatory instances and
regardless of the prior distribution under H1. Note that the
p-value suffers from the exact same problem (e.g., Jeffreys
1980; Ly et al. 2020; Wrinch & Jeffreys 1919).

Our second demonstration concerns a binomial test of
H0 : θ = 1

2 versus H1 : θ ∈ Θ1 = (0, 1) and a
beta(α, α) prior that is symmetric around 1

2 . Suppose that
the data consist of just as many successes s as failures f

(i.e., s = f = n
2 ). In this scenario, the evidence for H0

ought to increase with n. However, for any n the data are
best predicted by θ = 1

2 . As in the first demonstration, this
means that ev = 1 regardless of n.

These demonstrations show that the FBST ev cannot
quantify evidence in favor of a null hypothesis. Data
maximally consistent with the null hypothesis ought to offer
stronger support when sample size is high rather than low;
however, this regularity is not reflected in FBST ev. This
inability means that the FBST ev also cannot discriminate
between evidence for absence and absence of evidence (e.g.,
Keysers et al. 2020).

Problem 2: The FBST ev is Susceptible
to Sampling to a Foregone Conclusion

Not only is the FBST ev incapable of quantifying evidence
for the null, it will lead to a sure rejection of the null
if a sufficiently patient researcher monitors the FBST ev

and stops whenever it dips below a fixed threshold such
as ev < .05. When H0 is true, this is certain to happen
(i.e., the decision to reject H0 based on an indefinite
accumulation of observations is a foregone conclusion).
This makes an observed rejection of the null based on a
sequential application of the FBST procedure ambiguous
and uninterpretable.

566 Comput Brain Behav  (2022) 5:564–571



The reason why monitoring the FBST ev is problematic
stems from its intimate (asymptotic) relationship with the
p-value. As noted earlier, the asymptotic behavior of the p-
value also describes the asymptotic behavior of the FBST
ev; and for p-values, it can be proven that there is no
convergence to a single value — instead, p-values meander
randomly in the (0, 1)-interval (Feller, 1940; 1968).
Hence, the FBST ev will eventually cross the threshold
of, say, ev < .05. A concrete demonstration is given in
Wagenmakers et al. (2018, intuition 5).

A Bayesian interpretation of this phenomena is that the
FBST ev is approximately a test for the direction of an effect
(Casella & Berger, 1987; Marsman & Wagenmakers, 2017).
Recall that in many applications, the FBST ev consists of
the sum of two posterior areas: the right tail and the left tail
(cf. Fig. 1). Focusing on the left tail (i.e., the posterior mass
on values of parameter values θ lower than θ0), we note that
it equals the probability that θ is lower than θ0 as opposed
to higher than θ0. Specifically, assume a prior distribution
for θ under H1 that is centered on θ0, and assume that the
posterior is symmetric such that the area in the left tail
equals that in the right tail. The posterior probability that θ

is lower than θ0 then equals ev/2.
Consider now the scenario where data are generated

under H0, and accumulate indefinitely (cf. Kelter 2020a).
In our interpretation, the FBST ev is an approximate test
for direction; because the true value is exactly in between
the positive and negative values, the FBST ev will therefore
meander randomly — the probability (or odds) has nothing
to converge to.

To conclude, the FBST ev can be interpreted as an
approximate test for direction. This means that whenever
data are generated under H0, the truth is exactly in the
middle and the FBST ev will drift randomly and be
susceptible to sampling to a foregone conclusion (Rouder,
2014; Wagenmakers et al., 2018). Because the asymptotic
behavior of the FBST ev equals that of the frequentist p-
value, the proofs on sampling to a foregone conclusion in
Feller (1968) also pertain to the FBST procedure.

Problem 3: The FBST ev Violates
the Principle of Predictive Irrelevance

The principle of predictive irrelevance implies that if
two models yield exactly the same predictions for to-be-
observed data, then actually observing the data should not
change our preference for one model over the other. As an
example, consider the binomial test of H0 : θ = 1

2 versus
H1 : θ ∈ Θ1 = (0, 1) with a beta(α, α) prior, which
is symmetric around 1

2 . Under H0, the probability that the
next observation is a success equals 1

2 . This is also the case
under H1, as the prior predictive of H1 is then a symmetric

beta-binomial distribution with mean α/(2α) = 1
2 which

equals the probability of the next observation being a
success.

To see that the FBST ev violates the principle of
predictive irrelevance, note that if α = 1 and the first
observation is a success then under H1 we have θ ∼
beta(2, 1); ev is then the posterior mass on θ < 1

2 , which
equals ev = .25. If, instead, the first observation is a failure,
then under H1 we have θ ∼ beta(1, 2) and ev is also equal
to .25. Hence, upon observing the new datum, the posterior
changes and consequently the FBST ev changes — even
though the datum is predictively irrelevant.

More generally, any symmetric posterior distribution θ ∼
beta(α + n/2, α + n/2) under H1 has ev = 1 (see Problem
1 above). The occurrence of a new datum will decrease that
FBST ev to indicate some evidence against H0, even though
the datum is predictively irrelevant and even though the
decrease occurs regardless of the nature of the datum (i.e.,
success or failure). This analysis can be extended to data
sequences of arbitrary length (Wagenmakers et al., 2020).

In contrast, Jeffreys’s Bayes factor does behave in
accordance with the principle of predictive irrelevance,
because it is defined as the ratio of the prior predictives
evaluated at the observed data, that is, the ratio of
marginal likelihoods. Whenever H0 and H1 make identical
predictions for the next datum, Jeffreys’s Bayes factor is
unaltered when that datum is observed, indicating perfect
predictive equivalence: “The first member sampled is bound
to be of one type or the other, whether the chance is 1

2 or
not, and therefore we should expect it to give no information
about the existence of bias.” (Jeffreys, 1961, p. 257). More
generally, when the beta prior distribution is symmetric and
s = f observations have been made, the prior distribution
for the analysis of the next observation is a beta(α+s, α+f )

distribution. Because this distribution is symmetric around
θ = 1

2 , the predictions for the upcoming observation are
again identical under H0 and H1, and therefore the Bayes
factor remains unchanged irrespective of its outcome. “Thus
if at a certain stage the sample is half and half, the next
member, which is bound to be of one type or the other, gives
no new information.” (Jeffreys, 1961, p. 257). Another case
consist of an asymmetric θ ∼ beta(α, β) distribution which
is updated with unequal s and f such that α + s = β + f ;
the next observation will not change the Bayes factor for H0

versus H1.
In other words, whenever the distribution for θ under

H1 is symmetric around 1
2 (either before or during

data collection), the next observation is predictively
irrelevant, and will leave the Bayes factor unaffected (see
Wagenmakers et al. 2020 and references therein). Jeffreys
notes “In that case the posterior [model] probabilities are
equal to the prior [model] probabilities; in other words
the new data do nothing to help us decide between the
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hypotheses. This is the case of irrelevance.” (Jeffreys 1973,
p. 31; italics in original) and “...if the data were equally
likely to occur on any of the hypotheses, they tell us nothing
new with respect to their credibility, and we shall retain
our previous opinion, whatever it was.” (Jeffreys, 1961, p.
29) In contrast, the FBST ev suggest that the observation
of predictively irrelevant data ought to change our previous
opinion.

Problem 4: The FBST ev Suffers
from the Jeffreys-Lindley Paradox

The Jeffreys-Lindley paradox (e.g., Jeffreys 1935; Jeffreys
1937; Jeffreys 1939; Lindley 1957; see also Bernardo 1980;
Cousins 2017; Good 1980a; Good 1980b) refers to the fact
that, as sample size increases indefinitely and the threshold
for the p-value remains constant at any non-zero value (e.g.,
p < .005), we inevitably arrive at a conflict between p-
values and Bayes factors, in the sense that the p-value would
suggest that H0 be rejected, whereas the Bayes factor would
indicate that H0 decisively outpredicts H1. This conflict
will arise regardless of the prior distribution on the test-
relevant parameter under H1 (under regularity conditions)
and regardless of the p-value under consideration. As
explained earlier, the FBST ev is an approximate p-value,
and hence the conflict arises for the FBST ev as it does for
the p-value.

For reasons that are unclear to us, the Jeffreys-Lindley
paradox is sometimes been used to argue against the Bayes
factor and motivate the search for a model comparison
metric that does not ‘suffer’ from the paradox. For instance,
de Bragança Pereira et al. (2008, p. 80) state: “However,
whenever the posterior is absolutely continuous and the null
hypothesis sharp, the use of Bayes Factors for significance
testing is controversial” and then refer to Lindley (1957). In
another article, de Bragança Pereira and Stern (1999, p. 109)
state that the Jeffreys-Lindley paradox is due to the fact that
the Bayes factor privileges the null hypothesis by giving it
separate prior mass.

However, Lindley (1957) argued explicitly that the
paradox revealed a shortcoming of the p-value, not of the
Bayes factor:

Now in our example we have taken situations
in which the significance level is fixed because,
as explained above, we wish to see whether its
interpretation as a measure of lack of conviction about
the null hypothesis does mean the same in different
circumstances. The Bayesian probability is all right,
by the arguments above; and since we now see that it
varies strikingly with n for fixed significance level, in
an extreme case producing a result in direct conflict

with the significance level, the degree of conviction
is not even approximately the same in two situations
with equal significance levels. 5% in today’s small
sample does not mean the same as 5% in tomorrow’s
large one. (Lindley, 1957, p. 189)

Similarly, throughout his work on Bayes factor hypothe-
sis testing in the 1930s Harold Jeffreys argued that a rational
measure of evidence against the null hypothesis cannot be
based on a constant multiple of the standard error, as is the
case for the p-value. For instance,

“A constant significance limit, in relation to the standard
error, would however be equivalent to saying that the
prior probability of a zero value varies with the number
of observations, which is absurd; or, alternatively, that the
chance of a real difference exceeding the standard error is
the same no matter how small the standard error is made
by increasing the number of observations.” (Jeffreys,
1937, p. 259)

With respect to the question of prior model probabilities,
note that the Bayes factor quantifies relative predictive
performance of two rival models, and is thus independent
of the prior beliefs about the hypotheses (e.g., Wrinch &
Jeffreys 1921):

P(H1 | y)

P (H0 | y)︸ ︷︷ ︸
Posterior beliefs
about the models

= P(H1)

P (H0)︸ ︷︷ ︸
Prior beliefs

about the models

× p(y | H1)

p(y | H0)︸ ︷︷ ︸
Bayes factor

. (4)

One might argue that in order for the conditioning in
the marginal likelihood p(y |Hi ) to be well-defined, each
model Hi must at least have some prior probability ε > 0. 3

But when the aim is to test H0 it appears entirely reasonable
for H0 to have separate prior mass. Instead, it seems
remarkable to assign H0 : δ = 0 a prior probability of zero,
deeming the hypothesis impossible from the outset, and then
proceeding to test it anyway. Why then test δ = 0, and
not, say, δ = 0.02144347729918..., δ = 0.010101010101...,
or δ = e/30? The reason is that H0 : δ = 0 is a value
of special interest: it represents a simple model in which
an effect is entirely absent, and for that ‘sampling noise-
only’ model to be abandoned the data must offer evidence
against it. The Laplacean practice of not assigning the point-
null value any separate prior mass, i.e., estimating only,
“expresses a violent prejudice against any general law, a
totally unacceptable description of the scientific attitude.”
(Jeffreys, 1974, p. 1)

3We say might, because it could also be argued that the purpose of the
Bayes factor is to compare the predictive performance of the sceptic’s
H0 versus the proponent’s H1. Such statements are about assigning
predictive probability to data, and do not entail a commitment to any
degree of relative plausibility of the rival positions from which the
predictions originated.
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Admittedly there exist many problems in which the
point-null hypothesis is not believable, not even as an
approximation. For instance, there is usually no reason to
assume that interrater agreement equals zero exactly, or that
two politicians are exactly equally popular. Jeffreys labelled
such scenarios problems of estimation. But with problems
of testing, a specific value of the parameter stands out;
the desire to assess that value (out of an infinity of other
values that could be assessed) already suggests that its prior
probability is not exactly zero.

At its core, however, the Jeffreys-Lindley paradox is
sufficiently general that it does not even require a Bayesian
mindset. Good (1980a) (in modern notation) explains it
in terms of simple versus simple likelihood ratio tests, as
follows:

Dr. Deborah Mayo raised the following question.
How could one convince a very naive student,
Simplissimus, that a given tail-area probability (P-
value), say 1/100, is weaker evidence against the
null hypothesis when the sample is larger? Although
this fact is familiar in Bayesian statistics the question
is how to argue it without (explicit) reference to
Bayesian methods.

One can achieve this aim, without even referring to
power functions, in the following manner.

Take a very concrete example, say the tossing of a
coin, and count the number [s] of heads (“successes”)
in [n] trials. Ask Simplissimus to specify any simple
non-null hypothesis for the probability [θ] of a head.
Suppose he gives you a value [θ = 0.5 + ε]. First
compute a value of [n] so that a ε value of [s]
approximately equal to [n(0.5 + ε/7)] would imply
a tail-area probability close to 1/100. Then point
out that the fraction 0.5 + ε/7 of successes is much
closer to 0.5 than it is to 0.5 + ε and therefore must
support the null hypothesis as against the specific rival
hypothesis proposed by Simplissimus. Thus, for any
specified simple non-null hypothesis, [n] can always
be made so large that a specified tail-area probability
supports the null hypothesis more than the rival one.
This should convince Simplissimus, if he had been
listening, that the larger is [n] the smaller the set
S of simple non-null hypotheses that can receive
support (as compared with [θ = 0.5]) in virtue of
a specified P-value. If the tail-area probability, for
example 1/100, is held constant, the set S converges
upon the point [θ = 0.5] when [n] is made larger and
larger.” (Good 1980a, pp. 307–308; italics in original)

For instance, assume Simplissimus specifies their simple
non-null hypothesis as θ = 0.57 with ε = 0.07. Then our
target value for the number of successes s equals n(0.5 +
0.07/7) = n × 0.51. So for a sample proportion of 0.51

we now seek n such that the two-sided tail area probability
equals .01. We find that n = 16700—consisting of 8517
heads, for a sample proportion of s = 8517/16700 =
0.51, as stipulated—yields a tail area just below .01. But
the sample proportion of 0.51 is much closer to the null
hypothesis (i.e., θ = 0.50) than to the non-null hypothesis
specified by Simplissimus (i.e., θ = 0.57).

Returning to an explicit Bayesian perspective, suppose
the estimate of the test-relevant parameter is within one
standard error from zero. This will provide some evidence
in favor of H0. Now assume that sample size increases
indefinitely, but the estimate remains within one standard
error from zero. As implied by Good’s scenario concerning
Simplissimus, the range of parameter values under H1 that
are consistent with the observed data continually shrinks:
with large sample size and an estimate within a standard
error of the null value, parameter values far away from
zero predict so poorly that they can be effectively excluded
from consideration. For any sample size there will be a
set of parameter values that are still in contention with
the null value, but this set will shrink to zero. Of course,
for any specific sample size it is possible to select with
the maximum likelihood estimator and claim that the data
support it over the null value; for instance, after seeing the
data Simplissimus might argue that their non-null choice
of 0.57 was overly optimistic, and that a choice of 0.51
would have been more apt. Of course, Good’s game could
be played anew, and Simplissimus would be forced to select
ever smaller values of θ . In other words, Simplissimus
is cherry-picking. In the Bayes factor formalism, such
cherry-picking is counteracted by averaging predictive
performance across the prior distribution; when sample
size increases but the estimate remains within a constant
multiple of the standard error from the null value, a growing
proportion of the prior distribution under H1 will start to
predict poorly, driving down the average performance (cf.
Jeffreys 1937, pp. 250–251).

Thus, the prior distribution can be viewed as an automatic
method to prevent cherry-picking, that is, to prevent the
selection of those parameter values that the data happen
to support. In the Bayes factor methodology, any prior
distribution fulfils this purpose, and will therefore produce
the Jeffreys-Lindley paradox. Instead, the FBST ev is based
on an assessment of the posterior distribution, and therefore
lacks the Bayesian correction for cherry-picking. As a
result, the evidence against the null hypothesis is overstated;
moreover, the FBST ev is inconsistent, meaning that the
support for H0 will not increase without bound if the data
accumulate indefinitely and H0 is the true data-generating
model. The FBST ev avoids the Jeffreys-Lindley conflict
between a Bayesian measure of evidence and the p-value,
but this is not something that needs avoiding — quite the
opposite, it is something to embrace.
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In sum, to paraphrase Lindley, we claim that the degree
of conviction is not even approximately the same in two
situations with equal FBST evs. An FBST ev of .05 in
today’s small sample does not mean the same as an FBST
ev of .05 in tomorrow’s large one.

Concluding Comments

The FBST ev provides a Bayesian hypothesis testing
analogue of the frequentist p-value. The FBST ev is easy
to use and it arguably offers several distinct Bayesian
advantages (e.g., the result does not depend on the sampling
plan). However, we believe that the FBST ev falls short
on several counts. As detailed above, the FBST ev cannot
quantify evidence in favor of H0, it is susceptible to
sampling to a foregone conclusion, it violates the principle
of predictive irrelevance, and it suffers from the Jeffreys-
Lindley paradox in the sense that its assessment of evidence
is asymptotically equal to a constant multiple of the standard
error. 4 These limitations are fundamental.

In conclusion, we agree with the statement from de
Bragança Pereira et al. (2008) that the FBST ev is a
“genuine Bayesian measure of evidence” in the sense that
the FBST ev is a genuinely Bayesian procedure; the FBST
ev is not, however, a genuine measure of evidence.
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