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Abstract
Language, like other natural sequences, exhibits statistical dependencies at a wide range of scales as discussed by Lin and
Tegmark (2017). However, many statistical learning models applied to language impose a sampling scale while extracting
statistical structure. For instance, Word2Vec creates vector embeddings by sampling context in a window around each
word, the size of which defines a strong scale; relationships over much larger temporal scales would be invisible to the
algorithm. This paper examines the family of Word2Vec embeddings generated while systematically manipulating the size
of the context window. The primary result is that different linguistic relationships are preferentially encoded at different
scales. Different scales emphasize different syntactic and semantic relations between words, as assessed both by analogical
reasoning tasks in the Google Analogies test set and human similarity rating datasets WordSim–353 and SimLex–999.
Moreover, the neighborhoods of a given word in the embeddings change considerably depending on the scale. These results
suggest that sampling at any individual scale can only identify a subset of the meaningful relationships a word might have,
and point towards the importance of developing scale-free models of semantic meaning.

Keywords Word2Vec · Embedding · Scale · Context · Analogy · Similarity · Relatedness · NLP · Language ·
WordSim353 · SimLex999

Introduction

Information in natural sequences often spans across many
scales. A mixture of many length scales have been seen
to create a power-law decay of long-range correlations
in DNA sequences (Li et al. 1994; Peng et al. 1992;
Mantegna et al. 1994). Compositions from different
composers in Western classical music obey a 1/f α power
law in both musical pitch and rhythm spectra (Levitin
et al. 2012; Roos and Manaris 2007). Such scale-free
behavior has been observed in earthquakes (Abe and Suzuki
2005 ), collective motion of starling flocks (Cavagna
et al. 2010), and neural amplitude fluctuations in the
human brain (Linkenkaer-Hansen et al. 2001). Samples of
natural language also exhibit long-range fractal correlations
(Montemurro and Pury 2002). The mutual information (MI)
between two symbols, for such sequences, have recently
been shown to decay like a power law as well, with the

� Aakash Sarkar
aakash18@bu.edu

1 Department of Psychological and Brain Sciences, Boston
University, Boston, MA 02215, USA

temporal difference between them (Lin and Tegmark 2017)
(see Fig. 1).

Analyses on large-text corpora from diverse sources
have been shown to have long-range structure beyond
the short-range correlations happening at syntactic level
between sentences (Ebeling and Neiman 1995; Ebeling and
Pöschel 1994). Corpora from different languages have been
shown to have a two-scale structure, with the dimension of
semantic spaces at short distances being distinctly smaller
than at long distances (Doxas et al. 2010). Studies on the
statistics of shuffled text corpora seem to confirm this,
where a text corpora shuffled even at the sentence level
loses large-scale structure (Altmann et al. 2012). There
has also been evidence of increased performance of the
BEAGLE model on TOEFL synonym scores when entire
sentences were used as context windows, and significant
variation when the window size was changed (Jones and
Mewhort 2007; Sahlgren et al. 2008). However, many
prevalent statistical learning models which aim to learn such
semantic structure fix a scale when sampling the context
around words. We observe one such class of models called
Word2Vec, which use a vector embedding to study semantic
structure. Word2Vec uses a moving window around each
word to gather context, but the size of the window is a
fixed parameter. In this paper, we systematically change
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Fig. 1 Language has information at many scales. Mutual informa-
tion (MI) between a pair of symbols in different natural sequences
falls slowly as a function of how far they are spaced (Lin and
Tegmark 2017). The MI is a measure of the shared information con-
tent between the two symbols, and this seems to decay roughly as

a power law for natural language. This is contrasted with the sharp
exponential fall seen by a Markov process which has a fixed, prede-
termined scale. The slow decay of MI suggests that information is
contained at a spectrum of different scales, and algorithms sampling
natural language at fixed scales might not be sufficient

the size of sampling context used to train Word2Vec, and
study the information encoded in the resultant embeddings
about the statistical structure of the training text.

Word2Vec and Vector Embeddings

Word2Vec (Mikolov et al. 2013) is a widely used neural
network model which learns a vector representation of
words, called an embedding, by training on large corpora of
text. Word embeddings store a unique vector representation
of each word in the vocabulary in a high-dimensional vector
space—a good embedding would map semantically similar
words onto nearby points onto this vector space. Analyzing
the structure of the embedding should also provide insight
into the relations between words and how they appear in the
source corpus.

Word2Vec is a predictive model which tries to infer a
relationship between a central word, referred to as target,
and its surrounding words, referred to as context. It comes
in two flavors, which use the same algorithm but act
as inverses of each other. The Skip-gram model tries to
predict the context words from the target word, and the
Continuous Bag-of-Words (CBOW) model tries to predict
the target word from the context words around it. In both
cases, the training continuously modifies the embedding
with each target and context set, so that it would maximize
the probability of obtaining one from the other (depending
on the flavor). In this article, we focus on the CBOW variant
and the structure of the embeddings it generates (Figs. 2 and
and 3).

A key aspect of Word2Vec is how the context around
each target word is sampled, as this also introduces a
definite scale into the algorithm. Word2Vec samples a
window of words around the target word wt , stretching out
in both directions (shown in Fig 4). The size of the window
is chosen randomly each for each new target word, but there
is a maximal size β which is usually defined as a fixed
parameter before training commences. It can be shown that
the resultant probability of choosing a neighboring word
wt±k as a context word falls off linearly with the distance k

from the target, vanishing completely at β

p(wt±k) = 1 − k − 1

β

It is interesting to note that both the slope of this
probability distribution and the reach of neighboring words
accessible to it are governed completely by the choice
of parameter β—thus introducing a hard scale in the
mechanics of the model.

The vectors in the Word2Vec embeddings have also been
seen to have some interesting features—vector arithmetic
can often encode mappings of linguistic relations between
the corresponding words. For example, vectors which act as
directions pointing from the source word (eg. man) to the
destination word (woman) for a particular relation, when
then added to a different source word (king), could take it
very near to the intended destination word (queen). This
property of the Word2Vec embeddings could be used to
test how well the embedding encodes different linguistic
relationships, as explored in the next section.
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Fig. 2 Word2Vec samples a set window of neighbors around each
word, introducing a fixed scale. Left: Word2Vec, a commonly used
neural network for analyzing language, categorizes words in a win-
dow of fixed maximum size around a target word as its context words,
thus introducing a set scale. For each word, this generates several
(target, context) training samples (taken from McCormick
2016). Right: Word2Vec maintains an input and output vector repre-
sentation for each word in its vocabulary, which are updated at each

training sample. For example, when it sees the sample (fox,quick)
(labeled 1), it brings the output vector for the context word quick
closer to the input vector for the target word fox, and vice versa,
which it would again do when it sees the sample (fox,agile)
(labeled 2). However, by bringing the output vector for agile closer
to the input vector for fox, it has brought the output vectors for
agile and quick closer to each other, which both co-occur in the
vicinity of the common word fox

Methods

Corpus and Prepossessing

To train Word2Vec, we used the enwik9 corpus (Mahoney
2006), containing preprocessed text from the first 109 bytes
of the Wikipedia dump dated March 3, 2006. Wikipedia was
chosen to provide a rich representation of words coming from
a diverse range of topics. The corpus consists of cleaned-up
sentences which only retain text which would be visible
to a human reader accessing a Wikipedia web page. Only
alphanumeric characters were retained, all numbers were
converted to spelled out text, and hyperlinks were processed
to contain only the description of the link accessible to the
user. After preprocessing, the corpus contained 124 million
tokens with a distinct vocabulary of 1.4 million types.

TrainingWord2Vec

We used the Continuous-Bag-of Words (CBOW) imple-
mentation of Word2Vec, written in C, from Mikolov’s
Word2Vec Github repository (Mikolov 2017). Word2Vec
utilizes a shallow three-layer neural network with one hid-
den layer. It maintains two active vector representations of
each word in its vocabulary, called the “input” representa-
tion vi and the “outer” representation v′

i , encoded in the
weight matrices between the layers. Both of these represen-
tations exist in the higher-dimensional vector space of the
embedding. The hidden layer shares the same dimensional-
ity, which we denote by N .

The CBOW algorithm tries to guess the target word
given the set of context words surrounding that particular
word. For each target word, Word2Vec generates (target,
context) word pairs for every context word around it and

passes each pair onto the neural network for training. Let us
assume that, at a given time, the algorithm is given the pair
(wO, wI ). Word2Vec starts with a one-hot representation
xwI

, corresponding to the input context word wI , as its input
layer. A one-hot vector has dimension V equaling the size
of the vocabulary of the model, and only has a nonzero entry
corresponding to the index of the word (xk = 1 only when
k = I , zero otherwise).

The weight matrix W (dimension V × N) projects from
the input layer onto the hidden layer h. This operation
essentially generates the input vector representation vwI

of
the input word

h = WT xwI
:= vT

wI

The hidden layer then projects through another matrix,
W′ (dimension N × V ), generating a score uk for each
possible output word wk

uk = W′h = v′
wk

· vwI

This effectively computes a dot product of the hidden
layer with the output vector for each word wk in the
vocabulary—representing how closely aligned each output
vector v′

wk
is to the input vector vwI

. A softmax
transformation finally converts this score into a posterior
probability distribution. This becomes the corresponding
entry yk in the output layer of the network

yk = p(wk|wI ) := exp(v′
k · vI )

∑V
m=1 exp(v′

m · vI )

This is Word2Vec’s best guess about the chances of
the word wk being the target word given that the word
wI appeared in its context window. Given that the actual
answer was already known to be wO for the target word, the
error can be computed and the matrices W and W′ (which
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Fig. 3 Different linguistic relations are encoded best at different sam-
pling scales. These graphs show Word2Vec’s performance on the
analogical reasoning tasks by Mikolov et al. (2013), for different lin-
guistic relationships, as a function of β, the scale of context it is
sampling. Analogies in each category test for two word pairs linked
by that relation—for instance, a sample analogy in “capital-world”
would ask, “if France → Paris, does India → Delhi?”. The
embedding is correct if by adding the direction vector for the first
pair, vec(Paris) - vec(France), to the first word of the second pair,

vec(India), we get a closest match to vec(Delhi). The y-axis rep-
resents the fraction of correctly answered analogies for each linguistic
relation. Different relationships show qualitatively different behavior
as the sampling scale is changed. Note that the sampling scale corre-
sponding to maximal performance (shown as βmax in the upper-right
corner) differs across panels, sometimes dramatically (marked with the
blue vertical line, while the position of the “best” scale taken across all
tests is also marked in red)

generates the input and output representations respectively)
can be updated using backpropagation. This ensures that the
input vector for the context word (vwI

) and the output vector

for the actual target word (v′
wO

) move closer to each other,
while all the output vectors not associated with the actual
target word are moved further away from vwI

. At the end of
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Table 1 Chosen values for different parameters used to implement the
Continuous-Bag-of Words training in Word2Vec

Description of parameter Value chosen

Dimensionality of embedding 200

Negative sampling loss (n) 25

Subsampling frequency threshold 10−4

Simultaneous threads running 16

Number of training iterations 30

the training, the space of input vectors v becomes the word
embedding.

Generating Embeddings for Different Sampling Scales

A range of embeddings were generated by systematically
changing the sampling scale from β = 1, 2, 3 . . . 100—
averaging statistics over 10 instances at each scale to increase
consistency. The embeddings were analyzed by using the
gensim package (Řehůřek and Sojka 2010) in Python.

The number of training iterations was increased to 30
to improve consistency of similarity measurements across
embeddings for each sampling scale. The parameters con-
trolling for negative sampling and subsampling frequencies
were left unchanged from the default values listed in the
repository (refer to Table 1).

The results shown in this article are from embeddings
trained with negative sampling. The analysis was also
repeated without the use of negative sampling to alleviate
concerns of dependency of the negative sampling process
on the sampling loss parameter (Johns et al. 2019).
Hierarchical sampling (Morin and Bengio 2005), another
speedup method used in Word2Vec, which expedites

softmax computation with a hierarchical layer that has the
words as leaves, was used instead. The trends analyzed were
seen to be robust to both speedup methods.

Encoding of Linguistic Relationships at Different Scales:
Google Analogies Dataset

To observe how Word2Vec encodes different linguistic
relationships, the analogical reasoning tasks in the Google
Analogies Dataset (Mikolov et al. 2013) were used. We
kept track of whether vector arithmetic can recognize
linguistic maps between two words, for instance, boy
and girl, and connect a different word through the
same map, like son to daughter. For this 4-tuple
{boy,girl,son,daughter}, this was achieved by
generating the direction vector going from boy to girl,
and checking if adding this vector to the vector for son
yields daughter as the closest match. A list of such
4-tuples, analyzing maps from a total of 14 different
syntactic and semantic relations on the 30,000 most frequent
words found in the corpus, was used to compute the
fraction of correct choices for each linguistic relation.
The performance across different relations, as well as the
combined performance, was used to gauge the variability of
performance across different sampling scales.

Semantic Similarity vs Relatedness at Different Scales:
WordSim – 353 and SimLex – 999

To observe how different metrics of word similarity
were captured on an aggregate level in the embeddings,
a comparison was made between how the embeddings
encoded semantic similarity and relatedness. Two words
can often be related, like coffee and cup, but not

Fig. 4 Semantic similarity and relatedness require different sampling
scales. The correlation scores of Word2Vec embeddings with human
similarity datasets WordSim–353, quantifying relatedness (Left) and
SimLex–999 quantifying semantic similarity (Right), as a function of
scale. The y-axis represents the mean Spearman’s coefficient (rs ) for
each dataset at that sampling scale (β). The scale of highest correlation

for each dataset is marked in red, and labeled in the upper-right corner.
Note that correlation scores with SimLex, which measures semantic
similarity independent of association, decline consistently as the scale
is increased, while the correlation with WordSim, which measures
more general association or relatedness between word pairs, benefits
greatly from larger sampling scales
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semantically similar, like cup and mug. Semantically
similar words can be interchanged within a sentence
and still remain meaningful, while interchanging related
words could produce “sentences that often cannot be taken
literally” (Lund 1995).

The embeddings were benchmarked with two different
human similarity rating datasets to capture this distinction.
WordSim–353 (Finkelstein et al. 2001), a benchmark which
can measure word relatedness and association (Gabrilovich
and Markovitch 2007), consists of 353 word pairs with
human participants rating the word pairs on a scale from 0
(totally unrelated) to 10 (very related). SimLex–999 (Hill
et al. 2015), on the contrary, was created to explicitly
quantify semantic similarity independent of relatedness or
association. It consists of 999 word pairs, generated with
guidelines to prioritize synonymy in contrast to association.

To compare the similarity datasets with the cosine
similarity of the embeddings, their Spearman correlation
is computed as a function of the sampling scale. At each
sampling scale, the mean correlation and inter-quartile
range is calculated by analyzing 10 generated embeddings
at that scale β, and repeated for the entire spectrum of
sampling scales used.

CapturingWord Neighborhoods at Different Scales

The scale dependence of the embeddings was next examined
at a more local level by studying the neighborhood
surrounding different word vectors. To look at a diverse set
of words, we used the 100 words most frequently used in
English, from an analysis on the Oxford corpus (Oxford
English Corpus 2011). The top ten words most similar
to the central word are chosen in the embeddings trained
at sample scales 1, 10, and 100, respectively, with the
search constrained to the 10000 most frequent words in
the vocabulary. The most similar words were ranked by
cosine similarity to the vector for the central word, and was
captured using the similarity function in gensim. These
words were then combined to get the set of neighbors for
each word, and the cosine similarity of these with the central
words was examined as a function of scale.

Each curve sim(w, wi) corresponds to the cosine
similarity of neighbor wi with the central word w, as
a function of the sampling scale β. An analysis of
these similarity curves can help visualize the changing
neighborhood of each central word. The similarity curves
of different neighbors can change differently, and this can
point towards the inter-relationships between them. For
instance, the similarity scores of all neighbors can shift
simultaneously with the sampling scale. These monotonic
shifts can be contrasted with more immediate changes
between neighbors, where the ordinal relationship between

pairs, or groups, of neighbors change. Changes like the latter
could be indicative of a change in the local semantic space.

Neighbor Statistics of Different Words at Different Scales

The last section looked at the effect of sampling scale on the
neighborhoods of word vectors. In this section, this effect
is analyzed systematically for a larger set of neighbors for
different central words. Each neighbor wi is characterized
by the scale where its vector comes closest to the word
vector of the central word w. Cosine similarity is used as
the measure of distance between the two vectors, which is
computed using the similarity function in gensim.
Therefore, for each neighbor wi , we had a corresponding
scale βi at which similarity(w, wi) is maximized.

The set of neighbors is chosen in similar fashion to the
last section, but in a more exhaustive way, by combining
N = 100 most similar words to the central word at each
scale. The analysis was also repeated for N = 5, 10, 20, 50
to see if the distribution of neighbor similarity scores shows
robust trends.

For each central word w, there is thus a distribution of
sampling scales corresponding to the peak similarity scores
between each neighbor and the central word. A histogram
of this distribution yields the number of neighbors which
reached a peak similarity score at any given sampling scale.
Therefore, for each central word, a characteristic curve
can be generated as a function of scale, quantifying the
distribution of neighbors which would attain the closest
similarity to the central word at that particular sampling
scale.

Results

We can now examine the effect of the size of sampling
context on the structure of semantic space learned by
Word2Vec. First, we present the results of assessing the
embeddings using analogical reasoning tasks from the
Google Analogies test set and examine how scale affects the
performance of different linguistic relationships. We then
see how well the cosine similarity values of the embeddings
are aligned with human similarity benchmarks WordSim–
353 and SimLex–999 as the sampling scale is varied. We
then move from assessing the embeddings on a global
level to looking at the individual neighborhoods of word
vectors, and assess if the structure of the local semantic
space itself is changing, or if the changes are purely
systematic. Each neighbor is characterized by a sampling
scale where it achieves maximum similarity with the central
word. We then look at the distribution of sampling scales
corresponding to peak similarity for neighborhoods of
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different words, and if there is a central scale around which
they are clustered.

Different Relationships at Different Scales

Mikolov et al. (2013) had showed that vector arithmetic
in Word2Vec could encode linguistic relationships—adding
a direction vector going from vec(France) - vec(Paris),
to vec(Germany) can take us very close to vec(Berlin).
To explore whether the efficiency of such encoding
was influenced by the sampling scale, we computed the
accuracy of the embeddings in answering a set of such 4-
vector analogical reasoning tasks for 14 different linguistic
relations, as a function of the sampling scale of the
embedding (see Fig. 3)

Figure 3 suggests that the different tests have different
sensitivity to scale. There seem to be a number of
relations (e.g., “gram4-superlative,” “currency,” “family”) for
which peak accuracy is reached at fairly low scales,
decaying rapidly after. These are contrasted with some other
relations (e.g., “gram1-adjective-to-adverb,” “gram6-nationality-
adjective,” “city-in-state”) which reach peak accuracy slowly
and at increasingly higher scales. There is quite a bit of
variability that is seen in the scale for where the best
accuracy scores are reached—ranging from β = 2 for
“gram4-superlative” to β = 35 for “city-in-state,” with quite a
few clustered towards the higher end of the spectrum.

If the relationships being measured were all best encoded
at a single scale, it would be easy to describe the
accuracy scores as a function of scale with a common
function. However, accuracy for some measures decreases
monotonically while for others accuracy reaches a peak
at an intermediate scale. Moreover, the scale at which the
different measures peak appears to be different across the
measures.

Similarity and Relatedness Best Expressed
at Different Scales

The distinction between word similarity and relatedness
is reminiscent of the dichotomy between syntagmatic vs
paradigmatic associations (de Saussure 1916; Rapp 2002).
Paradigmatic associations hinge on word interchangeability
in similar context, and can be used to detect semantic simi-
larity (Kliegr and Zamazal 2018). Syntagmatic associations,
on the other hand, look at words which co-occur together
in sentences (Sahlgren 2006), capturing a broader sense of
word association or relatedness.

In Fig. 4, we look at the Spearman correlation scores of
similarity values of the word embeddings correlated with
the human similarity datasets WordSim–353 (relatedness)
and SimLex–999 (similarity), as a function of sampling
scale. The scale dependence of these two measures was

qualitatively different. The correlation with WordSim starts
out at its lowest value, and climbs around 16% as the scale
is increased to peak to rs = 0.725 ± 0.001 at β = 24
(with the inter-quartile variability between the scores of 10
embeddings at that scale). The correlation seems to stay
stable at higher scales with only slight drops in value. In
contrast, the correlation scores for SimLex seem to decline
almost monotonically (by around 11% from its peak to the
lowest, although it is difficult to see with this choice of
axes), with a peak of around rs = 0.379 ± 0.002 at β = 4.

Sampling a larger context has complementary effects for
the correlation scores of the two datasets. WordSim, which
measures relatedness between word pairs, tends to benefit
greatly from having larger window sizes, while SimLex,
which aims to measure semantic similarity independent of
association, seems to best align with the embeddings at
the smallest scales. This runs counter to the expectation
of a single scale being able to capture both these metrics
effectively.

This suggests that relatedness, like syntagmatic associa-
tions, might need larger sampling scales to effectively cap-
ture the gamut of co-occurrences of word pairs in sentences,
while semantic similarity, like paradigmatic associations, is
a more restrictive measure which might be less effective at
larger scales as other related words in the sentence could
also get associated with the target word.

Different Neighborhoods at Different Scales

We now look at the neighbors of certain words and how
the ordering of neighbors changes as the size of the
context sampled was varied, which is shown in Fig 5. The
neighbors shown in the graphs are picked by combining
the top ten most similar words to each central word at
scales β = 1, 10, 100, to show changing neighborhoods at
different scales. The central words come from the 100 most
frequent words in the Oxford corpus, of which the first four
nouns, verbs, and adjectives are shown in the figure (for
neighborhoods of the rest see the Supporting Information).

There seems to be both qualitative variability and quan-
titative variability among the similarity curves. Neighbors
of a central word achieve maximum similarity with the cen-
tral word at very different sampling scales. There is often
clustering of neighbors when they appear in similar con-
texts. There is a heterogeneity of shapes observed in the
similarity curves which would be difficult to explain if we
assumed that all the curves have similar scale dependence.
It would be difficult to capture these intricate trends of
behavior by sampling the text at any single, fixed scale.

If the representation was not sensitive to different
information at different scales, we would expect all of the
curves—for all seed words—to exhibit the same form of
scale dependence. Visually, this would manifest as curves
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Fig. 5 Relations between words change as a function of scale. The
plots show the variation of cosine similarity of neighbors around differ-
ent central words with the sampling scale (β) of the embedding, for the
four most frequent nouns (left), verbs (middle), and adjectives (right)
in the Oxford corpus. The neighbors are chosen by pooling together the

words most similar to the central word, at scales β = 1, 10, 100. The
similarity curves for different words are seen to cross over at certain
scales, which changes the rank ordering of neighbors itself—implying
that the shape of the semantic space depends on the scale that we
choose
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Fig. 6 Neighbors of words show peak similarity at a wide range of
scales. The graphs show the normalized fraction of neighbors, of each
central word, which attain maximal similarity with the central word
at a particular sampling scale (β). The histograms are shown for the

seven most frequent nouns (left), verbs (middle), and adjectives (right)
in the Oxford corpus. The distributions are not centered around any one
scale—the number of neighbors falls off slowly as the scale is varied,
with a sizeable fraction of neighbors peaking even at high scales
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with similar qualitative shapes. However, the semantic
space around a word itself also seems to change as the
sampling scale is varied. In each graph, there are multiple
instances where the similarity curves intersect, and in many
cases different words intersect at different scales. This
means that the neighborhood around the seed word changes
meaningfully depending on the scale the text is sampled.

Peak Similarity for Neighbors Distributed at Many
Different Scales

In the last section, we found that being a neighbor of a
central word is a dynamic concept—a word that might be
in the top 5 surrounding words at a smaller scale might
move to a much more distant position at a larger sampling
scale. Each neighbor thus has a range of scales where it is
at its closest to the central word. Here, a more systematic
analyses of the neighbors are shown, by taking 100 most
similar words to the central word at each sampling scale
from 1 to 100, and combined to yield the set of neighbors.
Choosing a smaller set of similar words did not introduce
any qualitative changes in the distributions.

In Fig. 6, neighbors are characterized by the scale
at which it came closest to the central word w - each
neighbor wi has a corresponding sampling scale βi which
corresponded to a maxima in similarity (w, wi). We
therefore have a distribution of such sampling scales
for each central word, some of which are shown as
histograms in Fig 6 (graphs for the rest appear in the
Supporting Information). The graphs show the fraction of
all the neighbors of each central word which reach a peak
similarity score at any given sampling scale.

If language did not carry information about meaning
at a range of scales, we might expect the results from
this analysis to look quite different. If information about
meaning was preferentially carried by a single scale for all
words, we would expect these graphs to cluster around this
scale, with random fluctuations. In contrast, the results show
a heterogeneity in the dependence on scales. Some words
peak sharply around a scale of one (e.g., TIME) whereas
others show a longer tail (e.g., MAN). Other words do not
decrease monotonically but show a second peak at higher
scales (e.g., LONG). The Supporting Information shows
many more examples.

Discussion

We have shown that the size of context while training
Word2Vec can substantially change the properties of the
resultant embedding. It is seen that to capture the semantic
structure of different linguistic relationships, context has to
be captured at a wide spectrum of scales. Because different

forms of information are carried at different scales, the
performance of a language model depends on its sensitivity
to scale. One can classify extant language models based on
how they treat information at different timescales.

Language Models with a Single, Fixed Scale

Many contemporary language models sample context at
fixed scales. For instance, the introduction of self-attention
mechanisms in the Transformer architecture (Vaswani et al.
2017) allowed it to look at the relationships between words
and model long-term dependencies without the need for
recurrent units or convolution. However, the algorithm
trains on fixed-length segments of text, and the self-
attention looks at the contribution of all words within this
fragment to decipher the meaning of each word. This still
constrains the architecture to a fixed scale of context. It
also introduces the problem of context fragmentation (Dai
et al. 2019), as the fragments scoop up a fixed length
of symbols without consideration of sentence structure or
semantics. Thus, the model remains completely unaware of
the context present in the previous segments when it trains
on the current segment, limiting its efficiency in looking at
the large-scale contexts present in the text. Transformers are
used as building blocks in many state-of-the-art language
modeling architectures like BERT (Devlin et al. 2018) from
Google and GPT from OpenAI (Radford et al. 2018).

The use of a fixed scale is seen also in older distributional
models like latent semantic analysis (LSA) and the topic
model (Griffiths et al. 2007; Landauer and Dumais 1997),
which work with co-occurrence of words inside larger
structures of text (documents). In LSA, the size of the
document is chosen a priori (the default choice being 300
words), thus setting a fixed scale. The topic model is
generative, as it tries to infer the distribution of words
in each topic (a probability distribution over words) and
distribution of topics in each document which would best
account for the semantic structure in the source text.
One still has to choose the number of topics beforehand,
however, thus enforcing a scale.

An effective scale is also seen in the syntagmatic-
paradigmatic model (SP, Dennis 2004; 2005), which tries
to extract structure from text by simultaneously keeping
track of syntagmatic and paradigmatic associations between
words. Syntagmatic associations are formed between words
that occur together, like run and fast, as opposed
to paradigmatic associations, which form between words
which appear in similar context, like run and walk. The
model keeps track of these by maintaining memory traces
which evaluates and stores different kinds of associations
between words. However, these connections are computed
between words within sentence-sized chunks, which sets a
scale.
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A fixed scale buffer has also carried over to moving
window models like Word2Vec, and other vector embedding
models like GloVe (global vectors for word representation,
Pennington et al. 2014). Although the GloVe vectors are
constructed to marry the best of both these worlds by
calculating the co-occurrence matrix of a word around the
context window of another word, choosing the size of the
context window still sets a scale.

Language Models that Learn Relevant Timescales

Other contemporary language models do not a priori fix a
scale, but nonetheless have a set of scales that are learned
via training.

In recurrent neural networks (Elman 1990; Lawrence
et al. 2000; Mikolov et al. 2010; Yao et al. 2013), the hidden
state at a given time is computed as a function of both the
input at that step and the hidden state for the preceding
time step. This allows the network to learn dependencies
technically without a fixed timescale (Alpay et al. 2016).
It can be shown that a RNN learns the relevant timescales
it needs to maintain by updating the eigenvalues of the
weight matrix connecting the hidden states corresponding
to sequential time steps. However, focusing on learning
dependencies on only some preferred timescales, even if not
fixed, could lead a recurrent network to ignore information
at other timescales which could be essential in learning the
causal structure of the input data. Training RNNs to learn
long-term dependencies using standard gradient descent
has also been shown to get increasingly difficult as the
timescales to be captured become longer (Bengio et al.
1993; Bengio et al. 1994).

Long-short memory (LSTM) networks (Schmidhuber
and Hochreiter 1997) were introduced to tackle both
the vanishing and exploding gradient problem in RNNs
(Hochreiter et al. 2001) and efficiently learn long-range
dependencies (Hochreiter and Schmidhuber 1997). They
have been successful in learning structure in language
modeling (Sundermeyer et al. 2012; Wang and Jiang
2015; Sundermeyer et al. 2015) and has shown strong
performance in benchmarks (Graves 2012; Gers et al. 1999;
Greff et al. 2016). However, LSTMs can still suffer from
exploding gradients (Pascanu et al. 2012; Le and Zuidema
2016; Grosse 2017). LSTMs have also been shown to
empirically use 200 context words on average regardless
of the hyperparameters chosen, and start to disregard word
order significantly after the first 50 tokens (Khandelwal
et al. 2018). More recent language modeling architectures
like Ulm-Fit (Howard and Ruder 2018) and contextualized
word representations like ELMo (Peters et al. 2018) also
use LSTM units as their building blocks, implying that
they could also suffer from a effective maximal size of
context.

Towards Scale-Invariant Language Models

We have seen that the statistical structure of language
simultaneously carries different forms of information at
different scales. However, many state-of-the-art language
models still address timescales as either a fixed buffer
storing context, or attempt at learning relevant timescales
as it parses through text. There has been recent efforts to
combine features from both these classes (Dai et al. 2019),
but the entire spectrum of timescales contained in the data
are still not treated equivalently.

Language models with fixed scale inherit this idea from
short-term memory models from mid-twentieth century
psychology. George Miller’s influential paper (Miller 1956)
argued the result that we can store “seven plus-or-minus
two” simultaneous items of information in short-term
memory. The idea of short-term memory as a fixed buffer
store existing independently and separately from long-term
memory was further developed in the dual-store model
(Atkinson and Shiffrin 1968). This classical view of short-
term memory acting as fixed-capacity buffer in turn led to
early computational models like HAL and BEAGLE (Jones
and Mewhort 2007; Lund et al. 1996) which featured a
moving window which gathered context around a target
word, a feature still used in many contemporary language
models.

In the intervening decades, ideas in psychology and neu-
roscience have evolved towards a scale-invariant working
memory (Balsam and Gallistel 2009; Chater and Brown
2008; Gibbon 1977). Biological neural networks exhibit
a wide range of timescales and carry information about
many different scales, including systematic changes at the
scale of seconds, minutes, hours, and even days. (Bernac-
chia et al. 2011; Mau et al. 2018; Rubin et al. 2015; Cai
et al. 2016; Bright et al. 2019). Neuronal ensembles have
been seen to fire at increasing latencies following a stim-
ulus with a gradually increasing firing spread (Pastalkova
et al. 2008; Eichenbaum 2014; Salz et al. 2016). These time
cells behave like a short-term memory, retaining informa-
tion not only about the timing but also the identity of the
stimulus (Tiganj et al. 2018; Cruzado et al. 2018), on have a
spectrum of timescales. It is possible to build cognitive mod-
els from scale-invariant time cells that describe behavior,
underscoring the usefulness of a scale-invariant represen-
tation of temporal history in models of cognition (Howard
et al. 2015).

How would one incorporate these insights into a
new generation of language models? It seems like a
new generation of language models employing scale-free
buffers (Shankar and Howard 2013), which can store
information from exponentially long timescales at the
cost of discounting temporal accuracy, might be able to
learn structure simultaneously from different scales of
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context. Such a model would not have to direct attention
only to a fixed subset of scales, either predetermined
or learned, but would be able to attend equally to the
entire spectrum of observed timescales, extracting useful
predictive information about scale-dependent relationships
in natural language.

Conclusion

In this work, we have investigated how the scale of sampling
context around each word changes the structure of semantic
space learned by Word2Vec. It is seen that different
relationships can have markedly different performances at
different scales and they seem to be best encoded at a
large spectrum of sampling scales. Looking at the individual
neighborhoods of word vectors, we find that the local
semantic space around words seems to change qualitatively
and that the ordering of neighbors around a word can
be drastically different based on the scale that context is
sampled. We also find that a sizeable fraction of neighbors
of a central word can come closest to it even in embeddings
sampling context at considerably large scales. The statistics
of such maximal scales does not seem to be peaked at any
central scale but rather seem to follow a slowly decaying
distribution as the sampling scales are increased. These
results seem to indicate that there is not a preferred scale
to study language—there is different information about the
structure of the semantic space at different scales, which
would be better analyzed by scale-invariant models of
statistical learning.
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