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Abstract
Many successful formal models of human categorization have been developed, but these models have been tested almost
exclusively using artificial categories, because deriving psychological representations of large sets of natural stimuli using
traditional methods such as multidimensional scaling (MDS) has been an intractable task. Here, we propose a novel integration
in which MDS representations are used to train deep convolutional neural networks (CNNs) to automatically derive psycholog-
ical representations for unlimited numbers of natural stimuli. In an example application, we train an ensemble of CNNs to
produce the MDS coordinates of images of rocks, and we show that the ensemble can predict the MDS coordinates of new sets
of rocks, even those not part of the original MDS space. We then show that the CNN-predicted MDS representations, unlike off-
the-shelf CNN representations, can be used in conjunction with a formal psychological model to predict human categorization
behavior.We further show that the CNNs can be trained to produce additional dimensions that extend the originalMDS space and
provide even better model fits to human category-learning data. Our integratedmethod provides a promising approach that can be
instrumental in allowing researchers to extend traditional psychological-scaling and category-learning models to the complex,
high-dimensional domains that exist in the natural world.
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Introduction

Cognitive psychologists have proposed many formal models
of human categorization (see Pothos and Wills 2011 for a
review). These models have been successful at quantitatively
predicting human behavior, but they have been tested almost
exclusively using artificial categories composed of simple
stimuli with small numbers of perceptual features. The use
of such stimuli is convenient for modeling purposes because
it is straightforward to derive psychological representations
that can be used as input to the models (e.g., geometric forms
can be represented in terms of shape, size, and color). Natural
stimuli, on the other hand, may be composed of large numbers
of complex psychological dimensions that cannot be so easily
described or quantified. In addition, whereas research involv-
ing learning of artificial category structures typically involves

the use of categories composed of relatively small numbers of
items, categories in the natural world are composed of limit-
less numbers of items.

In the present work, we present initial research aimed at the
development of a method that makes tractable the derivation
of high-dimensional psychological scaling solutions for un-
limited numbers of stimuli from complex, natural-category
domains. The method involves a novel integration of tradi-
tional psychological scaling techniques and deep-learning net-
works. As described below, we illustrate the method in the
domain of rock classification in the geologic sciences, al-
though we believe that the general method should be applica-
ble across wide varieties of naturalistic domains. Hence, the
proposedmethod has the potential to significantly advance the
testing and domains of application of computational models of
cognition and behavior.

In recent work, Nosofsky, Sanders, and colleagues have
applied categorization models to the problem of rock classifi-
cation in the geological sciences (Nosofsky et al. 2017;
Nosofsky et al. 2018a, 2018b; Nosofsky et al. 2018c;
Nosofsky et al. 2019b). As seems to be true of almost all
natural categories (Barsalou 1985; Rosch 1973), major types
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of rock categories appear to have graded structures, with pro-
totypical members at their centers, but with numerous less
typical members as well. Thus, individual samples of the same
type of rock often display remarkable within-category vari-
ability. In addition, the boundary lines separating contrasting
rock categories from one another are often fuzzy, and the
category distributions can sometimes even overlap. Finally,
the rock categories are embedded in complex, high-
dimensional feature spaces, and correct classification requires
integrating information across these multiple dimensions. In
the senses described above, rock categorization appears to be
both a challenging and representative example of the forms of
category learning that may operate in the natural world.
Another advantage of conducting research in this domain is
that relatively few people have detailed prior knowledge of the
structure of rock categories in the geologic sciences; hence,
the training history of category learning in this domain can be
placed under careful experimental control in the laboratory.

To apply innumerable formal models of human classifica-
tion learning in this and other natural-category domains, one
needs to derive psychological representations of the stimuli,
which are used as input to the models. In their initial studies,
Nosofsky et al. (2018b, 2018c) used traditional multidimen-
sional scaling (MDS; Lee 2001; Shepard 1980) procedures to
derive these psychological representations. In brief, in typical
MDS procedures, similarity judgments are collected for pairs
of stimuli, and then the stimuli are placed in a feature space
such that similar items are close together and dissimilar items
are far apart. The dimensions that result from application of
the procedure can then be interpreted and used as inputs to
categorization models (for related examples of the procedure
involving both naturalistic and semantic stimuli, see, e.g.,
Jones and Goldstone 2013; Roads and Mozer 2017;
Voorspoels et al. 2008). Nosofsky et al. (2018c) conducted
MDS analyses using a collection of 360 rocks from 30 major
categories and found that the derived dimensions had sensible
psychological interpretations, such as lightness of color and
average grain size. Moreover, when used in combination with
a well-known formal model of human categorization, these
dimensions could be used to provide reasonably good quanti-
tative accounts of performance in a variety of different
category-learning experiments involving the rock stimuli
(Nosofsky et al. 2018a, 2018b, 2019a).

Despite these initial successes, the MDS approach has
some significant limitations. One of the most important limi-
tations is a practical one: Deriving MDS representations of
large numbers of stimuli requires an enormous amount of
data. As the number of stimuli n grows larger, the use of the
traditional psychological-scaling techniques for deriving
MDS representations becomes intractable. In general, for n
stimuli, there are n(n − 1)/2 data cells in the lower triangle of
a symmetric similarity-judgment matrix. Nosofsky et al.’s
studies involving the 360 rocks therefore required obtaining

data to fill 64,620 such data cells—and to obtain reliable data,
numerous observations are required for each cell of the matrix.
(Collecting this much data was actually so time- and resource-
prohibitive, that the MDS space of Nosofsky et al. 2018c was
ultimately derived from a similarity matrix where most cells
were based on only one or two observations, and many cells
were left completely empty.) If n = 1000, the number of cells
rises to 499,500 and so on. Ultimately, a researcher may be
interested in embedding an essentially unlimited number of
objects from natural-category domains in high-dimensional
scaling solutions, so any hope of using the traditional
psychological-scaling method must be abandoned, even if
one applies efficient adaptive routines to the collection of the
similarity data (e.g., Roads and Mozer 2019; Tamuz et al.
2011). Although the specific example discussed above in-
volved rock classification and similarity, it is clear that the
same problem exists regardless of the natural-category domain
under study.

The aim of the present work is to initiate the development
of a technique that allows for the derivation of high-
dimensional scaling solutions for unlimited numbers of
natural-object stimuli. As explained in detail below, the idea
is to combine the use of traditional psychological-scaling
methods with the use of modern deep-learning technology
and convolutional neural networks (CNNs, e.g., LeCun et al.
2015). In recent work, other researchers have also made use of
deep-learning networks as an approach to deriving psycholog-
ical feature representations for natural objects; as will be seen,
however, our proposed approach is significantly different in
its underlying spirit and may have some major advantages.

Perhaps the major current approach to deriving feature rep-
resentations for large numbers of naturalistic stimuli is to start
with “off-the-shelf” deep-learning CNNs, which have been
trained to classify thousands of images from natural catego-
ries. Such CNNs learn representations of data in a hierarchical
fashion inspired by the visual cortex and have been shown to
spontaneously extract fundamental characteristics associated
with perceptual and cognitive processing of natural objects
(e.g., Nasr et al. 2019). These representations have been show
to generalize to a wide variety of new computer vision tasks
(Razavian et al. 2014). Such findings motivate the idea of
treating the hidden-layer activations of the CNNs as candi-
dates for the underlying psychological representations of the
stimuli. Researchers have found, for example, that, once one
makes allowance for certain mathematical transformations,
CNN hidden-layer activations can be used to predict people’s
typicality ratings for objects from natural categories (Lake
et al. 2015) and similarity judgments for natural objects
(Peterson et al. 2018), as well as patterns of neural activity
related to object categorization (e.g., Bashivan et al. 2019;
Guest and Love 2017; Khaligh-Razavi and Kriegeskorte
2014; Yamins et al. 2014). These findings suggest that off-
the-shelf CNNs may provide a ready source of representations
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that could be used as input to models of human categorization,
an idea pursued with some success, for example, by Battleday
et al. (2017, 2019) and Holmes et al. (2019).

Despite these promising results, however, there are reasons
to be skeptical of the extent to which off-the-shelf CNN rep-
resentations really mirror psychological representations.
Some researchers have found strong qualitative differences
between CNNs’ and people’s responses in visual search and
categorization tasks (e.g., Eckstein et al. 2017; Geirhos et al.
2017; Jacobs and Bates 2019; Rajalingham et al. 2018), and it
is well-known that CNNs may confidently classify two im-
ages that appear identical to the human eye into completely
different categories (Szegedy et al. 2013). Such results suggest
that CNNs and humans may make use of different sets of
representations. Although these issues are a source of continu-
ing debate (e.g., see Elsayed et al. 2018; Zhou and Firestone
2019), it is fair to say that the extent to which the learning and
representational processes embedded in CNNs capture those
of humans remains an open question.

Therefore, in our present work, rather than relying on the
hidden-layer activations of CNNS as a source of psychologi-
cal representations, we propose and begin the exploration of a
complementary, alternative approach. The approach involves
a novel integration of classic MDS methods and CNN tech-
nology. In our proposed approach, we do not treat CNNs as
psychological models. Instead, we treat them as pure
machine-learning models1 and train them to produce the
MDS coordinates of stimuli obtained in separate psychologi-
cal scaling studies. Specifically, we are proposing a two-stage
procedure. The first stage involves the typical hard work that
is involved in using traditional psychological-scaling methods
for deriving MDS representations for objects. Rather than
scaling the entire domain of objects, however, in this first
stage, one obtains a psychological scaling solution for only a
representative subset of the domain of objects under study.
The second stage then involves training CNNs to reproduce
this psychologically derived scaling solution. If successful,
then the method allows one to automate the embedding of
an unlimited number of remaining objects from the domain
into the derived psychological-scaling solution, thereby turn-
ing what was an intractable task into a manageable one.

The specific idea for the training of the CNNs is illustrated
schematically in Fig. 1.We start by using CNNs that have been
pretrained on thousands of natural images. Such networks pro-
vide powerful tools for extraction of fundamental elementary
features that compose enormous varieties of natural images.
We then attach to the final pooling layer of such CNNs a
new set of fully connected layers to enable a form of transfer
learning (see next section for details). Rather than training

these networks to predict the category membership of visually
presented natural objects (the standard approach that is current-
ly used in the field), however, we instead train them to predict
the MDS coordinates of those natural objects obtained from
separate similarity-scaling studies (i.e., the similarity-scaling
studies conducted during the first stage of the proposed meth-
od). The idea is that by using appropriate forms of training, the
networks may generalize gracefully to produce the MDS coor-
dinates of new stimuli as well. Thus, the networks could be
used to automatically derive the psychological representations
(MDS coordinates) of an unlimited number of objects from
natural-category domains. In the examples in the present work,
we train CNNs to take images of rocks as input and produce
their psychological MDS coordinates as output. We then test
whether the derived psychological representations can be used
in combination with formal models to predict human category
learning in independent experiments.

The use of connectionist networks as a means for extracting
MDS representations has been proposed previously (e.g.,
Rumelhart and Todd 1993; Steyvers and Busey 2000)—again,
however, there is a major conceptual distinction between our
current approach and the past connectionist approaches. For
example, Rumelhart and Todd (1993) showed that a shallow
network could be used to extract representations of Morse
codes. Their network took pairs of codes as input, and the codes
were transformed into hidden-layer representations using two
identical subnetworks. Similarities could then be computed
from the learned representations using hard-coded computa-
tions, such as calculating the Euclidean distance between them.
(Such networks are often called “Siamese” networks; see
Bromley et al. 1994 and Chopra et al. 2005 for applications to
signature and facial recognition, respectively.) Rumelhart and
Todd found that after training such a network using similarity
judgments collected from humans, the network’s hidden layers
represented theMorse codes in terms of their length and wheth-
er they were made of mostly dots or dashes. Precisely, the same
dimensions for these stimuli have been uncovered using tradi-
tional MDS methods (e.g., see Kruskal and Wish 1978).
Moreover, these representations generalized to stimuli from
the same domain that the network was not trained on.

Although conceptually similar to our approach, Rumelhart
and Todd’s (1993) approach (as well as a related approach
proposed by Steyvers and Busey 2000) differs in that they
did not train the network to directly produceMDS dimensions;
rather, they had the network indirectly learn psychological rep-
resentations by training it to produce human similarity judg-
ments. The Rumelhard–Todd and Steyvers–Busey approaches
may initially seem more natural than the one we propose, be-
cause the MDS dimensions are not “ground truth” values, but
are instead derived from the similarity judgments. Indeed, we
leave open the possibility that the approaches initiated by re-
searchers such as Rumelhart and Todd (1993) and Steyvers
and Busey (2000) may prove to be preferable to our own.

1 By a “pure machine-learning model,” we mean that we are concerned only
with the outputs that the CNNs produce, regardless of whether or not those
outputs are achieved through human-like learning.
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However, a potentially major advantage of our proposed
approach is that it is directly extensible to other psychological
dimensions not revealed by traditional similarity-scaling
methods. For example, our rock classification studies have pro-
vided clear evidence that various psychological dimensions be-
come highly salient in the context of the category-learning tasks
themselves, but that these same dimensions may be completely
ignored in the context of generic similarity-judgment tasks
(Nosofsky et al. 2019a, 2019b). The reason seems to be that
the dimensions are subtle ones, but they provide highly diag-
nostic cues for category membership (we provide specific ex-
amples later in our article). The phenomenon is closely related
to the “feature-creation-and-discovery” ideas advanced by other
researchers (e.g., Austerweil and Griffiths 2011, 2013; Schyns
et al. 1998), in which new psychological features are created in
the service of categorization. The important point here is that
such dimensions are often not revealed by traditional similarity-
scaling-basedMDS studies; thus, it is not clear how approaches
such as the ones suggested by Rumelhart and Todd (1993) and
Steyvers and Busey (2000) would accommodate them. By con-
trast, as will be seen in our approach, it is straightforward to
train CNNs to recognize these “missing” dimensions by man-
ually adding them to the vectors ofMDS-derived values that are
used to train the networks.

In the remainder of this article, we describe how we trained
CNNs to produce the MDS coordinates of the rocks from the
data set of Nosofsky et al. (2018c), and we assess how well the
CNNs are able to generalize these representations to both a
held-out test set from within the original MDS space and to a
set of completely new rocks outside the original MDS space.
We then describe a new categorization experiment we conduct-
ed to assess whether the CNN-predicted MDS representations
could be used in conjunction with a formal model of human
categorization to predict the classification-learning data. We
compare fits using the CNN-predicted MDS representations,
the actual MDS representations, and off-the-shelf CNN repre-
sentations as input to the model. Finally, we then explore if we
can improvemodel fits to the behavioral data by supplementing
the MDS space with additional sets of “missing” dimensions,

andwe assess the extent to which CNNs can learn thesemissing
dimensions. Materials, code, and data from this article can be
found in an online repository: https://osf.io/efjmq/.

Deep Learning Procedure

The goal of our deep learning procedure was to train CNNs
that could take images of rocks as input and produce their
MDS coordinates as output. Once the initial training is com-
pleted, the CCNs can be used to automatically generate psy-
chological representations of infinite numbers of rocks. In this
section, we provide an overview of the specific data set, CNN
architecture, and training procedure that we used. Additional
technical details can be found in Appendix 1.

Data Set

We made use of the data set of Nosofsky et al. (2018c), which
consists of 360 images of rocks belonging to the three high-level
categories of igneous, metamorphic, and sedimentary, with 10
subtypes within each high-level category, and 12 individual
tokens within each subtype. The exact subtypes used in this data
set can be found in Table 1. These subtypes are representative of
those found in introductory college-level geology textbooks.

The data set also contains the values of each of the 360
rock-token images along 8 psychological dimensions, derived
usingMDS. TheMDS procedures have been described exten-
sively in previous articles (Nosofsky et al. 2018c, 2019a). In
brief, participants provided similarity judgments between
pairs of randomly selected rock images from the 360-item
set. (Across two studies, there was a total of 198,555 pairwise
similarity-judgment trials.) Initial MDS configurations were
derived using nonmetric MDS procedures (Kruskal and
Wish 1978) applied to the resulting 360 × 360 matrix of hu-
man similarity judgments among the rock images. Using the
nonmetric solutions as starting configurations, a maximum-
likelihood solution was derived using additional parameter-
search routines. To improve interpretability, the maximum-

Fig. 1 Schematic illustration of
our deep-learning approach. We
start with a network pretrained to
classify enormous numbers of
images of objects from natural
categories. We then append a new
set of layers onto the network and
retrain it to take images of rocks
as input and produce their MDS
coordinates as output
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likelihood solution was then rotated to achieve correspon-
dence with sets of independent dimension-ratings data of the
rock images obtained from other participants. The final solu-
tion and its dimensionality were chosen based on a combina-
tion of penalty-corrected maximum-likelihood fit (Lee 2001)
and interpretability of the resulting dimensions.

The derived dimensions can be visualized interactively on-
line: https://craasand.shinyapps.io/Rocks_Data_Explorer/.
The first 6 dimensions are clearly interpretable in terms of
lightness of color, average grain size, roughness, shininess,
organization (rocks composed of organized layers vs.
fragments haphazardly glued together), and chromaticity
(warm/vivid colors vs. cool/dull colors). The interpretation
of dimension 7 is not quite as clear-cut as the rest and likely
reflects an amalgamation of several underlying psychological
dimensions, but it seems to be related to shape (flat vs. spher-
ical/cubical). Nosofsky et al. (2018c) initially considered di-
mension 8 to also have an ambiguous interpretation, but sub-
sequent work found it can be well interpreted in terms of red
versus green hue (Nosofsky et al. 2019a).

While the naïve approach would be to train and evaluate
each network using all 360 images from the data set, CNNs
may have millions of trainable parameters, and thus are prone
to overfitting to noise and failing to generalize to new data.
Therefore, we needed a means to compare the CNNs’ gener-
alization performance and not just their training performance.
To this end, we split the data into three separate sets: a training
set, a validation set, and a test set. CNNs with varying
hyperparameters (free parameters not learned by the network,
such as the number of layers) were trained to minimize error
on the training set, and each network’s error on the validation
set was computed to find the CNNs with the best generaliza-
tion performance (see below and Appendix 1 for details).
Finally, these networks’ error on the test set was computed
to avoid overfitting to the validation set and to gain an unbi-
ased estimate of their ability to generalize to completely new

stimuli. The training set was formed by randomly sampling 6
of the 12 rock tokens in each category, and the remaining
tokens were evenly split between the validation and test sets.
Therefore, there were 180 images in the training set and 90
images in both the validation and test sets.

CNN Architecture and Training Procedure

One challenge we had to overcome was that the 360-rock set
is quite small for a deep-learning data set. By comparison,
image-classification networks are often trained on the
ILSVRC data set, which consists of over one million images
belonging to 1000 different categories (Russakovsky et al.
2015). Networks trained on such large data sets are able to
learn much more robust and complex features than those
trained on smaller data sets. Therefore, instead of training
our CNNs from scratch, we used a pretrained implementation
of ResNet50 (He et al. 2016) as a starting point.2 This proce-
dure is known as transfer learning (Yosinski et al. 2014). To
adapt this network for our own purposes, we removed its
output layer and replaced it with a new set of untrained fully
connected layers so that we could take advantage of the low-
level features trained on big data, while still being able to learn
high-level features relevant to our specific task. (The detailed
procedure for deciding the structure of the appended fully
connected layers is described in Appendix 1.) The final output
of the network was 8 linear units corresponding to the 8 MDS
dimensions.

We trained the network to minimize the mean squared error
(MSE) between the network’s output and the MDS coordi-
nates of the rocks in the training set. Each of the dimensions
was given equal weight in computing the MSE. (Note that the
“importance” of each dimension is already reflected in the
variance of the stimuli along that dimension in the original
MDS solution that was derived from the similarity-judgment
data.) To artificially increase the size of the training set, we
performed data augmentation: training images were randomly
flipped, rotated, cropped, and stretched/shrunk every time
they were presented to the network. The images were scaled
to a resolution of 224 × 224 pixels,3 with the edges being
cropped as necessary to make the images square without
distorting their aspect ratios.

2 We do not claim that there is anything special about the ResNet50 architec-
ture; it simply yielded somewhat better model fits compared to the other
architectures we tried, which included InceptionV3 (Szegedy et al. 2016)
and VGG16/VGG19 (Simonyan and Zisserman 2014). For simplicity, we
report the results from only the best-fitting network architecture among those
that we tried. We emphasize as well that other more recently developed archi-
tectures such as InceptionResNet (Szegedy et al. 2017) or DenseNet (Huang
et al. 2017) may yield even better results.
3 This is the default image resolution assumed by ResNet50. Reducing the
resolution to this size helps keep the training of the network computationally
tractable, but it also obscures fine-grained details, which may have affected the
networks’ ability to learn some of the MDS dimensions.

Table 1 Subtypes of igneous, metamorphic, and sedimentary rocks
used in Nosofsky et al. (2018c) and the present work

Igneous Metamorphic Sedimentary

Andesite Amphibolite Bituminous coal

Basalt* Anthracite* Breccia

Diorite* Gneiss Chert

Gabbro Hornfels Conglomerate

Granite Marble* Dolomite*

Obsidian* Migmatite Micrite*

Pegmatite Phyllite Rock gypsum*

Peridotite Quartzite Rock salt

Pumice* Schist Sandstone*

Rhyolite Slate Shale

*Used in the mixed condition of the present experiment
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The same network may converge to different minima in the
error space if its parameters are initialized to different random
values, and it has been shown that combining the outputs of
multiple networks usually yields better results than using any
individual network (Hansen and Salamon 1990). Therefore,
we repeated our training procedure 9more times to produce an
ensemble of 10 CNNs. Final predictions were produced by
averaging the output of all 10 networks (see Appendix 1 for
example results involving the ensemble-based predictions). In
the present case, this ensemble achieved MSE = 1.298 and
R2 = 0.780 on the validation set. While promising, this is like-
ly an overestimate of true generalization performance because
the ensemble was fit to the validation set. Therefore, we must
consider the ensemble’s performance on the test set to get an
unbiased estimate of its generalization ability.

Generalization to Rocks Within the Original MDS
Space

Figure 2 displays scatterplots of the actual MDS values of the
rocks from the test set against the values predicted by the
ensemble of CNNs. We emphasize here that these are “true”
predictions without any human intervention or additional
forms of parameter estimation. High-quality versions of these
plots and the exact MDS coordinates of each rock can be
found in the online repository. As can be seen, the correlation
between the ensemble’s predictions and the actual MDS
values is very high for most of the dimensions. The CNNs
perform the best on the lightness and chromaticity dimen-
sions, which is unsurprising given that these dimensions re-
flect low-level color information. It is also probably unsurpris-
ing that the CNNs perform less well on the “shape” dimension
given that this dimension does not have a clear interpretation.
Indeed, in our view, the fact that the networks are able to make
even somewhat accurate predictions for this dimension is
quite interesting and indicates that it does hold some meaning,
even if that meaning is not immediately apparent to human
observers.

What may be surprising about the ensemble’s predictions is
that the CNNs perform almost as poorly on the roughness
dimensions as the shape dimension, even though the former
seems to have a clearer interpretation. Inspection of the rocks
that the CNNs mispredict reveals that there are several rocks
located on the smooth side of the MDS space that actually
have bumpy or wavy textures that seem rougher than their
MDS coordinates would suggest. This indicates that there
may be noise in the derivedMDS space, which is unsurprising
given that it is based upon an incomplete similarity matrix. We
discuss possible directions for reducing noise in the MDS
space in the “General Discussion.”

Overall, the ensemble of CNNs yields MSE = 1.355 and
R2 = 0.767 on the test set. The fact that the ensemble accounts
for over 75% of the variance in both the validation and the test

sets provides initial converging evidence that, if trained appro-
priately, deep learning networks can be used to automatically
extract psychological representations for natural stimuli.

Generalization to Rocks Outside the Original MDS
Space

We have emphasized that it is important to test the models on
untrained stimuli to ensure that the models are generalizing to
novel input and have not been overfitted to the training data.
However, there is a sense in which our test set is not complete-
ly independent from the training or validation sets because all
the sets came from the sameMDS space. It is not clear that the
same dimensions would emerge if the MDS analyses were
conducted again using a new set of rocks, even if those rocks
were sampled from the same categories used in the original
set. If different MDS dimensions did emerge for different sets
of rocks, then the CNNs would not actually be able to gener-
alize to new stimuli, in spite of these results. Therefore, we
conducted an MDS study using a new set of 120 rocks, be-
longing to the same categories as the 360-rock set, to assess
whether the same dimensions would emerge again and wheth-
er the CNNs could generalize to this truly independent set of
rocks.

Details of the newMDS study can be found in Appendix 2.
In brief, we collected similarity ratings between each pair of
the 120 new rocks, as well as independent ratings for each
rock along the dimensions of lightness of color, average grain
size, roughness, shininess, organization, and chromaticity.
Then, following Nosofsky et al. (2018c, 2019b), we derived
an 8-dimensional MDS space and rotated the first 6 dimen-
sions of the space onto the dimension ratings to aid in inter-
pretation. Figure 3 displays the rotated MDS space and
Table 2 reports the correlations between the first 6 MDS di-
mensions and the direct dimension ratings. Figure 4 displays
scatterplots between these MDS dimensions and the 8 predict-
ed dimensions from the ensemble of CNNs. Again, these are
true predictions without any additional forms of parameter
estimation involved. Inspection of these figures reveals that
as in the original 360-rock MDS space, dimensions 1, 2, 4,
and 6 are interpretable in terms of lightness/darkness, average
grain size, shininess, and chromaticity, respectively. These
interpretations are corroborated by the high correlations be-
tween these MDS dimensions and the direct dimension rat-
ings, as reported in Table 2. Furthermore, the correlations
between these MDS dimensions and those predicted by the
ensemble of CNNs are high, indicating that the ensemble is
able to generalize to rocks that were not even included in the
MDS space the networks were trained on. Dimension 8 can
also again be interpreted in terms of hue—notice that there are
many blue, purple, and red rocks at the bottom of Fig. 3 d,
while there are more yellow, brown, and green rocks at the
top. The red versus green contrast is not as pronounced in the
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120-rock set, however, which explains the somewhat lower
correlation with the CNN-predicted hue values.

The interpretations of dimensions 3 and 5 in the 120-rock
MDS space are not quite as clear-cut, however, as they were in
the 360-rock MDS space. While it does seem to be generally
true that rocks on the right side of Fig. 3 b are rougher than
those on the left side, there are many exceptions, and the
correlation between thisMDS dimension and the direct rough-
ness ratings was modest. Similar observations can bemade for
disorganized versus organized rocks in Fig. 3 c. Given that
these dimensions failed to strongly replicate from the 360-
rock MDS space, it is unsurprising that correlations between
them and the CNN-predicted dimensions were relatively low.
Note, however, that the CNN predictions still seem sensible.
The rocks do seem to get gradually rougher as one moves
from left to right in Fig. 4 c, and the rocks also seem to get

gradually more organized as one moves from left to right in
Fig. 4 e. Thus, it appears that the lower correlations may have
more to do with differences in the derived MDS spaces across
the two studies, rather than to any issues with the CNNs
themselves.

Finally, given that dimension 7 in the 360-rockMDS space
did not have a clear interpretation, we were surprised to see
that a similar dimension nevertheless emerged again in this
120-rock MDS space. Notice that the rocks on the left side of
Fig. 3 d tend to be flat, while the rocks on the right side tend to
be more spherical or cubical, indicating that shape again in-
fluenced participants’ similarity ratings. And while the corre-
lation between this MDS dimension and the CNN-predicted
dimension is relatively modest (Fig. 4g), the fact that the net-
works were able to generalize at all along this nebulous di-
mension is quite impressive. Moreover, the fact that this

Fig. 2 a–h Scatterplots of CNN-predicted dimensions against MDS-
derived dimensions for the test set. The r values indicate the Pearson

correlation coefficients, and the dashed lines represent perfect prediction
lines
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dimension emerged in both the 360-rock and 120-rock MDS
spaces indicates that it really is psychologically meaningful,
so future research will need to find a solid interpretation for it.

Now that we have demonstrated that, at least to a first
approximation, the CNNs can generalize the MDS dimen-
sions of Nosofsky et al. (2018c) to entirely new sets of rocks,
we turn to our next main goal of using the CNN-predicted
representations to predict human categorization behavior.

Categorization Experiment

This categorization experiment was conducted to compare
different representations of the rocks on their ability to predict
human categorization behavior when used in conjunction with

a formal model of human category learning. The particular
formal model that we use is Nosofsky’s (1986, 2011) gener-
alized context model (GCM). The GCM is a well-knownmod-
el that has shown success in predicting human perceptual
classification across numerous domains, including the present
rock classification domain (e.g., Nosofsky et al. 2017, 2018a,
2018b, 2019a, 2019b). Moreover, it serves as a foundation for
a number of other highly significant models of human catego-
ry learning (e.g., Anderson 1991; Kruschke 1992; Love et al.
2004; Pothos and Bailey 2009; Vanpaemel and Storms 2008).
Thus, it seemed like a reasonable starting point for use in the
present investigation. We emphasize that the present experi-
ment was not designed to provide tests between the GCM and
other alternative models. Instead, the experiment and our use
of the GCM are simply intended as tools for investigating the
utility of the CNN-derived representations for predicting an
independent set of human category-learning data. We expect
that application of many closely related formal models of hu-
man classification would yield similar outcomes.

There were three conditions in this experiment. Two of
these conditions were conceptual replications of experiments
conducted by Nosofsky et al. (2018b): the igneous condition,
in which participants were tasked with learning the 10 sub-
types of igneous rocks, and the mixed condition, in which
participants were tasked with learning a mixture of igneous,
metamorphic, and sedimentary rocks (see Table 1 for the

Fig. 3 a–d Rotated MDS space
for the 120-rock set

Table 2 Correlations
between dimensions 1–6
of the rotatedMDS space
and the dimension rat-
ings for the 120-rock set

Dimension Correlation

1. Lightness of color 0.921

2. Average grain size 0.794

3. Roughness 0.542

4. Shininess 0.858

5. Organization 0.570

6. Chromaticity 0.798
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specific subtypes used in the mixed condition). The third con-
dition was the metamorphic condition, in which participants
learned the 10 subtypes of metamorphic rocks. Importantly, in
this design, certain subtypes of rocks appear across multiple
conditions of category learning; thus, the design allowed us to
test whether the derived representations could account for per-
formance differences for the same subtypes across different
conditions, based on changes in between-category similarity
relations across the conditions.

Method

Participants

The participants were 133 members of the Indiana University
Bloomington community. Participants were compensated $10

with a possible $2 bonus for scoring at least 60% correct
during the test phase of the experiment. There were 8 partic-
ipants who did not achieve this criterion, and their data were
excluded from further analyses, leaving 41 participants in the
igneous and mixed conditions, and 43 in the metamorphic
condition.

Stimuli

The stimuli were 120 images of rocks belonging to the same
30 subtypes used byNosofsky et al. (2018c), although none of
the individual images were repeated. There were 4 individual
tokens in each subtype. Some of these images were obtained
through web searches, while others were taken from a study
reported by Meagher et al. (2018) that involved comparisons
of human category learning of images of rocks versus physical

Fig. 4 a–h Scatterplots of CNN-predicted dimensions against MDS-derived dimensions for the 120-rock set. The r values indicate the Pearson
correlation coefficients, and the dashed lines represent perfect prediction lines
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samples. Photoshopping procedures were used to remove
backgrounds and idiosyncratic markings such as text labels
from the images. Within each subtype of rock, the first two
tokens were selected as training stimuli, and the second two
tokens were selected as transfer stimuli. Because there were
10 subtypes in each condition, there was a total of 20 training
stimuli in each condition and 20 novel items presented at time
of test.

Procedure

Each participant was randomly assigned to one of the
three conditions: igneous, metamorphic, or mixed. The
experiment was divided into a training phase and a test
phase. The training phase consisted of 6 blocks of 40
trials each. On each trial, participants were presented
with a single training item and asked to categorize it
using the computer keyboard. Participants were given
feedback after entering their response. The feedback al-
ways told participants the correct answer (e.g., “Correct,
Andesite!” or “Incorrect, Basalt!”). Each of the 20 train-
ing items was presented twice every block in random
order. The test phase consisted of 4 blocks of 40 trials
each. In this phase, each training and transfer item was
presented once every block in random order, and no
feedback was given for the transfer items. Following
previous work (e.g., Nosofsky et al. 2018b, 2019b), to
keep participants engaged in the task, feedback was
given for each training item once in the first two test
blocks and once in the second two test blocks.

Modeling the Categorization Data Using MDS
and CNN Representations

Complete classification confusion matrices from each of
the three conditions can be found in the online repository.
The matrices report the total number of times each indi-
vidual rock was classified into each of the 10 available
categories in each condition, aggregated across all subjects.
Our first goal was to assess whether the actual MDS rep-
resentations and CNN-predicted MDS representations of
the rocks could be used in conjunction with the GCM to
predict the categorization data. We fitted a low-parameter
version of the GCM to the three confusion matrices from
the test phase of the experiment, using a maximum-
likelihood criterion (see the online repository for best-
fitting parameters and predicted confusion matrices for all
reported models). GCM is an exemplar model that as-
sumes that people store exemplars of categories in memo-
ry and that stimuli are categorized according to how sim-
ilar they are to these exemplars. Formally, the GCM states
that the probability that item i is categorized into category
J is found by summing the similarity of i to all training

exemplars of category J and then dividing by the summed
similarity of i to all training exemplars of all categories:

P J jið Þ ¼
∑ j∈ J sij

� �
∑K ∑k∈Ksikð Þ ð1Þ

where sij denotes the similarity of item i to exemplar j.
Similarity is computed as an exponential decay function of
distance in psychological space (Shepard 1987):

sij ¼ e−cdij ð2Þ

where dij is the Euclidean distance between item i and
exemplar j, and c is a free sensitivity parameter that de-
termines the rate at which similarity decreases with dis-
tance. The GCM often includes additional parameters that
determine the attention weights for the psychological di-
mensions, response biases for each category, memory
strengths associated with individually stored exemplars,
and the degree to which responding is probabilistic versus
deterministic (for details, see Nosofsky 2011). However,
for the present study, we focus on this “basic” version of
the model that only uses c as a free parameter. In our
view, our focus on this low-parameter version of the mod-
el is sensible given that our primary goal is to directly
assess the utility of the CNN-derived representations for
predicting the category-learning data. In addition, previous
work (e.g., Nosofsky et al. 2019a) has already indicated
that, in the present types of rock category-learning exper-
iments, extending the model with these additional free pa-
rameters leads to relatively minor improvements in fit—
especially compared to our use of “supplemental dimen-
sions” described in the final model-fitting section of our
article.

We fitted the basic GCM using both the standard (similar-
ity-judgment-derived) MDS representations and the CNN-
derived MDS representations of the rocks as input. Model fit
diagnostics can be found in Table 3, and scatterplots of the
models’ predictions4 and the observed classification probabil-
ities can be found in Fig. 5. In these scatterplots, open symbols
indicate within-category classifications (e.g., the probability
that andesite was correctly classified as andesite), whereas
x’s indicate between-category classifications (e.g., the proba-
bility that andesite was incorrectly classified as basalt). While
the standard MDS representations provide an overall better fit
to the data, both the standard MDS and CNN-derived MDS
representations are able to account for around 90% of the

4 Whereas earlier in the article, we focused on out-of-sample predictions for
the deep networks, here we focus on within-sample predictions of the GCM to
be consistent with our previous work. We describe the predictions as “within-
sample” because a free parameter c is being estimated to fit the data. As
described in a later section, we used the BIC statistic (Schwarz 1978) to
address the issue of overfitting for cases of models involving different numbers
of free parameters.
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variance in the classification confusion matrices, and both
representations are able to capture some important qualitative
trends. For example, both predict correctly that accuracy for
diorite should be higher in the mixed condition compared to
the igneous condition because diorite is confused with granite
in the igneous condition. (Granite and diorite are both light-
colored, coarse-grained rocks composed of interlocking crys-
tals.) Similarly, both predict correctly that accuracy for

anthracite should be lower in the mixed condition compared
to the metamorphic condition because anthracite is confused
for obsidian in the mixed condition. (Anthracite and obsidian
are both shiny black rocks.) These results lend further promise
to the idea that deep learning could be used to automate MDS
studies in the future.

Given that we are applying models with only a single free
parameter to an extremely rich data set, and given that we are

Table 3 Number of free
parameters of each version of
GCM and its best-fitting negative
log-likelihood, BIC score, and R2

Model (representations) Free parameters −ln(L) BIC R2

Basic (MDS) 1 4503 9016 0.897

Basic (CNN-predicted MDS) 1 5772 11,553 0.882

Basic (off-the-shelf ResNet50) 1 8977 17,964 0.781

Basic (transformed ResNet50) 1 8604 17,217 0.797

Basic (120-transformed ResNet50) 1 6465 12,939 0.861

Extended (MDS+ supplemental) 14 3427 6994 0.936

Extended (CNN-predicted: MDS + supplemental) 14 4874 9888 0.906

Fig. 5 Plots of GCM-predicted
classification probabilities against
observed classification probabili-
ties. Left column: model predic-
tions using the actual MDS rep-
resentations as input. Right col-
umn: model predictions using the
CNN-predicted representations as
input. Rows: igneous, metamor-
phic, and mixed conditions
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dealing with a complex, naturalistic-stimulus domain, these
initial results appear to be promising. Nevertheless, the results
also demonstrate a clear-cut limitation of the models: In par-
ticular, inspection of the scatterplots in Fig. 5 reveals that the
models systematically underestimate the probability of correct
classifications for many of the rocks, with numerous open-
faced symbols lying above the perfect-prediction lines. This
pattern was also discovered in a study reported by Nosofsky
et al. (2019b). In a later section, we explore extensions of the
MDS space and of the GCM to address this issue, but first we
assess whether off-the-shelf CNN representations may be
used in conjunction with the GCM to predict the human cat-
egorization behavior.

Modeling the Categorization Data Using Off-the-Shelf
CNN Hidden-Layer Representations

As noted in the “Introduction,” some researchers have used
the hidden-layer activations of off-the-shelf CNNs to model
psychological representations. This approach does not require
any additional training of the networks, so it may seem pref-
erable to our approach of training the CNNs to produce MDS
coordinates. In this section, however, we show that the MDS-
based representations are able to provide a much better ac-
count of the human categorization data than the off-the-shelf
CNN hidden-layer representations, when used in conjunction
with the GCM.5

To create off-the-shelf CNN representations of our rocks,
we passed each rock image into a pretrained implementation
of ResNet50 (other popular networks were also considered but
were found to provide worse fits to the data) and extracted
hidden-layer activations from the penultimate layer (an aver-
age pooling layer), creating a 2048-feature vector for each
rock. We did this for both the 360-rock and 120-rock sets,
and the resulting feature spaces can be found in the online
repository. We then fitted the basic GCM model to the cate-
gorization data, using the ResNet50 feature vectors of the
rocks from the 120-rock set as the input. Model fit diagnostics
can be found in Table 3 (off-the-shelf ResNet50), and
scatterplots of model predictions and observed classification
probabilities can be found in Fig. 6. As can be seen, the stan-
dard MDS and CNN-predicted MDS representations provide
much better fits to the data, suggesting significant limitations
of the off-the-shelf CNN features as models of human
representations.

It is possible, though, that some of the 2048 features are
more important for classifying rocks than others, so a better fit

could be found if the dimensions were appropriately weighted.
Following a similar method as Peterson et al. (2018) and
Battleday et al. (2017), we weighted the dimensions using a
ridge regression model. The goal was to find a weighting of
the dimensions that could predict the similarity relations be-
tween the rocks, and then use these weighted dimensions as
input to the GCM. But because we ultimately want to develop
an automated method for deriving psychological representa-
tions that does not require collecting additional similarity
judgments, it did not seem appropriate to fit the ridge

5 As we discuss in detail in our “General Discussion,” the hidden-layer-
activation approach may still be viable if transfer learning were performed in
which the CNNs were trained directly on the rock categories, with newly
derived hidden-layer activations then being used as inputs to the psychological
models. In this section, our focus is on only true “off-the-shelf” representations
that do not require further training of the networks.

Basic (Off-the-Shelf ResNet50)

Fig. 6 Plots of GCM-predicted classification probabilities against ob-
served classification probabilities, using off-the-shelf ResNet50 features
as input
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regression model to the similarity-judgment data of the same
set of stimuli as used in the current classification experiment.
Therefore, we first fitted the ridge regression weights to the
similarity judgments from the 360-rock set of Nosofsky et al.
(2018c), and we used the fitted values to transform the off-the-
shelf ResNet50 representations of the current 120-rock set.
This procedure also ensures that the ridge regression weights
are not overfitted to the 120-rock set.

Formally, we converted the similarity judgments from the
360-rock set of Nosofsky et al. (2018c) into dissimilarity judg-
ments by subtracting them from 10 (making 1 indicate least
dissimilar and 9 indicate most dissimilar). The model’s pre-
dicted dissimilarity between rock i and rock j is computed as
the weighted Euclidean distance between their feature vec-
tors6:

Dpred
ij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
2048

m¼1
wm xim−xjm

� �2s
ð3Þ

where wm > 0 is the weight for dimension m, and xim is the
value of rock i on dimension m of the off-the-shelf CNN
feature space. The objective function is minimization of the
regularized squared error between the observed and predicted
dissimilarities:

∑i∑ j Dobs
ij −Dpred

ij

� �2
þ λ ∑

M

m¼1
w2
m ð4Þ

where λ is a regularization parameter. The latter term in this
equation guards against overfitting by penalizing the model
for putting too much weight on any one individual dimension.

We fitted this ridge regression model to the dissimilarity
judgments from the 360-rock set of Nosofsky et al. (2018c).
We first used 5-fold cross-validation to find the λ value that
would yield the greatest generalization to the held-out set, and
then we trained the model on the entire set of dissimilarity
judgments to derive the w values. The optimal λ and w values
can be found in the online repository. It is interesting to note
that only 375 of the 2048 regression weights were nonzero,
indicating that over 80% of ResNet50’s features were irrele-
vant for predicting the similarity ratings.

We transformed the ResNet50 feature vectors for the 120-
rock set by multiplying each dimension by its associated wm;
the transformed feature vectors can be found in the online
repository. Finally, we fitted the basic GCM model again
using these transformed feature vectors as input. Model fit
diagnostics can be found in Table 3 (transformed ResNet50),
and scatterplots of model predictions and observed classifica-
tion probabilities can be found in the left column of Fig. 7. As

can be seen, transforming the ResNet50 representations pro-
vides only a modest improvement in model fit, and the stan-
dard MDS and CNN-predicted MDS representations continue
to provide a much better account of the data.

In a final analysis, we decided to give the ridge regression
approach greater flexibility by fitting the ridge regression
model directly to the similarity-judgment data of the 120-
rock set, extracting the estimated feature weights, and then
using those newly estimated weights for fitting the 120-rock
classification data. (We reiterate our reluctance to follow this
type of procedure, because the goal is to generate automated
scaling solutions for the natural stimuli, rather than requiring
that new sets of similarity-judgment data be collected for each
new application.) Now, the model made use of more of the
ResNet50 features, with 606 of the 2048 w values being non-
zero. The key question, however, concerns the predictions of
the 120-rock classification data. Using the off-the-shelf
ResNet50 features, we again fitted the basic GCM to the clas-
sification data, except now using theweights that were derived
by directly fitting the 120-rock similarity-judgment data.
Model fit diagnostics can be found in Table 3 (120-trans-
formed ResNet50), and scatterplots of model predictions and
observed classification probabilities can be found in the right
column of Fig. 7. As can be seen, the standard MDS and
CNN-predictedMDS representations still provide much better
fits to the human classification data than do the weighted
ResNet50 features. These results suggest limitations to the
approach of using simple linear transformations of off-the-
shelf CNN hidden-layer activations as models of psychologi-
cal representations of natural stimuli. We discuss possible rea-
sons for these limitations as well as directions for alternative
future approaches involving the use of CNN hidden-layer ac-
tivations in our “General Discussion.”

Extending the Models

Extending the MDS Space

As noted earlier in our article, even when it uses the standard
MDS and CNN-predicted MDS representations, the basic
GCM tends to underestimate correct classification probabili-
ties for many of the rocks. Nosofsky et al. (2019a) showed that
one reason for this limitation is that the MDS space underes-
timates within-category similarity because it is missing certain
dimensions that are diagnostic of specific categories. The sit-
uation appears to arise because the dimensions are relatively
subtle and tend not to be noticed in the context of generic
similarity-judgment tasks; thus, they do not appear in the
MDS solutions that are derived from the similarity-judgment
data. However, because they are highly diagnostic for pur-
poses of classification, the dimensions take on a good deal
of salience in the context of the category-learning tasks them-
selves (cf. Austerweil and Griffiths 2013; Nosofsky 1986;

6 Whereaswemodeled dissimilarities using distances between feature vectors,
Peterson et al. (2018) and Battleday et al. (2017) modeled similarities using
dot-products between feature vectors. We found that our approach led to better
model fits.
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Schyns et al. 1998). Examples of some of these missing di-
mensions are illustrated in Fig. 8. From left to right, this figure
shows examples of the rock types andesite, pegmatite,
obsidian, pumice, and slate. Notice that the example of andes-
ite has larger-sized fragments embedded in a more fine-
grained groundmass, a pattern that geologists refer to as por-
phyritic texture (Tarbuck and Lutgens 2015). The example of
pegmatite has a similar, but distinct pattern of banded dark
crystals in its groundmass, a dimension we refer to as pegma-
titic texture. The example of obsidian has a smooth sea-shell-
shaped indent formed after a piece of the rock broke off, which
is known as a conchoidal fracture (Tarbuck and Lutgens
2015). Finally, the example of pumice has many holes, and
the example of slate has physical layers.7 Nosofsky et al.
(2019a) found that extending the MDS space with these “sup-
plemental” dimensions improved dramatically the GCM’s
ability to predict people’s classification responses.8 One virtue
of the deep learning approach we have taken is that it is very
modular: Rather than relying solely on the outputs produced
by MDS solutions, the dimension-value training signals pro-
vided to the network can be imported from varied sources.
Here we explored whether we could train CNNs to produce
the supplemental dimensions noted above.

In their previous studies, Nosofsky et al. (2018c, 2019a) col-
lected extensive ratings from participants of values of the items
from the 360-rock set along a large number of individual dimen-
sions, including the supplemental dimensions described above.
From these data, we computed each rock’s mean rating for the
porphyritic texture, pegmatitic texture, and conchoidal fracture

dimensions, as well as the proportion of participants who
responded that the features “holes” and “physical layers” were
present in each rock. We linearly rescaled the resulting mean-
dimension ratings and feature-presence judgments for the 360
rocks to the range (− 5, 5) to make their scales comparable to
theMDS dimensions.We then used our deep learning procedure
to train an ensemble of CNNs to simultaneously predict the 360
rocks’mean ratings on the 5 supplemental dimensions as well as
their values on the original 8 MDS dimensions. The same train-
ing, validation, and test sets were used as in our initial analyses.
This ensemble achieved a MSE of 1.326 and R2 of 0.737 on the
validation set and aMSE of 1.404 andR2 of 0.707 on the test set.

The ensemble’s predictions for the test set are visualized in
Fig. 9 (only the supplemental dimensions are shown to save
space; predictions for the original MDS dimensions were
comparable to those shown in Fig. 2). The CNNs’ predictions
for the supplemental dimensions are not quite as accurate as
those for the MDS dimensions; a likely reason is that there are
relatively few examples of rocks that clearly display the pres-
ence of positive values on these dimensions (i.e., the presence
of holes, and so forth). Even so, the networks appear to do a
reasonably good job of predicting the supplemental dimension
values for these new rocks in the test set—again without any
further intervention from the human user.

The question still remains how the CNNs would fare in auto-
matically generating values on the supplemental dimensions of a
completely new set of rocks that were rated by an independent
set of participants. To find out, we collected ratings along the
supplemental dimensions for the 120-rock set (see Appendix 2)
and used the ensemble of CNNs to predict these ratings (without
any further tuning of its parameters). Scatterplots of the predicted
and observed ratings are shown in Fig. 10. Once again, the net-
works’ predictions for the new set are not quite as accurate as for
the original set, but they are at least in the right ballpark.
Therefore, we now test whether these supplemental dimensions
and the CNN-generated rating predictions can be used to im-
prove the GCM’s fits to the 120-rock classification data.

Extending the GCM

We refitted the GCM to the data obtained in our category-
learning experiment by allowing the model to make reference
to both the original MDS dimensions and also the supplemen-
tal dimensions. Because we do not know how the scales on the
directly rated supplementary dimensions relate to those on the
MDS-derived dimensions, we used an extended version of the
GCM originally reported in Nosofsky et al. (2019a). Let rim
denote the average rating of rock i on rated dimension m. The
psychological value of rock i on that dimension, r′im, is given
by the transformation

r
0
im ¼ Rm þ u rim−Rmð Þp; if rim≥Rm

Rm−v Rm−rimð Þq; if rim < Rm

�
ð5Þ

7 The physical layers’ dimension is partially captured by the “organization”
MDS dimension, but the MDS space does not make a distinction between
actual physical layers and stripes of different colors.
8 Again, the aim of the present article is not to provide tests of the GCM
against alternative models. Here, we simply use it as a tool for helping to
evaluate the utility of alternative stimulus representations for predicting inde-
pendent sets of classification-learning data. Nevertheless, one might argue that
the need to expand the original MDS space with supplemental dimensions
provides a challenge to the GCM, because typical applications make reference
to only dimensions derived from independent sets of similarity-judgment data.
In our view, this argument treats the exemplar-similarity model in a manner
that is too constrained. People may classify objects based on their similarity to
stored examples—whether the similarity comparisons are made in reference to
“pre-existing” dimensions or to dimensions that are “discovered” in the service
of categorization can be treated as a separate question. Yet another question is
whether one needs to make use of the original similarity-judgment-derived
MDS space at all: Why not simply create an entire researcher-defined set of
features and collect direct ratings on all such features? Nosofsky et al. (2018b,
2018c) conducted extensive analyses to test such an approach, but found that
the similarity-judgment-derivedMDS space yielded far better accounts of both
similarity-judgment data and independent sets of classification-learning data
than did an approach that relied solely on participants’ ratings of individual
researcher-defined features. Understanding the detailed basis for those previ-
ous findings remains a topic for future research. Some possibilities are that it is
difficult for participants to provide accurate ratings for individual dimensions
when they are highly interacting with other dimensions, and that the psycho-
logical scales of the dimensions are highly nonlinear transforms of the direct
dimension ratings provided by participants. MDS spaces derived from analysis
of similarity-judgment data do not suffer from those problems.
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where Rm is a “reference value” on the rated dimension, and u,
v, p, and q are scaling constants (v can be held fixed at v = 1
without loss of generality). The parameters p and q allow for
nonlinear relations between the psychological values and the
direct ratings, and the reference value Rm allows for the shape
of the nonlinear relation to vary with location on the rating
scale. Nosofsky et al. (2019a) found that for values of the free
parameters that tend to provide good fits to the data, this trans-
formation behaves similarly to a step function: above the ref-
erence value Rm, a rock is considered to “possess” the relevant
property, but the extent to which the rock is considered to have
the property drops off sharply below that reference value.

Psychological distance in this extended GCM is given by

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑M

m¼1 xim−xjm
�� ��2 þ ∑M

0

m¼1wm r0im−r
0
jm

��� ���2
r

ð6Þ

where xim is the value of rock i onMDS dimensionm,M is the
number of dimensions in the original MDS space, M′ is the
number of supplemental dimensions, and wm is the weight
given to supplemental dimension m. As in the basic model,
the distance dij is transformed to a similarity measure sij using
Eq. (2), and the categorization probabilities are then computed
using Eq. (1).

Fig. 8 Examples of rocks with properties not captured by the eight MDS dimensions. From left to right: andesite exhibits porphyritic texture, pegmatite
exhibits “pegmatitic” texture, obsidian exhibits conchoidal fractures, pumice exhibits holes, and slate exhibits physical layers

Basic (360-Transformed ResNet50) Basic (120-Transformed ResNet50)Fig. 7 Plots of GCM-predicted
classification probabilities against
observed classification probabili-
ties. Left column: model predic-
tions using ResNet50 representa-
tions transformed by regressing
onto the 360-rock similarities.
Right column: model predictions
using ResNet50 representations
transformed by regressing onto
the 120-rock similarities
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This extended GCM had 14 total free parameters: c from
the basic model, the scaling constants u, p, and q, and a

reference value, Rm, and weight, wm, for each of the five sup-
plementary dimensions. To compare the fits of this model to

Fig. 10 a–e Scatterplots of CNN-predicted supplemental dimensions against human ratings for the 120-rock set. The r values indicate the Pearson
correlation coefficients, and the dashed lines represent perfect prediction lines

Fig. 9 a–e Scatterplots of CNN-predicted supplemental dimensions against human ratings for the test set from the 360-rocks study. The r values indicate
the Pearson correlation coefficients, and the dashed lines represent perfect prediction lines
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those of the basic model, which only has one free parameter,
we used the BIC statistic (Schwarz 1978), given by

BIC ¼ −2lnLþ Pln Nð Þ ð7Þ
where L is the maximum-likelihood of the data, P is the num-
ber of free parameters in the model, and N is the total sample
size of the data set. The latter term in Eq. (7) penalizes a model
for having more free parameters. The model that yields the
smallest BIC is considered to provide the most parsimonious
account of the data.

We fitted two versions of this extended GCM to the cate-
gorization data: one that made reference to the standard MDS
dimensions and the directly rated supplemental dimensions,
and a second that made reference to the CNN-predicted values
of the MDS and supplemental dimensions. Fit diagnostics for
both versions of the extended model can be found in Table 3,
and scatterplots of model predictions and observed classifica-
tion probabilities can be found in Fig. 11. Despite havingmore

free parameters, both extended models yield much better BIC
scores than their corresponding basic models. Furthermore,
inspection of Fig. 11 reveals that both extended models do
indeed yield markedly improved accounts of the observed
classification probabilities compared to the corresponding ba-
sic models. In particular, the extended models predict many
more correct classifications for rocks possessing positive
values on the supplemental dimensions, such as obsidian,
pumice, and slate. There is still an overall tendency, however,
for the models to underestimate the correct classification
probabilities—most likely because there are diagnostic di-
mensions that are still missing from the MDS space. For ex-
ample, we expect that adding a “stripes” dimension would
improve the models’ ability to account for the accuracy levels
associated with the rock types gneiss and migmatite. As we
have shown, it should be straightforward to train CNNs to
produce these missing dimensions and any others that are
found to be relevant for classifying the rocks.

Fig. 11 Plots of GCM-predicted
classification probabilities against
observed classification probabili-
ties. Left column: model predic-
tions using actual MDS represen-
tations and ratings for the supple-
mental dimensions as input. Right
column: model predictions using
CNN-predicted MDS and sup-
plemental dimensions. Rows: ig-
neous, metamorphic, and mixed
conditions
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Despite these promising results involving the use of
the supplementary dimensions, it is important to ac-
knowledge that the version of the model that uses the
CNNs to predict the supplementary-dimension values
fares worse than the version that makes reference to
the directly rated supplementary-dimension values (see
Table 3). Thus, future work is needed to improve the
CNNs’ ability to automatically generate the scale values
in the psychological feature space. We suggest routes
for achieving this needed improvement in our “General
Discussion.”

General Discussion

Summary

In this research, we have taken promising steps toward the
development of a deep-learning approach for embedding un-
limited numbers of objects from natural-category domains in
high-dimensional psychological spaces. The approach in-
volves a novel integration of traditional MDS and deep-
learning technology: In a first stage, traditional psychological
scaling methods are used to derive MDS solutions for a rep-
resentative subset of the domain of objects under study. In the
second stage, the initially derived MDS solution is used to
provide teaching signals to deep networks in order to directly
train them to locate objects from the same domain in the de-
rived psychological space. Admittedly, the approach does not
remove the need for the painstaking work that is involved in
deriving the starting MDS solution that is used for training the
deep-learning networks. Crucially, however, once that starting
MDS solution has been derived, the payoffs are potentially
enormous: the approach allows for the automatic embedding
in the psychological space of an unlimited number of addi-
tional objects from the relevant category domain.
Furthermore, the same automatic embedding can be per-
formed even if the objects reside in very high-dimensional,
complex spaces. Thus, a goal that was formerly impossible to
achieve—embedding unlimited numbers of real-world objects
from natural categories in high-dimensional psychological
spaces—is made tractable by the proposed approach.

In the present case, we considered only a single example
target domain, namely rock classification in the geologic sci-
ences. In our view, however, the same basic approach should
be applicable regardless of the domain of inquiry. As we il-
lustrated in the article, one would first derive an initial psy-
chological space for a representative subset of objects from the
domain by using a variety of complementary methods, includ-
ing MDS analyses of similarity-judgment data and/or the use
of direct dimension ratings. Once the initial MDS space is
derived, it can then be used to train CNNs to generate repre-
sentations for additional novel items from that domain that

have not yet been scaled.9 We should emphasize that although
the examples provided in the present work involved only a
relatively small set of cases for testing the ability of the net-
works to generalize to novel items, that restriction held only
because we had a limited number of stimuli available for
conducting the generalization tests. In practice, once the
CNNs have been trained on the initial MDS solution, there
is no limit on the number of new items from the domain that
can be automatically scaled with the trained networks.

This automated MDS approach that we are developing
could be instrumental in advancing cognitive theory and the
testing of wide varieties of computational models of cognition
and behavior. To take just one example, as noted at the outset
of our article, most past research on computational modeling
of human category learning has been restricted to the use of
artificial category structures involving relatively small num-
bers of highly simplified, low-dimensional stimuli. Among
the main reasons for that restriction is that the computational
models make reference to a multidimensional feature space in
which the to-be-classified objects are embedded. In particular,
that multidimensional feature space serves as the input to the
models (for extensive discussion, see Nosofsky 1992). To
date, there have been no methods for deriving the high-
dimensional feature space for large numbers of objects com-
posing real-world natural categories. Thus, to the extent that
the present approach is successful, rigorous quantitative tests
of alternative computational models of human category learn-
ing can finally take place in domains of real wealth and sig-
nificance, thereby allowing a deeper understanding of the na-
ture of real-world human category learning to be achieved.

Indeed, once the high-dimensional feature space is derived,
comparisons could even be conducted between well-known
cognitive models of human category learning, such as exem-
plar and prototype models, and pure CNNmodels themselves.
The cognitive models make clear-cut predictions about how
patterns of generalization should vary across different training
conditions, such as the precise sets of training examples that
are experienced, whether there are differential payoffs for al-
ternative categorization decisions, and so forth. At present, it
is unclear how modern CNN models would respond to such
experimental manipulations.

9 Another specific example of deriving high-dimensional scaling solutions for
complex, real-world categories is provided by the work of Getty, Swets, and
their colleagues (Getty et al. 1988; Swets et al. 1991). Using a combination of
MDS analyses of similarity judgments and direct ratings of individually spec-
ified dimensions, these investigators derived a 12-dimensional scaling solution
for 24 instances of radiographs of benign versus malignant tumors in the
domain of mammography. The derived dimensions corresponded to attributes
such as roughness/smoothness of the border, the extent to which the tumor is
invading neighboring tissue, the extent to which calcifications (small calcium
deposits) are clustered, and so forth. Whereas Getty et al.’s MDS solution was
limited to 24 instances of the radiographs of the benign and malignant tumors,
with the present approach one could embed an unlimited number of such
radiographs in the psychological scaling solution.

246 Comput Brain Behav (2020) 3:229–251



Limitations and Future Research

Although the results we reported in our article were promis-
ing, the predictions yielded by our use of CNN-derived MDS
solutions were far from perfect, and use of the similarity-
judgment-derived MDS solutions and directly rated supple-
mental dimensions allowed the GCM to achieve much better
fits to the categorization data. Thus, an important direction for
future research will be to improve the performance of the
networks in producing the needed MDS solutions. Of course,
one likely direction for such improvement will arise as re-
searchers continue to enhance the technological sophistication
of the networks themselves. Another way to move toward this
goal is by providing the CNNs with better-quality training
data. Regarding the specific cases described in this article,
noise in the MDS space can be removed by collecting more
similarity judgments and filling the missing entries in the
360 × 360 similarity matrix of Nosofsky et al. (2018c,
2019a). Furthermore, similarity judgments can be collected
between rocks in the 360-rock set and the 120-rock set to
create a shared 480-rock MDS space. Increasing the number
of items in theMDS space may impose stronger constraints on
where each item can be located, resulting in more accurate
measurement of similarity relationships. Furthermore, embed-
ding a larger number of objects in the MDS solution would
create more training data for the CNNs, which would further
improve their predictive power.

As a source of comparison, we also attempted to fit our
category-learning data by using “off-the-shelf” CNN hidden-
layer representations as input to the GCM (cf. Battleday et al.
2017, 2019). This approach fared much worse than the one we
proposed, in which the CNN-trained MDS coordinates were
used as input. Nevertheless, it is clear that continued explora-
tion of the relationship between CNN hidden-layer representa-
tions and psychological representations will be a highly fruitful
area of research. First, it is possible that more sophisticated
transformations than the ones we used are necessary to align
CNN and psychological representations. Second, the utility of
CNN hidden-layer activations versus directly trained CNN
MDS dimensions may vary with the target domain. The repre-
sentations with the greatest utility may vary with the type of
natural category being investigated or with the form of data of
interest (e.g., behavioral choice data versus neural recordings).
Third, it seems likely that the off-the-shelf CNNs we usedwere
not sensitive to features relevant for rock classification simply
because they were never directly trained on geoscience catego-
ries, and they could learn better representations through addi-
tional direct training on such objects. Pursuing this path is an
extremely important one for future research, but will require
extensive collection of a very large number of new images
from the relevant rock categories to conduct such training (each
of the rock categories in our current data set is composed of
only 12 instances). We remark, however, that even if some of

these suggested approaches to using hidden-layer activations
are eventually shown to be successful, there may still be ad-
vantages to using MDS-based representations. For instance,
deep-learning hidden-layer representations are often difficult
to interpret, but uncovering semantically interpretable dimen-
sions is one of the principal reasons for conducting an MDS
analysis, and this interpretability can be important for advanc-
ing scientific theory.

Training networks to produce similarity judgments directly,
as Rumelhart and Todd (1993) and Steyvers and Busey (2000)
did, will also be an important direction for future research.
Although we argued in the “Introduction” that this approach
is limited because the networks cannot be easily trained to
produce “missing” dimensions, there may be remedies to this
problem. For example, such nets might be trained simulta-
neously on both similarity-judgment data and on classification
data to discover a more complete set of psychologically rele-
vant dimensions.

Although our discussion has focused on the shortcomings
of the various feature spaces, there are also undoubtedly short-
comings in the GCM as a model of human categorization.
Here, we used the GCM as a reasonable starting tool for
conducting our investigations of the utility of the candidate
feature spaces. It is possible, however, that alternative models
such as clustering models (e.g., Love et al. 2004), Bayesian
models (e.g., Anderson 1991; Sanborn et al. 2010), or rule-
plus-exception models (e.g., Erickson and Kruschke 1998)
could provide better fits to the data, and conclusions about
the utility of the candidate feature spaces may vary with the
specific model that is applied. In any case, each of these im-
portant computational models makes reference to a psycho-
logical feature space to generate its predictions. Our proposed
approach to integrating MDS and deep-learning technology
provides an important potential route to extending all of these
computational models to account for performance in complex,
high-dimensional category domains involving unlimited num-
bers of naturalistic stimuli.

Appendix 1

Details of Deep Learning Models

Our deep learning models were implemented using the Keras
Python package (Chollet et al. 2015), the Scikit-learn Python
package (Pedregosa et al. 2011), and the Tensorflow compu-
tational framework (Abadi et al. 2016). As mentioned in the
main text, we took a transfer-learning approach (Yosinski
et al. 2014), using a pretrained implementation of ResNet50
(He et al. 2016) as the base network. More specifically, we
kept each layer from ResNet50 up to the final pooling layer,
and then used global average pooling to convert the activation
of the pooling layer into a vector that could be used as input
into a series of fully connected layers. For each of these layers,
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dropout (Srivastava et al. 2014) and batch normalization (Ioffe
and Szegedy 2015) were used to improve generalization and
accelerate learning. Rectified linear units (Nair and Hinton
2010) were used as the activation functions. The dropout rate
was set to 0.5, and the hyperparameters for batch normaliza-
tion were left at their default values. These layers fed into a
final output layer consisting of 8 linear units corresponding to
the 8 MDS dimensions.

We minimized the mean squared error (MSE) between the
network’s output and the MDS coordinates of the rocks in the
training set, using Kingma and Ba’s (2014) “Adam” as the
optimization algorithm, with all of its hyperparameters left at
their default values except for the learning rate. The network
was trained until validation error stopped decreasing for at
least 20 epochs, or for a maximum of 500 epochs. Only the
newly added fully connected layers were trained at this stage.
We used the hyperopt Python package (Bergstra et al. 2013) to
optimize the following hyperparameters: the number of hid-
den layers added to the base CNN, the number of units in each
hidden layer, the training batch size, and the initial learning
rate. The optimal values were found to be 2, 256, 90, and 10–
2.22, respectively. This model achieved a MSE of 1.494 on the
validation set. For comparison, the lowest validation error we
could achieve without using transfer learning was 1.856.

To further reduce validation error, the transfer-learning net-
work was trained for another 500 epochs, using a fine-tuning
procedure (Yosinski et al. 2014). This time all layers were
trained. Because the parameters in the base CNNwere expect-
ed to already be close to their optimal values, stochastic gra-
dient descent with a low learning rate and high momentum
(0.0001 and 0.9, respectively) was chosen as the optimization
algorithm. After fine-tuning, the network achieved a MSE of
1.330 on the validation set. We repeated this entire procedure
9 more times to produce an ensemble of 10 CNNs. Final
predictions were produced by averaging the output of all 10
networks. Each network in the ensemble had the same
hyperparameter values. Code for training this ensemble can
be found in the online repository (https://osf.io/efjmq/). This
ensemble achieved MSE = 1.298 on the validation set and
MSE = 1.355 on the test set.

A reviewer of an earlier version of the article was interested
in the extent to which there was variability across different
runs of the network and the degree of improvement achieved
through using the ensemble-based predictions. Unfortunately,
we did not record the individual network fits in conducting the
original versions of these massive deep-learning investiga-
tions. However, to provide a sense of the issue, we repeated
the training procedures except using a smaller number of total
training epochs (200) than used for the results reported in the
main text. The MSEs and R2s obtained for the validation and
test sets for these reduced-training runs are reported for each
individual network run and for the ensemble predictions in
Appendix Table 4. As can be seen, the variability in fits across

the individual network runs is relatively small, with a modest
improvement in overall fit achieved by making using of the
ensemble-based predictions.

Finally, to predict the supplementary dimensions, we cre-
ated a new ensemble using the exact same procedure, but the
networks were trained to predict both the 8 MDS dimensions
and the 5 supplemental dimensions. The optimal parameter
values this time were 3, 512, 30, and 10–2.05 for the number
of hidden layers added to the base CNN, the number of units
in each hidden layer, the training batch size, and the initial
learning rate, respectively. This ensemble achieved a MSE
of 1.326 on the validation set and 1.404 on the test set.

Appendix 2

Method for Collecting Similarity Judgments
and Dimension Ratings

We closely followed the procedures for collecting similarity
judgments and dimension ratings described in Nosofsky et al.
(2018c). These data are available in the online repository.
(https://osf.io/efjmq/).

Participants

The participants were 174 students from the Indiana
University, Bloomington community. Data from 11 partici-
pants were removed because their responses had low correla-
tions with the averaged responses. Some participants received
credit toward a course requirement, while others received $12
as compensation. All participants reported normal or
corrected-to-normal vision and no expertise in geology. Of
these participants, 85 provided similarity judgments; 20 pro-
vided ratings for the lightness/darkness of color, average grain
size, and smoothness/roughness dimensions; 20 provided rat-
ings for the shininess, organization, and chromaticity dimen-
sions; 20 provided ratings for the porphyritic texture, conchoi-
dal fractures, holes, and layers dimensions; and 29 provided
ratings for the pegmatitic texture dimension.

Stimuli

The stimuli were the 120 rock images used in the categoriza-
tion experiment described in the main text.

Similarity-Judgments Procedure

Participants were shown pairs of rock pictures and were
instructed to judge the similarity of the rocks on a scale from
1 (most dissimilar) to 9 (most similar). On each trial, two
subtypes were randomly selected, and then one token was
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randomly selected as a representative within each subtype (the
same token could not be selected twice when the subtypes
were the same). One token was placed on the left side of the
screen, and the other was placed on the right. The participants
gave their judgment for the pair using the computer keyboard.
This procedure was repeated for all 435 unique pairs of the 30
rock subtypes, as well as all 30 within-subtype comparisons,
for a total of 465 trials. Participants first completed 5 practice
trials to get a sense of the types of stimuli they would see.
(Because we removed the data of 6 participants due to low
correlations with the averaged data, the data from a total of 79
participants—a total of 36,735 similarity-judgment trials—
were included in the MDS analysis.)

Dimension-Ratings Procedure

Participants gave ratings for one dimension at a time. First,
instructions explaining the dimension and its rating scale were
shown. Then, on each trial, participants were shown one of the
120 rocks and were asked to provide a rating on a 1–9 scale
along the dimension, with the exceptions of the holes and
layer dimensions. For these dimensions, participants indicated
whether each rock had holes, layers, or neither (no rock had
both). Responses were entered using the computer keyboard.
To promote a consistent scale across participants for each
dimension, the scale was shown at the bottom of the screen
with labeled anchor pictures at the middle and extreme ends of
the scale. See the online repository for each dimension’s in-
structions and anchor pictures.
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