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Abstract
The target article by Lee et al. (in review) highlights the ways in which ongoing concerns about research reproducibility extend to
model-based approaches in cognitive science. Whereas Lee et al. focus primarily on the importance of research practices to
improve model robustness, we propose that the transparent sharing of model specifications, including their inputs and outputs, is
also essential to improving the reproducibility of model-based analyses. We outline an ongoing effort (within the context of the
Brain Imaging Data Structure community) to develop standards for the sharing of the structure of computational models and their
outputs.
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The issues raised by Lee et al. (in review) regarding reproduc-
ibility and robustness in model-based approaches in cognitive
science are well stated, and the proposed solutions would have
important positive impacts on the field. In this commentary, we
focus on a related, complementary issue that was not discussed
in detail by Lee et al., yet that we believe to be equally

important for improving reproducibility: the transparent sharing
of model specifications, including their inputs and outputs. One
strong motivation for our interest in the specification of model
structure, inputs, and outputs comes from the increasing prev-
alence of model-based analyses in neuroimaging and cognitive
neuroscience (Frank 2015; Turner et al. 2017).

The problem of reproducing computational models from the
descriptions included in most published studies is comparable
with that of reproducing statistical analyses: often, many of the
details (parameter values and/or procedures) needed to replicate
the results are not explicitly described and are difficult to deter-
mine from the (often custom) code used to implement the model.
This poses a problem not only for replicating results of models
published by others but often evenwhen trying to re-implement a
model developed earlier in the same laboratory using a software
and/or hardware environment that is no longer accessible.

There are several different levels at which a modeling result
might be reproducible (Benureau and Rougier 2017), all of
which have important implications for computational cognitive
science. First, a researcher may wish to rerun the same code in
exactly the same way as reported, in order to simply reproduce
the results. Even this baseline level of reproducibility can be
challenging across time within a single lab, as software interfaces
and computational environments change. Second, a researcher
may wish to rerun the same code while varying parameters or
inputs (including different input datasets), in order to assess
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robustness, check for identifiability of parameters, or assess the
ability of the model to recover parameters from simulated data.
This requires an additional level of clarity regarding the structure
of the inputs, outputs, and parameters. Finally, full reproducibility
requires the ability to rerun the same model using a different
implementation, which also enables assessment of generalizabil-
ity. The latter is necessary both to assess the reliance of any result
on specific algorithmic or implementational choices, as well as to
identify any potential software errors (that occur with increasing
likelihood in any large software project, especiallywhen software
engineering best practices are not employed, as is often the case
with scientific software). Achieving these ends requires a formal
model specification, in terms of the equations, function defini-
tions, and/or algorithms that precisely and clearly communicate
the theory from which any particular software implementation
follows (Cooper and Guest 2014), and that can be used to repro-
duce the published results (Fum et al. 2007).

Careful comparative analyses of different computational
cognitive modeling approaches applied to the same data, which
would be greatly facilitated by reproducible analysis methods,
can even lead to important theoretical results. For example,
Ratcliff and Childers (2015) performed a comparative analysis
of different fitting routines for the diffusion decision model
(DDM), a prominent model of behavior on speeded choice
tasks. They showed that different fitting routines can lead to
different parameter estimates. Similarly, Donkin et al. (2011)
andGoldfarb et al. (2014) fitted both theDDMand a competing
response time model, the linear ballistic accumulator (LBA)
model to the same data sets. They showed that using different
models, although conceptually similar, can lead to slightly dif-
ferent interpretations of response time patterns. Unfortunately,
comparative studies such as these are currently very time-inten-
sive, because different packages need to be installed and learned
and these packages often have very different input/output spec-
ifications. An alternative approach would be to code the models
themselves from scratch, but this is potentially even more time-
intensive and prone to errors. A common standard for the input/
output structure of such packages and, better still, a standard
format for specification of the models themselves would make
important modeling comparison studies such as those men-
tioned above considerably less time-intensive and much easier
to reproduce on independent data sets.

The sharing of code is clearly necessary for reproducibility
(Eglen et al. 2017; Gleeson et al. 2017), but is rarely sufficient,
as nicely stated by Buckheit and Donoho (1995): “An article
about computational science... is not the scholarship itself, it is
merely advertising of the scholarship. The actual scholarship
is the complete software development environment and the
complete set of instructions which generated the figures.”
Sharing of the execution environment is now possible using
containerized computing environments (such as Docker or
Singularity), but containerization alone only enables the first
level of reproducibility outlined above. The higher levels of

reproducibility require a clear way to specify the structure of
the model so that it can be modified and/or replicated in a
different environment, and compared with others.

The need for standards

The availability of standards for the organization of data and
models has the potential to greatly enhance the utility of
shared models and results; without such standards, inordinate
effort is required on the part of one researcher simply to un-
derstand the organization of the information shared by anoth-
er. Lee et al. state the following regarding the sharing of
modeling details:

Modelers should always endeavor to make their models
available (Baumgaertner et al., 2018). The motivating
goal of ensuring availability is to preserve the rights of
others to reach independent conclusions about model-
based inferences. A minimum standard, then, is to pro-
vide accessible modeling details that allow a competent
person in the field to reproduce the results. This is likely
to include mathematical and statistical description, an
algorithm or pseudo-code, user documentation, and so
on. Providing these details in a sufficiently precise form
makes a model available, and means it is likely to be
used and understood more broadly than by a specific
researcher or a single lab.

While we concur with the goals described above, we be-
lieve that achieving them on a meaningful scale will only be
possible through the development and use of community stan-
dards for the description of computational models. This is
because of the growing diversity of ways in which models
can be expressed, and the fact that different investigators often
arrive at different interpretations of the degree of precision
needed for full reproducibility. An instructive example comes
from the sharing of data within the brain imaging community
which suffered from similar problems of a proliferation of
formats and practices with regard to precision of description
and organization. This community has benefited substantially
from the development of community standards, first of a com-
mon file format (NIfTI) supported by all major software pack-
ages, and more recently through the Brain Imaging Data
Structure (BIDS) (Gorgolewski et al. 2016), that defines a
schema for the organization and naming of data files and
folders, as well as a framework for the specification of meta-
data that are important for data analysis at multiple levels.
Whereas BIDS first arose as a standard for raw magnetic res-
onance imaging data, it has been extended by the community
to a number of additional data types including magnetoen-
cephalography (MEG) and electroencephalography (EEG).
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In addition, ongoing work is extending the standard to derived
data types, such as the outputs of neuroimaging analyses and
the statistical models used to analyze these data.

Inspired by the increasing relevance of computational
models in neuroimaging research and supported by the NIH
BRAIN Initiative, a group of researchers (including the au-
thors of this commentary) met in April 2019 to initiate the
development of a standard framework for the description of
computational models relevant to neuroscience and psychol-
ogy. The breadth of modeling approaches represented by the
attendees was intentionally wide, from cognitive models to
dynamic neural models to spiking neural networks, such that
while the inspiration came from neuroimaging research, the
ultimate product is meant to be useful for a much broader
range of modeling approaches (from single neurons to higher
order cognition).

A first goal of the standards effort is to develop a scheme to
organize the inputs to a computational model (such as behav-
ioral or neuroscientific measurements) and the outputs of a
modeling run. In many cases, this effort dovetailed with prior
work in describing derived data types within BIDS, such as
connectivity matrices that may be the result of structural or
functional connectivity analysis, but which also may inform
brain-network or statistical models. A further need was iden-
tified to standardize the representation of stimuli and training
corpora used in empirical studies and/or computational simu-
lations, which were left free-form in the original BIDS spec-
ification but would benefit from greater structure in the model-
ing context. Finally, several classes of derivatives specific to
computational and statistical models were identified, includ-
ing descriptions of parameter distributions, traces of internal
model variables, and synthetic neuroimaging data.

A second (and arguably much more ambitious) goal of the
effort was to develop a common framework for describing the
structure of computational models themselves. The upside of a
common specification for computational models is potentially
enormous: researchers would be able to implement the same
model in multiple environments; to easily inspect, evaluate,
compare, and extend one another’s models; and to express even
relatively complex models using a common generative syntax.
However, the barriers to developing such a standard are also
considerable. One challenge is the need to balance expressivity
against simplicity: it is probably impossible for a relatively
compact specification to capture the full breadth of computa-
tional models used in all of neuroscience and psychology, so
difficult choices will have to be made in balancing the desire for
comprehensiveness with the goal of practicality. The BIDS
community heavily emphasizes the Pareto Principle or 80/20
Rule—a recognition that, with regard to adoption, the sweet
spot for a new standard is a specification that is as simple as
possible while capturing as wide a range of common use cases
as possible. We expect that the same philosophy is likely to be
fruitful in the case of computational models.

One potentially promising approach to developing a stan-
dard for model specification is description in the form of a
computational graph. This is an approach that is seeing in-
creasing use in other domains (such as the data sciences and
machine learning) and has already been adopted by at least
two open-source model specification projects that address
very different levels of analysis in neuroscience: NeuroML
(Cannon et al. 2014), focused on spiking network models
containing elements ranging from integrate and fire neurons
to biophysically detailed cells, and PsyNeuLink (psyneulink.
org), focused on higher level models of system-level brain and
cognitive function. Despite these differences in focus, both
share the idea that computational elements (whether neurons,
neural populations, entire brain areas, or even abstract cogni-
tive functions) can be expressed as a graph, the nodes of which
describe the function carried out by each computational ele-
ment (as well as its parameters), and the edges of which de-
scribe the exchange of information among them (i.e., the
sources of inputs and destinations of outputs for the functions
of the nodes they connect).

The initial goal of this approach would be to provide a
standard format that allows the description of a model to be
imported into and executed by any run-time environment that
supports the standard. A key requirement of this approach is
the ability to express the functions of nodes in a standard form.
A first step in this direction would be the definition of an
ontology of the most commonly used functions—describing
these in a canonical mathematical form (e.g., using a common
vocabulary of function and parameter names)—while
allowing references to existing function libraries (such as
MATLAB, Numpy, or any publicly accessible repository)
for functions not in the ontology. For example, a model that
included neural network layers that linearly combine and ap-
ply a logistic transformation to their inputs would be able to
reference the functions of nodes as “LinearCombination” and
“Logistic,” using parameter names specified for these in the
ontology. Specifications of functions not in the ontology (for
example, the analytic expression for the distribution of reac-
tion times and mean accuracy of a drift diffusion process)
would be required to reference an existing library or a pub-
lished from of the function (Navarro and Fuss 2009). Such a
framework would have the ability to encode a very broad class
of models, ranging from neural networks to Bayesian models
to large-scale models of neural dynamics. This could facilitate
exchange across the existing diversity of environments that
focus on particular levels of analysis and/or theoretical ap-
proaches, such as NEURON (Carnevale and Hines 2006),
Emergent (Aisa et al. 2008), Nengo (Bekolay et al. 2014),
The Virtual Brain (Sanz Leon et al. 2013), and ACT-R
(Anderson et al. 2004). During the recent BIDS workshop,
the group developed an outline for such an approach that
provides a promising starting point for a standard model de-
scription format that can help bridge between and integrate
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existing computational modeling efforts in neuroscience and
psychology.

Moving forward, our group plans to further develop the
standard for computational model description as part of the
BIDS ecosystem, though its utility far beyond brain imaging is
a possible argument for its deployment as an independent
standard (inspired by, but separate from, the BIDS initiative).
We would also note that many of the issues raised here are not
specific to BIDS and are relevant to any attempt to develop
new standards for computational models. This process will
undoubtedly involve many iterations over an expanding set
of concrete use cases. Researchers interested in contributing to
this effort can findmore information at the BIDS Github page,
where all discussion regarding the standards takes place
(https://github.com/bids-standard/bids-specification/issues/
230).
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