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Abstract
Discussions of model selection in the psychological literature typically frame the issues as a question of statistical inference,
with the goal being to determine which model makes the best predictions about data. Within this setting, advocates of leave-
one-out cross-validation and Bayes factors disagree on precisely which prediction problem model selection questions should
aim to answer. In this comment, I discuss some of these issues from a scientific perspective. What goal does model selection
serve when all models are known to be systematically wrong? How might “toy problems” tell a misleading story? How does
the scientific goal of explanation align with (or differ from) traditional statistical concerns? I do not offer answers to these
questions, but hope to highlight the reasons why psychological researchers cannot avoid asking them.
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Model selection seems to be an evergreen topic in
mathematical psychology. Given two or more competing
theories about the world, each instantiated as parameterised
computational models that provide different accounts of
a data set, how should we decide which model is better
supported by the data? Typically we formulate this as a
statistical inference problem, with various authors arguing
for Bayes factors (e.g. Wagenmakers 2007), minimum
description length (e.g. Grünwald 2007), cross-validation
(e.g. Browne 2000) and a variety of other possibilities
besides. To highlight the behaviour of different model
selection methods, we often consider “toy problems”,
simplified versions of serious inferential scenarios designed
to elicit different intuitions about whether the model
selection procedure behaves sensibly. The large-sample
results presented by Gronau and Wagenmakers (2018) fall
within this tradition, highlighted by the Dennis Lindley
quote that motivates the work. The results are perhaps
unsurprising given the known inconsistency of orthodox
cross-validation estimators (Shao 1993), but there is value in
highlighting the issue to a broader audience and noting that
a Bayesian formulation does not remove this limitation. To
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the extent that some psychologists are unaware of the need
for care when using cross-validation methods—as indeed
they may be unaware of a need for caution with respect to
Bayes factors or any other model selection procedure—the
paper strikes me as helpful and timely.

As much as I enjoyed the paper, I wonder whether
the simplicity of exposition comes at a cost. As Vehtari
et al. (2018) note in their commentary, Gronau and Wagen-
makers’ examples apply leave-one-out cross-validation in a
fashion that is rather at odds with how its advocates recom-
mend that it be used. The original paper constitutes a strong
argument against naive or accidental misuse of some cross-
validation procedures, but the implications for best practice
seemmuch less obvious. Noting that other commenters have
discussed technical issues in detail, my goal in this paper
is to take a slightly broader view on the tensions between
scientific judgement and statistical model selection.

Mistaking theMap for the Territory

The quote by Lindley asks us to consider the question
“if you can’t do simple problems, how can you do
complicated ones?” While I understand and sympathise
with the sentiment, for my own part I would be tempted
to reverse the warning: if we only solve simple problems,
we may never learn how to think about the complex ones.
As someone who has tried to use many different model
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selection tools over the years, I am of the view that the
behaviour of a selection procedure applied to toy problems
is a poor proxy for the inferential problems facing scientists.
As such, if we are to motivate our approach to model
selection by quoting famous statisticians, my preference
would be to start with George Box’s (1976, p. 792) comment
on the dangers of selective worrying:

Since all models are wrong the scientist must be alert
to what is importantly wrong. It is inappropriate to be
concerned about mice when there are tigers abroad.

Everyone who develops model selection tools is of
course aware that all models are wrong. Scientists do not
fully understand the phenomena we are studying (else why
study them?) and every formal model-based description
of the phenomenon is wrong in an unknown, systematic
fashion. One consequence of this, I think, is that while it
is usually easy to construct artificial scenarios in which
any given procedure misbehaves, it is often difficult to
know what implications they might have for the real world
scientific problems they approximate.

To illustrate how easy it is to tell a misleading story,
consider the behaviour of the Bayes factor—a procedure
I presume Gronau and Wagenmakers would endorse as
sensible—when presented with a minor variation of their
Example 1. In this scenario, there are two models, a “general
law”M1 which asserts that a Bernouilli probability θ equals
1 and an “unknown quantity” model M2 that expresses
uncertainty by placing a uniform Beta(1,1) prior over θ .
Given a sample n successes (i.e. all observations are 1) the
Bayes factor will select M1 with certainty as n → ∞, and
the variant of leave-one-out cross-validation they discuss
does not. The behaviour of the Bayes factor seems desirable
insofar as M1 is the true model in this scenario. However,
it is not difficult to reverse this intuition and construct an
example where this same certainty seems undesirable.

Consider the “negligible error” scenario in which M1 is
almost correct: the general law holds, apart from a single
failure. The probability of success is 1, in the sense that one
failure (or indeed any finite number of failures) in an infinite
sequence of successes forms a set of measure zero. The true
probability of success in a frequentist sense is limn→∞(n −
1)/n = 1, and similarly, the posterior expected value of θ

for the unknown quantity model M2 converges on θ = 1
in the large-sample limit. In any sense that a pragmatic
scientist would care about, the general law would count as
the “correct” account for the phenomenon.1 Nevertheless,
the general law modelM1 does not have support at the data
x. So while P(x|M1) = 0 for all n after the single failure

1While there are many people who assert that “a single failure is
enough to falsify a theory”, I confess I have not yet encountered
anyone willing to truly follow this principle in real life.

has occurred, M2 assigns positive prior probability to the
data

P(x|M2) =
∫ 1

0
θn−1(1 − θ)dθ = B(n, 2) = (n − 1)!1!

(n + 1)!
= (n(n + 1))−1

The Bayes factor P(x|M1)/P (x|M2) is therefore 0, and
selects against the general law M1 with certainty even
thoughM1 makes an “almost exactly true” prior prediction,
whereas M2 assigns the same degree of prior belief to the
true rule θ = 1 as it does to the exact opposite rule, θ = 0.

To a statistician, the reason for this misbehaviour is
obvious, and rather boring: a general law formulated as
a model that does not accommodate measurement error
(and therefore lacks support across most of the sample
space) will behave poorly in a world such as our own that
actually does have such errors. The fact that the Bayes
factor produces counterintuitive inferences when asked to
choose between extremely bad models is not prima facie
evidence that we should discard Bayes factors. Rather, it
requires that we recognise that Bayes factors can produce
strange answers when none of the models are “true”. In
this instance, the problem arises because the large-sample
behaviour of the Bayes factor is to select the model whose
prior predictive distribution P(x|M) is closest in Kullback-
Leibler divergence to the true data generating mechanism,2

and this is often not the criterion that a scientist cares about.
In real life none of us would choose M2 over M1 in this
situation, because from our point of view the general law
model is actually “closer” to the truth than the uninformed
model. Because Kullback-Leibler divergence is sometimes
a poor proxy for sensible judgement, the scientist would
(quite correctly) disregard the Bayes factor and make the
sensible choice. Importantly though, the fact that the Bayes
factor does something unhelpful in a contrived example
designed to make it misbehave tells us very little—one
way or the other—about whether it is useful in real life.
The example I chose is silly, and its evidentiary value is
minimal.

Viewed more generally, I find it difficult to know how
to apply simple examples to real-world problems. There are
no shortage of illustrations that particular model selection
procedures misbehave when applied to problems they are not
built to solve. For instance, in one of my early papers
(Navarro 2004), I documented an issue with (a specific
version of) the minimum description length criterion
developed by Rissanen (1996) and introduced to psychology

2For instance, Gelman et al. (2003, pp. 586–587) present an analogous
convergence result for the posterior distribution P(θ |x) within a single
model M. The result generalises to the Bayes factor by noting
that the Bayes factor identifies a model with the prior predictive
distribution P(x|M). Substituting P(x|M) for the role of P(x|θ) in
their derivation produces the necessary result.
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by Pitt et al. (2002). The particular issue, in which it is
possible for a nested model to be judged more complex
than the encompassing model, arose when trying to solve an
actual psychological model selection problem (see Navarro
et al. 2004) in which we compared an exponential forgetting
function y = a exp(−bt) to the strength-resistance model
y = a exp(−btw) proposed by Wickelgren (1972) and
several other models besides. Given that the exponential
function is a special case of the strength-resistance model,
it is logically impossible for it to be more complex, and the
behaviour of the minimum description length criterion here
is self-evidently absurd. Does that mean that this criterion is
“worse” than simpler criteria such as such as AIC (Akaike
1973) and BIC (Schwarz 1978), in which model complexity
is assessed simply by counting the number of parameters?
To me, this seems the wrong lesson to draw, given that AIC
and BIC both have numerous flaws of their own. Fault can
be found with any formal criterion for statistical inference,
as is nicely illustrated by the many documented concerns
with p values listed in the psychological literature going
back at least to Edwards et al. (1963). As any survey of
the statistical literature will reveal (e.g. Vehtari and Ojanen
2012), even the basic desiderata for what model selection
is supposed to accomplish are not agreed upon. Viewed
from this perspective, showing that a particular procedure
behaves strangely in an artificial scenario is not without
value, but one should be wary of reading too much into such
demonstrations.

EscapingMice to Be Beset by Tigers

To the extent that I am arguing that playing with toys leads
us to encounter mice, I suppose it is incumbent on me to say
something about tigers. To my mind, there is at least one
tiger in plain view, namely the implied claim that scientific
model selection questions are addressable with statistical
tools. If scientific reasoning necessarily takes place in a
world where all our models are systematically wrong in
some sense (often referred to as theM-open case), what do
we hope to achieve by “selecting” a model? To me, it seems
that much of this is tied to the question of what we consider
the function of a model to be. In considering this question
Bernardo and Smith (2000, p. 238) write

Many authors . . . highlight a distinction between
what one might call scientific and technological
approaches to models. The essence of the dichotomy
is that scientists are assumed to seek explanatory
models, which aim at providing insight into and
understanding of the “true” mechanisms of the
phenomenon under study; whereas technologists
are content with empirical models, which are not

concerned with the “truth”, but simply providing a
reliably basis for practical action in predicting and
controlling phenomena of interest.

Under a “technological view”, the primary role of a
model is predictive, though the prediction problem differs
depending on which methods one prefers. For example,
under the Bayes factor approach, a model is identified
with its prior predictive distribution P(x|M), whereas
under a cross-validation approach one is more likely to
focus on the posterior predictive distribution P(x′|x,M),
where x′ represents future data drawn from the (unknown)
true distribution. Nevertheless, in both cases, the primary
role of a model is operationalised in terms of predictions
about data. In contrast to the predictive perspective, the
“scientific view” as described by Bernardo and Smith
(2000) places more emphasis on the interpretability and
explanatory value of P(x|θ,M). Ultimately, Bernardo and
Smith (2000) conclude that the distinction is not especially
important: if scientific models are evaluated on their ability
to make predictions, then the “scientific view” reduces to
the “technological view” for most intents and purposes.

My view is a little different. It strikes me as notable that
statistics papers typically define the term “generalisation”
in a way that differs markedly from how psychologists
define the term when studying human inductive reasoning
(e.g. Lake et al. 2015). In the statistical context, predictive
generalisation performance is typically assessed with
respect to test data sampled from the same process as
the training data (e.g. Vehtari and Ojanen 2012). In the
literature on human reasoning, however, generalisation is
typically assessed by examining how people think about
test items that are systematically different to the data
upon which they were trained, and cannot be (easily)
described as realisations of the “same” data generating
process from which the training data arose. In my opinion
at least, scientific model selections problem seem to have
more in common with the latter than with the former. To
illustrate this, consider the question of why we consider
the Rescorla-Wagner model of Pavlovian conditioning
(Rescorla and Wagner 1972) to be such an important
milestone in the development of theories of learning.
While the model did indeed provide a good account
of a range of existing conditioning phenomena, such as
blocking (Kamin 1969), overshadowing (Pavlov 1927),
conditioned inhibition (Rescorla 1969), and contingency
effects (Rescorla 1968), the truly impressive contribution
was not the ability to predict new data from replications of
these experiments but rather to successfully anticipate new
phenomena, such as overexpectation (Lattal and Nakajima
1998) and super conditioning (Rescorla 1971). That is,
one of the most important functions of a scientific theory
is not simply to predict new data from old experiments,
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but to encourage directed exploration of new territory, as
illustrated by the important role the Rescorla-Wagner model
has played in assisting neuroscientists to investigate reward
prediction error signals (e.g. Schultz et al. 1997). Curiously,
it has sometimes been argued (Devezer et al. under review)
that the apparent paradox of scientific progress in the
absence of replication (Shiffrin et al. 2018) may be tied to
exactly this kind of theory-guided scientific exploration.

It is not that statisticians are unaware of these issues, of
course. For example, in a thorough survey on the literature
on Bayesian prediction methods, Vehtari and Ojanen (2012,
pp. 174–177) characterise the issue very cleanly, by noting
that if the training data are all conditioned on specific
values v for auxiliary or explanatory variables but the
test data depend on new values v′, then the prediction
problem changes considerably. If the values of v′ can differ
systematically from the known values v—as might happen
if a researcher with different theoretical views designs a
different experiment to one’s own, or the task used to
isolate a psychological process changes—I am skeptical that
any statistical framing of the problem is any more than
an “in principle” solution. None of us are in a position
to know what future experiments we or others may run,
and estimating the future performance of a model with
regards to data collected via unknowable experiments is
likely impossible. To pretend otherwise strikes me as a
form of what Box (1976, pp. 797–798) referred to as
mathematistry: using formal tools to define a statistical
problem that differs from the scientific one, solving the
redefined problem, and declaring the scientific concern
addressed.

To illustrate how poorly even the best of statistical
procedures can behave when used to automatically quantify
the strength of evidence for a model, I offer the following
example. As part of an exercise evaluating category learning
models, Lee and Navarro (2002) collected similarity ratings
for nine items that varied on two ternary-valued features,
shape (circle, square or triangle) and colour (red, green
or blue). The optimal multidimensional scaling solution
for representing these items was estimated by solving a
model order selection problem, using the most reasonable
statistical criterion we could think of at the time (see Lee
2001a, b). The estimated solution embeds these nine items
within a four-dimensional space: two dimensions are used
to represent the colours (i.e. red, green and blue form the
vertices of a triangle), and two more are used to represent
shape. No more than that is required to describe the
similarity judgements that people made: as a consequence
this stimulus representation ends up being the simplest
adequate account of the data and is arguably the statistically
“correct” representation to estimate from these data.

Nevertheless, when we used this stimulus representation
as part of a categorisation task that used those same

stimuli—shifting the context from v to v′ as it was—
categorisation models that relied on this representation to
define a measure of stimulus similarity behaved very poorly.
These failures did not occur due to a statistical failure
in our multidimensional scaling procedure; they arose
because of a substantive scientific concern that relates to
the difference between the two tasks. The four-dimensional
embedding space does not allow dimensional attention
rules (e.g. Kruschke 1992) to be applied to specific feature
values, because the features themselves are not represented
explicitly as dimensions. That is, because “circle-versus-
not-circle” is not represented as a primitive feature within
this four-dimensional multidimensional scaling solution,
a categorisation model that relies on this representation
cannot use it as the basis for selective attention, even though
human participants do precisely this. To generalise sensibly
from the similarity judgement task to the categorisation task,
the required representation involved placing the same items
on a six-dimensional hypercube3 (i.e. employing six binary-
valued features: circle vs not-circle, square vs not-square,
etc).

Critically, the reason this seems to happen is that
there are factors v′ that influence the notion of “stimulus
similarity” (e.g. learned dimensional attention based on
feedback, emphasis on differences between items) that
applies in the categorisation task, and these are subtly
different to the corresponding factors v (e.g. no feedback,
emphasis on commonalities among items) that apply to
“stimulus similarity” in the direct elicitation task. In other
words, because these auxiliary factors differ systematically
between the two tasks, even this “simple” generalisation
turns out to be difficult and—while statistical measures
of the adequacy of different similarity models were
undoubtedly useful to us—it is unclear to me how we
could have solved this model selection problem as a purely
statistical exercise.

Between the Devil and the Deep Blue Sea

Gronau and Wagenmakers (2018) frame the question of
model selection as a perilous dilemma in which one is
caught between two beasts from classical mythology, the
Scylla of overfitting and the Charybdis of underfitting. I
find myself often on the horns of a quite different dilemma,
namely the tension between the devil of statistical decision
making and the deep blue sea of addressing scientific

3For the purposes of full disclosure, I should note that the precise
situation from Lee and Navarro (2002) is quite a bit more complex
than this description implies, and there are several details about how
we had to adapt a model from one context to be applicable to the other
have been omitted.
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questions. If I have any strong opinion at all on this topic,
it is that much of the model selection literature places too
much emphasis on the statistical issues of model choice and
too little on the scientific questions to which they attach.

To again focus on my own papers rather than criticise
others, consider the model fits reported by Hayes et al.
(under review). In that paper, we were interested in how
people’s inductive reasoning from data is shaped by what
they know about the process by which the data were
selected, referred to as sensitivity to sampling in the
literature. This is a theme I have explored across multiple
papers in the last several years. To model sensitivity to
sampling we relied on earlier work by Tenenbaum and
Griffiths (2001), as do most papers I have written on
this topic (e.g. Navarro et al. 2012; Ransom et al. 2016;
Voorspoels et al. 2015). However, the task that we used in
the Hayes et al. (under review) paper differs from previous
ones in many ancillary respects, and these ancillary details
need to be formalised in specific model choices. Some such
choices (e.g. how smooth is an unknown generalisation
function?) can be instantiated as model parameters, but
others (e.g. what class of functions is admissable to describe
human generalisation?) are not so simple. I think the choices
I made are sensible, but reasonable people might disagree.

How should I evaluate my modelling choices? A
statistical perspective on this inference problem might begin
by estimating model parameters θ and producing a measure
of predictive performance. Setting aside the computational
details of how one does this, the result is likely to lead
to a comparison between model predictions and human
performance similar to the one shown in Fig. 1. Even
without knowing the particular details of the experiments,
the scatterplot showing the fitted model values (x-axis)
against the average reponse given by human participants

(y-axis) across a large number of experimental conditions
strongly suggests that the model fits the empirical data
well.

Perhaps it fits too well? When presented with such a
figure, a reader familiar with the model selection literature
might be concerned that I have run afoul of the Scylla
of overfitting. This is not an unreasonable concern, but I
find myself at a loss as to how cross-validation, Bayes
factors, or any other automated method can answer it. My
scientific goal when constructing this model was not to
maximise the correlations as shown in Fig. 1, it was to
make sense of the observed generalisation curves shown in
Fig. 2. The data in Fig. 2 are the same as those plotted
in Fig. 1, but drawn in a way that highlights the empirical
effects of theoretical interest. In each column there are
multiple generalisation curves shown, plotted separately
for each experimental condition, with human data at the
top and model predictions at the bottom. It is clear from
inspection that the data are highly structured, and that there
are systematic patterns to how people’s judgements change
across conditions. The scientific question of most interest
to me is asking what theoretical principles are required to
produce these shifts. Providing a good fit to the data seems
of secondary importance. From visual inspection, it is clear
that the model captures most patterns in the data, but not
all. In particular, looking at the systematic model failure in
the second column from the right, the same reader might
now be inclined to wonder if I have fallen prey to the
Charybdis of underfitting. So which of the mythical beasts,
Scylla or Charybdis, have I encountered? Would a cross-
validation analysis or Bayes factor calculation tell me? It
seems unlikely.

To my mind, the bigger concern here is that to focus too
heavily on the issue of under/overfitting is to be seduced by

Fig. 1 Model selection as
viewed as a statistical problem
typically emphasises
quantitative measures of
agreement between model
predictions (or fitted values,
x-axis) and human responses
(y-axis). Even without any
explanation given for the
condition names or the
experimental design, it is clear
that the model in this figure
provides a very good fit to the
data. Nevertheless, knowing that
the model fits depend on the
values of parameters estimated
from data, one might be tempted
to ask if the researcher has
encountered the Scylla of
overfitting. Perhaps this apparent
good performance is an illusion
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Fig. 2 Scientific model selection is often more concerned with making
sense of the systematic patterns observed in empirical data. This plots
depict the extent to which people (top row) or a model (bottom row)
will generalise (y-axis) from a small sample of training data to a novel
item, shown as a function of the similarity of the novel item (x-axis) to
the training data, with the most similar items shown on the left. Dif-
ferent panels (columns) and curves plotted separately as a function of

three different experimental conditions reported by Hayes et al. (under
review). Even without a clear explanation of the different manipula-
tions and their theoretical import, it is clear that the model provides a
good account of the data in most conditions, but notably cannot repro-
duce the effect shown in the second panel from the right. One may
be led to wonder if the researcher has encountered the Charybdis of
underfitting (the data and model are the same as those plotted in Fig. 1)

the devil of statistical decision making. When we actually
analysed the data, the allure of the deep blue sea of science
led us to a different perspective. The approach we took was
to ignore the quantitative fits almost entirely, and focus on
the extent to which the key qualitative patterns in the data
are an invariant prediction of the model across different
choices of the parameter values θ . Loosely inspired by the
“parameter space partitioning” idea introduced by Pitt et al.
(2006), we defined a set of ordinal constraints in the data
that any theoretical account would need to explain (e.g.
increasing the number of observations caused a crossover
effect under property sampling, column 4 from the left),
and then showed that under most parameter values in the
model, the predictions about these ordinal effects did not
change. In other words—to recast this in the “scientific
versus technological” language used by Bernardo and Smith
(2000)—the scientifically important patterns are captured
by P(x|θ,M) regardless of the specific value of θ .

To myway of thinking, understanding how the qualitative
patterns in the empirical data emerge naturally from a
computational model of a psychological process is often

more scientifically useful than presenting a quantified
measure of its performance, but it is the latter that we
focus on in the “model selection” literature. Given how little
psychologists understand about the varied ways in which
human cognition works, and given the artificiality of most
experimental studies, I often wonder what purpose is served
by quantifying a model’s ability to make precise predictions
about every detail in the data. Much as the false confidence
of the Bayes factor in the “negligible error” scenario I
constructed at the beginning is entirely an artifact of its
sensitivity to a bad ancillary assumption made by one of the
models (that θ must be exactly 1 for a general law to hold),
it seems to me that in real life, many exercises in which
model choice relies too heavily on quantitative measures of
performance are essentially selecting models based on their
ancillary assumptions. It is unclear to me if this solves a
scientific problem of interest.
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