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Evidence Accumulation in a Laplace Domain Decision Space

Marc W. Howard1,2 · Andre Luzardo1 · Zoran Tiganj1

Abstract
Evidence accumulation models of simple decision-making have long assumed that the brain estimates a scalar decision
variable corresponding to the log likelihood ratio of the two alternatives. Typical neural implementations of this algorithmic
cognitive model assume that large numbers of neurons are each noisy exemplars of the scalar decision variable. Here, we
propose a neural implementation of the diffusion model in which many neurons construct and maintain the Laplace transform
of the distance to each of the decision bounds. As in classic findings from brain regions including LIP, the firing rate of
neurons coding for the Laplace transform of net accumulated evidence grows to a bound during random dot motion tasks.
However, rather than noisy exemplars of a single mean value, this approach makes the novel prediction that firing rates
grow to the bound exponentially; across neurons, there should be a distribution of different rates. A second set of neurons
records an approximate inversion of the Laplace transform; these neurons directly estimate net accumulated evidence. In
analogy to time cells and place cells observed in the hippocampus and other brain regions, the neurons in this second set
have receptive fields along a “decision axis.” This finding is consistent with recent findings from rodent recordings. This
theoretical approach places simple evidence accumulation models in the same mathematical language as recent proposals
for representing time and space in cognitive models for memory.

Keywords Evidence accumulation · Diffusion model · Laplace transform · Neurophysiological models of cognition

The computational models of cognition that are most influen-
tial on neuroscience were developed in mathematical psy-
chology to account for behavior without regard to neural
constraints. For instance, the Atkinson and Shiffrin (1968)
model of working memory maintenance was developed
to account for behavioral findings from continuous paired
associate learning and other behavioral memory tasks. The
central idea of the Atkinson and Shiffrin (1968) model—
that working memory holds a small number of recently-
experienced stimuli in an activated state—went on to
be extremely influential on neurophysiological studies of
working memory maintenance (e.g., Goldman-Rakic 1996;
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Fuster and Jervey 1982) as well as computational neuro-
science models of working memory (e.g., Goldman 2009;
Lisman and Idiart 1995; Compte et al. 2000). Similarly,
models for reinforcement learning originally developed to
account for behavior (Sutton and Barto 1981) have been
extremely influential in understanding the neural basis of
reward systems in the brain (Schultz et al. 1997; Waelti
et al. 2001). Mathematical models of evidence accumulation
(Laming 1968; Link 1975; Ratcliff 1978) have organized
and informed a large body of neurobiological work (Gold
and Shadlen 2007). There are many neurophysiological phe-
nomena in each domain that do not follow naturally from
the neural predictions of these models—this is not surpris-
ing insofar as they were developed in most cases long before
any relevant neurophysiological data was available. More-
over, the models from each domain seem very different from
one another despite the fact that any real-world behavior
undoubtedly depends on interactions among essentially the
entire brain.

Part of the mismatch perhaps follows from taking models
developed at an algorithmic level literally at an imple-
mentational or biological level. In this paper, we extend
a formalism that has already been applied to behavioral and
neural data from working memory experiments (Howard
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et al. 2015; Tiganj et al. 2018) and neural representations
of space and time (Howard et al. 2014) and show that it
applies also to models of evidence accumulation. This for-
malism estimates functions of variables out in the world by
constructing the Laplace transform of those functions and
then inverting the transform (Shankar and Howard 2012,
2013, Howard et al. 2014). We show that this approach leads
to a neural implementation of the diffusion model (Ratcliff
1978). This neural implementation of the diffusion model
provides an account of neural data that makes a number of
novel quantitative predictions.

The DiffusionModel and Sequential Sampling

Models of response times have been a major focus of work
in cognitive and mathematical psychology for many decades
(Luce 1986). Evidence accumulation models have received
special attention (Laming 1968; Link 1975; Ratcliff 1978).
These models hypothesize that during the time between the
arrival of a probe and the execution of a behavioral decision,
the brain contains an internal variable the dynamics of
which describe progress towards the decision. For our
purposes, it will be sufficient to describe the dynamics of
accumulated evidence with the following random walk:

Xt+� = Xt + �Et (1)

where Et is the instantaneous evidence available at time
t . Equation (1) describes a perfect integrator. In simple
evidence accumulation tasks, Et is not known in detail.
Under these circumstances, one typically takes Et to be a
stochastic term.

The diffusion model (Ratcliff 1978) is the most widely
used of the evidence accumulation models. In the diffusion
model, one assumes Et is a normally distributed random
variable with a non-zero mean referred to as the drift rate.
The units of Xt are usually chosen to be the standard
deviation of the normal distribution. The response is emitted
when Xt reaches either of two boundaries; the value at
the lower and upper boundaries are referred to as 0 and a

respectively. In the diffusion model, the starting point of the
dynamics is referred to with a parameter z.

The diffusion model can be understood as an implemen-
tation of a sequential ratio test, a normative solution to the
problem of forming a decision between two alternatives
(Wald 1945, 1947, 1948). Suppose we have two alternatives,
L and R that could have generated a sequence of indepen-
dent observations of data, di . Starting with a prior belief
about the likelihood ratio of the two alternatives P0(L)

P0(R)
, we

find that the likelihood ratio of the two hypotheses after
observing t data points is

P(L|d1 . . . dt )

P (R|d1 . . . dt )
=

t∏

i=1

[
P(di |L)

P (di |R)

]
P0(L)

P0(R)
(2)

The likelihood ratio on the lhs tells us the degree of
certainty we have that the sequence of data was generated
by alternative L; the inverse of the likelihood ratio tells us
the degree of certainty we have that the data was generated
by alternative R. We can determine the level of certainty we
require to terminate sampling and execute a decision.

The logarithm of the likelihood ratio is closely related to
the diffusion model. Taking the log of both sides of Eq. 2,
we find

log
P(L|d1 . . . dt )

P (R|d1 . . . dt )
= log

P0(L)

P0(R)
+

t∑

i=1

log
P(di |L)

P (di |R)
(3)

Here, the prior log likelihood ratio appears as the starting
point of a sum; each additional observation contributes an
additive change in the evidence for one alternative over the
other. Reaching a criterion can be understood as the log
likelihood ratio reaching a particular threshold (recall that
log x = − log(1/x)).1 In this way, the diffusion model can
be understood as an implementation of a sequential ratio
test; the parameters of the diffusion model can be mapped
onto interpretable quantities. The boundary separation a can
be understood as proportional to the log likelihood ratio
necessary to make a decision; the starting point z can be
understood as a prior probability2 and the drift rate can be
understood as the expectation of the log likelihood ratio
contributed by each additional sample.3

There are many variants on this basic strategy for
evidence accumulation in simple perception tasks that have
been explored in the mathematical psychology literature
(e.g., Usher and McClelland 2001; Bogacz et al. 2006;
Brown and Heathcote 2008). They have various advantages
and disadvantages but all retain the feature of dynamics of
a decision variable gradually growing towards a boundary
of some type. The diffusion model and other models of this
class have been used to measure behavioral performance in
an extremely wide range of behavioral tasks in humans (e.g.,
Ratcliff and McKoon 2008).

Neural Evidence for Evidence AccumulationModels

There are two broad classes of evidence from the neu-
robiology of evidence accumulation that we will review
here. First, there is evidence dating from the late 1990s for
neurons whose firing rate appears to integrate information
to a bound. These studies are typically done in monkeys

1Zhang and Maloney (2012) provide an outstanding discussion of the
centrality of log likelihood to understanding cognitive psychology.
2When z = a/2, the prior is uninformative.
3In many experiments, such as the random dot motion task discussed
extensively below, it may be difficult to make a connection to the
normative sequential sampling model.
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in the random dot motion paradigm. Second, a more recent
body of work shows evidence for neurons that activate
heterogeneously and sequentially during information inte-
gration. These studies typically use rodents in experimental
paradigms where the evidence to be accumulated is under
more precise temporal control. These literatures differ not
only in species, recording techniques, and behavioral task
but also in the brain regions that are investigated. The
theoretical framework we will present provides a possible
link between these domains, with neurons that integrate
to a bound corresponding to the Laplace transform of the
function describing distance to the decision bound and neu-
rons that activate sequentially corresponding to the inverse
transform of this function.

Neurons that Integrate to a Bound Models of evidence
accumulation have been used to understand the neurobiol-
ogy of simple perceptual judgments. In a pioneering study,
Hanes and Schall (1996) found that the firing rate of neurons
in the frontal eye fields (FEF) predicted the time of a move-
ment in a voluntary movement initiation experiment. During
the preparatory period, the firing rate grew. When the firing
rate reached a particular value, the movement was initiated
and could not be terminated via an instruction to terminate
the movement. In subsequent studies, neurons in the lateral
interparietal area (LIP) appeared to comport with the char-
acteristic predictions of evidence accumulation models in a
simple decision-making task.

In the random dot motion (RDM) paradigm, a display
consisting of moving dots appears in the visual field.
Some proportion of dots move in the same direction;
a movement (typically a saccade) in the direction of
the coherent movement is rewarded. The decision made
by monkeys is predicted above chance by the particular
sequence of random dots even though there is on average
no coherent movement (Kiani et al. 2008). Neurons in
the middle temporal area (MT) fire in response to these
moving stimuli and predict perceptual discriminability in
the task (Newsome et al. 1989; Britten et al. 1992). During
performance of the random dot motion task, the firing rate
of LIP neurons with fields in the movement direction grows
during the decision-making period (Shadlen and Newsome
2001). Conversely, neurons with receptive fields in the other
direction show a decrease in firing rate. Similar results
have been found in a number of brain regions (see Brody
and Hanks 2016, for a review) and LIP is not required for
decisions (Katz et al. 2016). For neurons with receptive
fields corresponding to the correct direction, firing rate
grows faster when the motion coherence is greater and their
firing rate is approximately constant around the time at
which a response is made (Roitman and Shadlen 2002, see
also Cook and Maunsell 2002, for similar results in ventral

intraparietal cortex, VIP). Figure 1a summarizes many of
these findings (Gold and Shadlen 2007).

A number of computational neuroscientists and cognitive
modelers have understood the firing rate of these integrator
neurons as indexing a decision variable that changes
as additional evidence is accumulated (e.g., Smith and
Ratcliff 2004; Wang 2008; Beck et al. 2008). The standard
assumption in these approaches has been that a large
population of neurons each provides a noisy estimate of the
instantaneous evidence. Each neuron signals the decision
variable via its firing rate; by averaging over many neurons,
one can compute a better estimate of the magnitude of the
decision variable (e.g., Zandbelt et al. 2014).

Sequential Neural Responses During Evidence Accumula-
tion However, recent evidence suggests that rather than
many neurons being noisy exemplars of a single scalar
strength, there is in many brain regions heterogeneity in the
response of units in simple decision-making tasks (Scott
et al. 2017; Morcos and Harvey 2016; Hanks et al. 2015;
Meister et al. 2013). In these studies, rather than the RDM
paradigm, the task allows more precise control over the time
at which evidence becomes available, enabling a detailed
investigation of the effect of information at different times
on behavior (Brunton et al. 2013) and also neural responses.
For instance, one might present a series of clicks on one side
of an animal’s head or the other and reward a response to the
side that had more clicks (Brunton et al. 2013; Hanks et al.
2015). Other variants of this approach can utilize flashes of
light (Scott et al. 2017) or visual stimuli presented along the
left or right side of a corridor in virtual reality (Morcos and
Harvey 2016).

The critical result from these studies is that rather
than changing firing rate monotonically with the decision
variable as evidence is accumulated, in several experiments
neurons instead respond in a sequence as the decision
variable changes. The experiment of Morcos and Harvey
(2016) provides a very clear result. In this experiment, mice
ran along a virtual corridor. During the run, a series of
distinctive visual stimuli were presented along the left or the
right side of the virtual corridor. At the end of the corridor,
the mice were rewarded for turning in the direction that had
more visual stimuli. Morcos and Harvey (2016) observed
that neurons in the posterior parietal cortex (PPC) were
activated as if they had receptive fields along a decision
axis. Figure 1b illustrates the key findings of Morcos and
Harvey (2016). On trials where all of the evidence was in
one direction or the other, the population fired sequentially,
with distinct sequences for progress towards the different
decisions. Notably, the neurons in Fig. 1b seem to show an
overrepresentation of points near the decision bound. This
can be seen from the “hook” in Fig. 1b.
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Fig. 1 Neural evidence for evidence accumulation. a In some brain
regions, neurons accumulate evidence towards a bound. These stud-
ies typically use random dot motion. The plot shows average firing
rate across a number of LIP neurons. When the decision was made in
the cells’ preferred direction (solid lines), the firing rate grew as evi-
dence accumulated, with more rapid accumulation for greater degrees
of coherence. When the response was in the other direction, firing rate
decreased. When aligned on the response (right), the neurons’ firing
rate was tightly coupled at the time of response, as if the response was
triggered when the firing of the population reached a threshold. After
Gold and Shadlen (2007). b In other brain regions (e.g., PPC), the

firing rate depends on position along a decision path. In this experi-
ment, the animal ran down a corridor in virtual reality. Visual stimuli
were presented on the left or the right; at the end of the corridor, the
animal was rewarded for turning in the direction that had more stimuli.
Each row represents the firing rate of a neuron as a function of position
along the track. The left panels show trials on which all of the stimuli
were on the left; the right panels show trials on which all of the stimuli
were on the right. The top panels show cells that were selective for left
turn trials; the bottom panels show cells that were selective for right
turn trials. After Morcos and Harvey (2016)

The Laplace Transform in Cognitive Science
and Computational Neuroscience

In this paper, we pursue the hypothesis that the two classes
of neural data from evidence accumulation experiments
can be understood as the Laplace transform and inverse
transform of a function describing the net evidence since
the decision-making period began. This places models of
evidence accumulation in the same theoretical framework as
recent models of memory that utilize the Laplace transform
and its inverse (Shankar and Howard 2012, 2013) to
construct cognitive models of a range of memory tasks
(Howard et al. 2015). The Laplace transform can also be
used to construct neural models of time cells and place cells
(Howard et al. 2014).

The cooperative behavior of many neurons can be
understood as representing functions over variables in the
world. For instance, individual photoreceptors respond to
light in a small region of the retina. The activity of a set
of many photoreceptors can be understood as representing
the pattern of light as a function of location on the retina.
For some variables, such as the location of light on the

retina or the frequency of a sound, the problem of how
to represent functions amounts to the problem of placing
receptors in the correct location along a spatial gradient
(e.g., hair cells at different positions along the cochlea are
stimulated by different frequencies). For other variables,
such as time and allocentric position, we cannot simply
place receptors to directly detect the function of interest. For
instance, “time cells” observed in a range of brain regions
appear to code for the time since a relevant stimulus was
experienced (MacDonald et al. 2011; Mello et al. 2015;
Bolkan et al. 2017; Tiganj et al. 2018). The stimulus that
is being represented is in the past (in some experiments,
as much as 1 min in the past). Similarly (at least in some
circumstances), place cells in the hippocampus represent
distance from an environmental landmark (Gothard et al.
1996). These cells show the same form of activity in the dark
(Gothard et al. 2001) and cannot reflect locally available
cues. How can the brain construct functions of time and
space? One solution is that the brain does not directly
estimate the function of interest. Rather, the brain maintains
the Laplace transform of the function of interest and then
inverts the transform to estimate the function directly.
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The Laplace Transform Contains all the Information About
the Transformed Function The mathematics of the Laplace
transform are well understood. Given a function f (t), the
Laplace transform of f (t) is written as F(s):

F(s) =
∫ ∞

0
e−st ′f (t ′) dt ′ (4)

That is, one starts with a function f (t) that specifies a
numerical value at many different values of t . By computing
F(s) via (4) with many different values of s, we construct
the Laplace transform of f .4 Each value of s simply gives
the sum of the product of f (t) with an exponentially
decaying kernel that peaks at zero. The Laplace transform
has been studied for hundreds of years and is widely used in
engineering applications.

The most important property of the Laplace transform
for present purposes is that the transfrom can be inverted.
Put simply, that means that if we know the values of
F(s) for each value of s, we can in principle recover
the value of f (t) at every value of t . The most widely
used algorithms for inverting the transform involve taking
the limit of an integral computed in the complex plane.
These methods are complicated and difficult to implement
neurally. Fortuitously, there is an algorithm for inverting
the Laplace transform that only requires real coefficients
and nothing more demanding than computing derivatives
(Post 1930). This technique, referred to as the Post
approximation, yields a scale-invariant approximation of the
inverse transform, and thus recovers the original function
(Shankar and Howard 2012) and is neurally realistic
(Shankar and Howard 2012; Liu et al. in press).

Formally, we can keep track of the Laplace transform
with a differential equation:

dF(s)

dt
= −sF (s) + f (t) (5)

The solution to this equation at time t :

Ft (s) =
∫ t

−∞
e−s(t−t ′)f (t ′)dt ′ (6)

is just the Laplace transform of f (t ′ < t). Note that updating
(5) as time unfolds requires only information about the input
available at time t and the value of F(s) at the immediately
preceding moment. Because (5) implements the Laplace
transform of f (t ′ < t), we know that a set of units Ft(s)

contains all of the information present in the function
f (t ′ < t). Because the function is the input presented over
the past, we can conclude that at time t , F(s) maintains
the Laplace transform of the past. If we could invert the
transform, we could recover the function of the past itself.

4For our purposes, it is sufficient to consider real values of s.

The Post approximation provides a way to approximately
invert the transform. This method can be written as follows:

f̃
(∗
τ
)

≡ L−1
k F(s) (7)

= Cks
k+1 dk

dsk
F (s) (8)

where
∗
τ ≡ −k/s, k is an integer constant that controls the

precision of the inverse, Ck is a constant that depends on k

and dk

dsk means to take the kth derivative with respect to s.
Post (1930) proved that in the limit as k → ∞, the inverse

is precise and f̃t (
∗
τ) = f (t + ∗

τ). The variable
∗
τ is negative;

for each unit in f̃ , its value of
∗
τ characterizes the time in

the past that unit represents. When k is small, this method
yields only an approximate estimate of the function. The
errors in the reconstruction appear as receptive fields in time
with a width that increases for time points further in the past.

Figure 2a illustrates the time dynamics of F(s) and f̃ (
∗
τ)

for a simple input. It is worth noting that the time dynamics

of F(s) and f̃ (
∗
τ) resemble neurophysiological findings of

so-called temporal context cells in the lateral entorhinal
cortex (Tsao et al. 2018) and “time cells” observed in the
hippocampus and other regions (Pastalkova et al. 2008;
MacDonald et al. 2011; Mau et al. 2018) respectively.

Generalization to Hidden Variables Other than Time
Equations 5 and 7 provide a concise account for repre-
senting functions of time (Shankar and Howard 2012) that
mimics the firing of time cells in a range of brain regions
(Fig. 2b, see also Mau et al. 2018; Tiganj et al. 2018)
and can be readily implemented in realistic neural models
(Tiganj et al. 2015; Liu et al. in press). In this paper, we
exploit the fact that this coding scheme can also be used to
construct functions over variables other than time. Consider
the simple generalization of Eq. 5:

dF(s)

dt
= α(t) [−sF (s) + f (t)] (9)

Note that this reduces to Eq. 5 if α(t) = 1. If one can
arrange for α(t) to be equal to the time derivative of some
variable x, α(t) = dx

dt
, then one can use Eq. 9 to construct

the Laplace transform of functions over x instead of over
time (Howard et al. 2014).5 For instance, if f (t) is non-zero
only when an animal encounters the start box of a linear
track, and if α(t) is the animal’s velocity along the track,
then as the animal runs back and forth along the track, α(t)

changes sign. During these periods of time, the firing rate
of each unit in F(s) decays as an exponentially decreasing
function of distance. At the same time, units in f̃ behave like

5To see this, set α(t) = dx
dt

and multiply both sides of Eq. 9 by dt
dx

.
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Fig. 2 The Laplace transform for time and space. a The Laplace trans-
form of functions of time. Consider an input f (t) that is non-zero for
a brief period. After the input, the different neurons corresponding to
the Laplace transform, F(s), activate and then decay exponentially.
Different neurons have different values of s and thus decay at differ-
ent rates. Neurons with these properties have recently been observed
in the lateral entorhinal cortex (Tsao et al. 2018). Neurons represent-

ing the inverse transform f̃ (
∗
τ) respond a characteristic time after the

input. They fire when the past stimulus enters their receptive fields,

defined by their value of
∗
τ . b Neural functions of time. If the brain

contained sets of neurons that represented functions of time, we would
see sequentially activated neurons. This figure shows simultaneously
recorded sequentially activated neurons in the hippocampus recorded
using calcium imaging. Each row gives the activation of one neuron
as a function of time during the delay. The neurons are sorted accord-
ing to their peak time. Note the curvature. This means that there are
progressively fewer neurons coding for later in the delay. The dashed
red line gives an analytic curve under the assumption of logarithmic

compression. Although this recording technique does not allow one to
measure the width of individual cells’ tuning, many papers using extra-
cellular electrophysiology have shown that time fields also grow wider
as the sequence unfolds. After Mau et al. (2018). c Laplace transform
for variables other than time. Left: schematic for the method for con-
structing the Laplace transform of variables x in the world. With access
to the time derivative of x, the method modifies the differential equa-
tion for maintaining the Laplace tranform of time by α(t) = dx

dt
. If the

input f is a function of x(t), then F(s) maintains the Laplace trans-
form of f (x). Right: consider a case in which the animal encounters
a spatial landmark at x = 0 causing an input via f and then moves
in the neighborhood of the landmark (with x > 0). As the animal
moves away, dx/dt > 0 and the cells in F(s) decay exponentially. But
if the animal turns around and heads back towards the startng point,
dx/dt < 0 and the cells grow exponentially. However, firing is always
just a function of x. Under these circumstances, the Laplace transform
behaves like border cells with different space constants and neurons
participating in the inverse Laplace transform behave like place cells.
After Howard et al. (2014)

one-dimensional place cells (Fig. 2c). When the inverse is
understandable as a function over some variable other than
time, we will write f̃ (

∗
x).

Optimal Weber-Fechner Distribution of s Thus far, we have
discussed at a formal level how to use many neurons with
different values of s to represent the Laplace transform of
functions and how to use the operator L−1

k to construct

an approximation of the original function f̃ (
∗
x) with many

neurons corresponding to many values of
∗
x. It remains to

determine how to allocate neurons to values of s and
∗
x.

Because
∗
x is in one-to-one relationship with s, it is sufficient

to specify the allocation of neurons to s.
It has been argued that it is optimal to allocate neurons

to represent a continuous variable in such a way that recep-
tive fields are evenly spaced as a function of the logarithm
of that variable (Howard and Shankar 2018). In addition to
enabling a natural explanation of the Weber-Fechner law,
positioning receptors evenly along a logarithmic scale also
enables the neural system to extract the same amount of
information from functions with a wide range of intrinsic
scales. This logarithmic scaling requires that receptive field

center of the nth receptor goes up like
∗
xn = cn.6 This com-

pression results in a characteristic “hook” in the heatmaps
constructed by sorting neurons on their peak time (as in
Fig. 2b). Coupled with a linear increase in receptive field
width with an increase in x,7 this arrangement means that
the acuity between adjacent receptors is a constant.

The Laplace Transform of the Diffusion
Model

We propose a model of evidence accumulation in which the
Laplace transform of accumulated evidence is represented
at each moment and inverted via a linear operator. The result
is evidence on a supported dimension with logarithmic

6This implies the ordinal variable n ∝ log
∗
x.

7An increase in receptive field width would appear as increase in the
width of the central ridge in Fig. 2b. This spread is not visible due to
the properties of the recording method used in that study; an increase
in receptive field width with peak time is observed in time cell studies
using other recording techniques (Jin et al. 2009; Salz et al. 2016;
Mello et al. 2015; Tiganj et al. 2018).
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compression. The diffusion model describes the position of a
particle relative to two decision boundaries. Inspired by the
curvature present in the Morcos and Harvey (2016) data, we
maintain the Laplace transform of the distance to each of the
two boundaries, treating the appropriate decision bound as
zero for each of the two functions (Fig. 3). This formalism
provides a mapping between the diffusion model at an
algorithmic level and neurons at an implementational level.

Let us refer to the two alternative responses as L and
R and the net evidence for the left alternative accumulated
up to time t as L(t) − R(t). The decision-maker’s goal
is to estimate the net evidence that has been experienced
since the trial began. The instantaneous evidence gives the
time derivative of that variable. In the random dot motion
paradigm, we would expect the instantaneous derivative
to fluctuate more or less continuously; the mean of this
derivative would differ across conditions with different
levels of motion coherence. In paradigms with discrete
clicks or flashes of light, the presence of a click signals a
non-zero value of the derivative, with the side of the click
controlling the sign of the derivative.

We start constructing this model by assuming that we
have two sets of leaky accumulators FL(s) and FR(s). These
correspond to opponent pairs of evidence accumulators.
FL(s) codes for the Laplace transform of L − R over the
range 0 to a and FR(s) codes for the Laplace transform
of R − L over the domain a to 0. We adopt the strategy
of assigning each α(t) to the derivative of this decision
variable; αL(t) = −αR(t). When evidence accumulation
begins, we want to have

FL(s, 0) = e−sz

FR(s, 0) = e−s(a−z) (10)

where z corresponds to the bias term and a corresponds to
the boundary separation. Note that these correspond to the
same location on the decision axis, but reference to different
starting points. This initialization can be accomplished by
“pulsing” each accumulator with a large α value. The sum
of the area under these two pulses controls the boundary
separation. The difference controls the bias.

After initialization, as evidence is accumulated, we set
αL(t) = d(L−R)

dt
and αR(t) = d(R−L)

dt
and evolve both

FL(s) and FR(s) according to Eq. 9. In this way, each set of
integrators codes for the Laplace transform of the distance
to each of the two decision boundaries.

At each moment, a second set of units holds the approx-

imate inversion of the Laplace transform, f̃L(
∗
x) and f̃R(

∗
x)

using

f̃L(
∗
x) = L−1

k FL(s)

f̃R(
∗
x) = L−1

k FR(s) (11)

By analogy to time cells and place cells, these units tile
the decision space with compressed receptive fields that
grow sharper in precision as each unit’s preferred decision
outcome is approached.

Compression of
∗
x Gives Equal Discriminability

in Probability Space

Noting the characteristic curvature in the Morcos and Har-
vey (2016) data (Fig. 1), we configure each set of integrators
to represent distance to the appropriate decision bound.
Following previous work on time and space (Howard and

Shankar 2018), we choose a Weber-Fechner scaling of the
∗
x

Fig. 3 Implementing the diffusion model with many neurons via
the Laplace transform. At an algorithmic level, the diffusion model
describes an abstract particle representing the quantity of net accumu-
lated evidence moving towards two boundaries. At the implementa-
tional level, the position of this particle is represented in the Laplace
domain by two sets of units that code for the Laplace transform of
position relative to the two boundaries, F(s). These units have expo-
nentially decaying “receptive fields” with respect to net evidence. Each

unit is parameterized by a value s that controls its rate of decay—
different colors correspond to different values of s. Another set of units

f̃ (
∗
x) approximates the inverse Laplace transform. Units in this rep-

resentation have receptive fields that tile the evidence axis. Each unit

is parameterized by a value
∗
x that controls the center of its receptive

field. These units are compressed and scale-invariant in the same way
that time cells generated by the same equations are (Fig. 2)
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axis. Denoting the value of
∗
x for each unit like,

∗
x1,

∗
x2 . . .

∗
xn

gives
∗
xi ∝ Ci , where C is some constant that depends on

the number of units and their relative precision (Howard
and Shankar 2018). Because of the properties of the inverse
Laplace transform, the width of each receptive field goes up

proportional to the unit’s value of
∗
x. From this expression,

we can see that units are evenly spaced on a logarithmic
scale.

These properties imply that the set of units has greater

discriminability for smaller values of
∗
x; as

∗
x increases the

spacing between adjacent units increases. In the context
of sequential ratio testing, the distance to the bound in
the diffusion model can be understood as the distance to
the bound for the log likelihood ratio. The logarithmic

spacing of
∗
x means that discriminability is equivalent in

units of likelihood ratio. This is a unique prediction of this
approach that may have important theoretical and empirical
implications.

Implementing Response Bias and Imposing
a Response Deadline

This neural circuit is externally controllable via α(t). Note
that α(t) affects each unit in a way that is appropriate to
its value of s. It can be shown that affecting α(t) for a
single cell is equivalent to changing the slope of the f-i
curve relating firing rate to the magnitude of an internal
current (Liu et al. in press). Changing α(t) for all the
units in F(s) simply means to change the slope of all of
their f-i curves appropriately. There are many biologically
plausible mechanisms to rapidly change the slope of the
f-i curve of individual neurons (e.g., Chance et al. 2002;
Silver 2010). Because we can understand the implications of
manipulating α(t) in terms of the entire function F(s), this
lets us readily determine conditions to implement response
bias and change the boundary separation to comply with a
response deadline or even a continuously changing estimate
of the cost of further deliberation (Gershman et al. 2015).

In order to initialize a response bias as in Eq. 10, starting
from zero activation for all the units in both sets of F(s),
a pulse in α will push each set of units away from their
respective bound. The sum of the pulses across the two
accumulators is interpretable as the boundary separation.
Response bias can be simply implemented by providing a
different magnitude pulse to the two sets of accumulators. If
each set of units is given the same magnitude of a pulse in
α, there is no response bias. The accumulator that receives
the smaller pulse starts evidence accumulation closer to the
bound.

Similar mechanisms can be used to change the effective
distance to the response boundary rapidly. In the simulations
below, we assume that the appropriate response is executed

when the activation of the first entry in f̃ , f̃ (
∗
x1) reaches

a threshold. If f̃L(
∗
x1) is activated before f̃R(

∗
x1), option L

is selected. In the same way that αL/R(t) can be used to
initialize evidence accumulation by pushing FL/R(s) away
from the bound, so too can αL/R(t) be used to evolve
the two accumulators towards their respective bounds. By
setting both αL(t) and αR(t) to positive values, each set of
accumulators evolves towards their respective bounds. The
alternative that is closer to the decision bound when this
process begins will reach its bound sooner, executing the
corresponding response.

Neural Simulations

In order to demonstrate that this approach leads to neural
predictions that are in line with known neurophysiological
data, we provide simulations of two paradigms that have
received a great deal of attention in the neurophysiological
literature. We first show that during the random dot motion
paradigm units in F(s) show activity that resemble classic
integrator neurons such as those observed in monkey
LIP. We then show that during performance of a discrete

evidence accumulation paradigm, units in f̃ (
∗
x) show

receptive fields along the decision axis not unlike those in
mouse PPC.

Constant Input in the Random Dot Motion Paradigm We
simulated the random dot motion paradigm by letting α(t)

vary from moment to moment by drawing from a normal
distribution at each time step and setting αL(t) = −αR(t).
As in most applications of the diffusion model, different
levels of coherence were simulated by drawing from normal
distributions with different mean values for each of the
levels of coherence.8 Figure 4a shows the result of a
representative unit with s = 2.5 in F(s).

Figure 4a summarizes the results of these simulations.
Neurons in F(s) grow towards a bound in a noisy
way. When motion coherence is away from the neuron’s
preferred direction, the firing rate instead decreases towards
zero. The rate of increase is greater when there is more
motion coherence (left), resulting in faster responses for
higher motion coherence. When aligned to the time of
response, the unit’s firing appears tightly aligned. Although
the response is actually triggered by the activation of a
particular unit in f̃ , the activation in f̃ is in one-to-one
relationship with F(s) (see Eq. 11) and all of the units in
F(s) corresponding to the selected response monotonically
increase as the decision bound becomes more near.

8More precisely, we implemented Xt+� = Xt + A� + c
√

�N (0, 1).
The value of � was set to .001, A was 1.25, .83, and .625 across
conditions. X(0) = 0 and we terminated the decision when X = 1.
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Note that there is a slight curvature apparent in the model
neuron shown in Fig. 4a. This curvature is a consequence
of the exponential function in the Laplace transform. Choosing
different values of the s would have resulted in more or less
curvature. Note the model predicts that neurons encoding
the inverse transform would show supported receptive fields
as a function of distance from the decision point.

Information Accumulators and Position Along a Decision
Axis Figure 4b shows analytic results from deterministic
evidence accumulation. Analogous to the trials in the
Morcos and Harvey (2016) paper in which evidence was
only presented in favor of one option or the other, after
initialization on left trials, we set αL(t) to a fixed positive
constant X for the duration of the trial; αR(t) was set to
−X. On right trials, the situation was reversed. We show
the activation of units in f̃L(

∗
x) and f̃R(

∗
x) on each type of

trial. The model captures the prominent features of the data.
Units have receptive fields along a subset of the decision
axis. There are more units with receptive fields near the
time when the decision is reached. The width of receptive
fields near the bound is less than the width of receptive
fields further from the bound. Note that this is an analytic
solution. Had we simulated detailed trials with sequences
that included different amounts of net evidence, the units
would still have receptive fields along the net evidence axis.

Note that neurons encoding the transform would grow or
decay exponentially in this task as a function of distance to
the bound. These neurons would have the same relationship
to the neurons in Fig. 4b as border cells (Solstad et al.

2008; Campbell et al. 2018) do to one-dimensional place
cells (Howard et al. 2014). That is, in spatial navigation
tasks, border cells fire as if they encode an exponential
function of distance to an environmental border. If border
cells manifest a spectrum of decay rates, then they encode
the Laplace transform of distance to that border. Taking the
inverse transform would result in cells with receptive fields
that are activated in a circumscribed region of space (Lever
et al. 2009).

The results in Fig. 4b are closely analogous to predictions
for time cells and place cells from the same formalism
(Howard et al. 2014; Tiganj et al. 2018). Different sources
of evidence trigger different sequences leading to different
decisions; this is closely analogous to experimental results
from time and place. For instance, a recent study showed
that distinct stimuli in a working memory task trigger
distinct sequences of time cells in monkey lPFC (Tiganj
et al. 2018). Similarly, distinct sequences of place cells fire
as an animal moves from a starting point along distinct
trajectories (McNaughton and O’Keefe 1983).

Novel Neural Predictions

The present approach is conceptually very different from
previous neural implementations of evidence accumulation
models. In most prior models, the assumption is that many
neurons provide noisy exemplars of the decision variable;
an estimate of the decision variable can be extracted by
averaging over many neurons (e.g., Zandbelt et al. 2014). In
contrast, although the activity of units in F(s) is correlated

Fig. 4 The Laplace transform and the inverse transform capture key
findings from the neurobiology of evidence accumulation. a The
Laplace transform is shown for one value of s in a simulated ran-
dom dot motion experiment. In this simulation, αL(t) was set at each
moment to a normally distributed random variable with a mean that
differed across condition. In the solid curves, the mean was greater
than zero; in the dashed curves, the mean was less than zero for αL(t),
and thus greater than zero for αR(t). On the left, we see that the firing
rate grew with time after information began to accumulate; the rate and
direction of accumulation depended on the mean of the random vari-
able. When aligned to the time of response (right), firing rate showed a

tight coupling. If we changed the value of s, we would have observed
the same qualitative behavior, but with different rates of accumulation
and more or less curvature on average. Compare to Fig. 1a. b Heatmaps
for neurons participating in the inverse Laplace transform. Each line
is the firing rate of a neuron. Neurons participating in f̃L are shown
on the top; neurons participating in f̃R are shown on the bottom. On
the left, the firing rate is shown as a function of evidence (confounded
with time) when there is consistent evidence for the left option. On the
right, the activation is shown when there is consistent evidence for the
right option. Compare to Fig. 1b
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with the amount of instantaneous evidence, they are not
noisy exemplars of that scalar value. Rather, the Laplace
transform is written across many units with different
values of s. At any moment, the activity of different units
in F(s) is a known function of the decision variable,
leading to quantitative relationships both as a function of
time for a particular unit but also relationships between
units. Moreover, the model predicts specific relationships

between units in F(s) and f̃ (
∗
x), which should appear in

pairs in decision-making tasks. These properties lead to
several distinct neural predictions. These predictions are
summarized in Table 1 and detailed below.

Prediction 1: Exponential Functions The hypothesis that
the brain maintains an estimate of the Laplace transform
of the decision variable, rather than a linear function of
the decision variable leads to distinct predictions. Even in
circumstances where evidence is accumulating at a constant
rate, the activity of integrator neurons should not in general
be linear. Note that for values of x small relative to 1/s, it is
difficult to distinguish e−sx from 1−x. Moreover, the firing
rate as a function of time should be a function of the actual
evidence as well as changing decision bounds. However,
systematic deviation from linearity is a clear prediction of
the present approach.

Note that a recent literature has questioned whether infor-
mation accumulates continuously in information accumula-
tion neurons or whether it changes abruptly in discrete steps
(e.g., Latimer et al. 2015). One could imagine that the expo-
nential function is expressed as a statistical average over a
number of units each of which obey step-like evolution fol-
lowing the same constant hazard function. It is also possible
that work arguing for discrete steps in activation has not
considered the appropriate family of continuously evolving
activation. Indeed, recent work has begun to explore non-
linear models for activation as a function of time (Zoltowski
et al. 2018) and has found relatively nuanced results.

Prediction 2: Spectrum of s Values The most fundamential
prediction of the approach proposed here is that different
units coding for the decision variable integrate information
with different rate constants s. We can think of each
neuron’s value of 1/s as its “evidence constant.” The

Table 1 Summary of novel neural predictions

1. Exponential functions for evidence accumulation.

2. Spectrum of rate constants s.

3. Laplace/inverse pairs across tasks.

4. Linked non-uniform spectra of rate constants s and
∗
x.

See text for details

fundamental prediction of this approach is that s and 1/s) do
not take on the same value across neurons. Although it has
not to our knowledge been systematically studied, there is
evidence suggesting that neurons respond heterogeneously
during simple decision-making tasks. For instance, Figure 7
in Peixoto et al. (2018) appears to show that different units
discriminate the identity of a future response at different
points during a decision. The computational approach
proposed here requires heterogeneity in s values; a spectrum
of s values is essential to construct an estimate of x via the
Laplace domain.

In most RDM experiments, the decision variable fluc-
tuates in an unpredictable way from moment-to-moment.
Moreover, changing decision bounds would also change the
firing rate for many neurons simultaneusly. However, the
hypothesis that different units obey the same equations, but
with different values of s suggests a strategy for estimating
the spectrum. Although α(t) may fluctuate from moment
to moment based on the instantaneous evidence and per-
haps also with changing decision bounds, the same value
of α(t) is distributed to all of the neurons estimating F(s)

coding the distance to a particular bound. Thus, the momen-
tary variability is shared across units. Suppose we had two
simultaneously recorded LIP neurons with the same recep-
tive field and rate constants s1 and s2. On individual trials,
each unit would appear to fluctuate randomly over the trial
as the net evidence fluctuates. One unit would move like a
bead on a wire along the curve es1x(t); the other would move
like a bead on a wire along the curve es2x(t). Although the
fluctuations along each curve may appear random, plotting
the firing rate of one neuron as a function of the other would
result in a smooth exponential curve. In practice, one would
need to consider an appropriate time bin over which to aver-
age spikes and undoubtedly face other technical issues in
performing these analyses.

Prediction 3: Laplace/Inverse Pairs Across Tasks In this
paper, we have noted that integrator neurons observed in
RDM tasks have properties analogous to the Laplace trans-
form of distance to the bound, F(s), and that sequentially
activated cells in a virtual navigation decision task have
properties analogous to the inverse Laplace transform esti-

mating distance to the bound, f̃ (
∗
x). The hypothesis pre-

sented here requires that the inverse transform f̃ (
∗
x) is

constructed from the transform F(s). Moreover, the trigger
for the actual response in the RDM task is the activation

of units with the smallest value of
∗
x. This approach thus

requires that both forms of representation should be present
in the brain in both tasks.

In tasks where instantaneous evidence is under exper-
imental control and becomes available at discrete times
(such as the Morcos and Harvey 2016 task), the Laplace
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transform F(s) should remain fixed during periods of time
when no evidence is available. When evidence is provided,
neurons coding for the transform should gradually step up
(or step down) their firing as the decision bound they code
for becomes closer (or further away). Note also that one
can implement a leaky accumulator by including a non-zero
value to α(t) during periods of time when no evidence is
presented. Conversely, in tasks where the instantaneous evi-
dence is not well controlled, such as the RDM task, neurons
coding for f̃ (

∗
x) should still have “receptive fields” along

the decision axis, although in practice it may be much more
difficult to observe these receptive fields.

Geometrically, F(s) and f̃ (
∗
x) have different properties

that might be possible to distinguish experimentally even
in an RDM task where it is difficult to measure single-cell
receptive fields. Consider a hypothetical covariance matrix
observed over many neurons representing either F(s) or

f̃ (
∗
x) during an RDM task in which the animal chooses

among two alternative responses L and R. For units repre-
senting F(s), at the time of the response, the population
consists of two populations. That is, at the time of an L

response, neurons participating in FL(s) are maximally acti-
vated and neurons participating in FR(s) are deactivated.
This distinction will be reflected in the covariance matrix;
one would expect the first principal component of the
covariance matrix to correspond to this source of variance.
Now, for F(s), because neurons change their firing mono-
tonically along the decision axis, this principal component
will also load on other parts of the decision axis, changing
smoothly.9 In contrast, consider the set of neurons active
at the time of the response for a population representing

f̃ (
∗
x). Like F(s), that the population of neurons in f̃ (

∗
x)

active at the time of an L response is different than the pop-
ulation active at the time of an R response. However, unlike

F(s), because neurons in f̃ (
∗
x) have circumscribed recep-

tive fields along the decision axis, the neurons active at the
time of the response for L are not the same as the neurons
active, say, three quarters of the way along the decision axis
towards an L response. It may be possible to distinguish
these geometrical properties by examining the spectrum of
the covariance matrices.

We will avoid committing to predictions about what brain
regions (or populations) are responsible for coding F(s)

and which are responsible for coding f̃ (
∗
x) in any particular

task. It is clear that many brain regions participate in even
simple decisions (e.g., Peixoto et al. 2018). Moreover, the
task in Morcos and Harvey (2016) is relatively complicated
and may rely on very different cognitive mechanisms than

9Because the growth/decay of the units is not at the same rate for each
neuron, we would expect additional principal components to capture
this residual.

the RDM task. The prediction is that there should be some
regions that encode the transform and the inverse in any
particular evidence accumulation task; it is possible that
these regions vary across tasks.

Prediction 4: Linked Non-uniform Spectra of Rate Constants

s and
∗
x Experience with time cells and computational

considerations (Shankar and Howard 2013; Howard and
Shankar 2018) leads to the prediction that the spectra of

s and
∗
x values should be non-uniform. Although it may

be challenging to evaluate experimentally, Weber-Fechner
scaling also leads to a quantitatively precise prediction about
the form of the distribution.

It is now clear that time cells are not uniformly distributed.
As a sequence of time cells unfolds, there are more neu-
rons that fire early in the sequence and fewer that fire later
in the sequence. This phenomenon can be seen clearly from
the curvature of the central ridge in Fig. 2b and has been
evaluated statistically in a number of studies in many brain
regions (e.g., Kraus et al. 2013; Salz et al. 2016; Mello et al.
2015; Jin et al. 2009; Tiganj et al. 2018). If similar rules
govern the distribution of neurons coding for distance to a
decision bound, we would expect to find more neurons with

receptive fields near the bound, with small values of
∗
x, and

fewer neurons with receptive fields further from the bound

with larger values of
∗
x. Weber-Fechner scaling predicts fur-

ther that the number of cells with a value of
∗
x <

∗
xo should

go up with log
∗
xo, meaning that the probability of finding a

neuron with a value of
∗
xo should go down like 1/

∗
xo.

The computational approach proposed in this paper links

F(s) and f̃ (
∗
x). This naturally leads to the prediction that

the distributions of values for
∗
x and s are linked. Recalling

that
∗
x ≡ k/s enables us to extend the predictions about

the distribution of
∗
x values in populations representing f̃ (

∗
x)

to the distribution of s values in populations representing
F(s). There should be a larger number of neurons with large
values of s and fewer neurons with small values of s. Weber-
Fechner scaling predicts that the number of neurons in F(s)

with values of s > so should change linearly with log so.
Similarly, the probability of finding a neuron with a value
of so should go down like 1/so.

Discussion

The present paper describes a neural implementation of
the diffusion model (Ratcliff 1978). Rather than individual
neurons each providing a noisy estimate of the decision
variable, many neurons participate in a distributed code
representing distance to the decision bound. Neurons coding
for the Laplace transform of this distance have properties
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that resemble those of “integrator neurons” in regions such
as LIP. Neurons estimating the distance itself, constructed
from approximating the inverse transform, have receptive
fields along the decision axis.

Alternative Algorithmic Evidence Accumulation
Models in the Laplace Domain

In this paper, we have focused on implementation of the
diffusion model. However, it is straightforward to formulate
other algorithmic models in the Laplace domain. For
instance, in order to implement a race model, all that
needs to be done is to make αL and αR independent of
one another rather than anticorrelated as in the present
implementation of the diffusion model. Similarly, one
can implement a leak term (Busemeyer and Townsend
1993; Usher and McClelland 2001; Bogacz et al. 2006)
by including a constant negative term to each of the α(t)

values. The magnitude of the constant term is proportional
to the leak parameter.

Insofar as these approaches are equivalent to the
corresponding algorithmic model, adopting this form for
neural implementation entails at most subtle behavioral
distinctions to classic implementations of the diffusion
model. However, there is one unique property that follows
from this approach of formulating decision-making as
movement along a Weber-Fechner compressed decision
axis. As discussed above, the logarithmic compression

along the
∗
x axis means that the neural representation is not

equidiscriminable in the decision variable X, but in eX. If
X is understandable as the log likelihood ratio (3), then this
means that the magnitude of the change in the likelihood
ratio itself controls the change in the neural representation.
This would predict that the just-noticeable-differences in
the decision variable are controlled by the likelihood ratio
itself rather than the log likelihood ratio. In practice, this
prediction would be difficult to assess in any particular
experiment because in sequential decision-making tasks,
the likelihood ratio as a function of time is not a physical
observable but is inferred based on assumptions about the
processing capabilities of the observer.

Unification of WorkingMemory, Timing,
and Evidence Accumulation in the Laplace Domain

As mentioned in the introduction, many of the most influential
ideas in computational neuroscience are derived from cogni-
tive models developed without consideration of neural data.
Often in cognitive psychology, these models are treated as
independent of one another. One of the contributions of the
present paper is that it enables the formulation of cogni-
tive models of evidence accumulation in the same Laplace

transform formalism as cognitive models of other tasks,
including a range of memory and timing studies (Shankar
and Howard 2012; Howard et al. 2015; Singh et al. in press).
This paper also enables consideration of neural models of
evidence accumulation in the same formalism as neural
models of representations of time and space (Howard et al.
2014; Tiganj et al. 2018).

Although in cognitive psychology models of working
memory and evidence accumulation have been treated as
largely separate topics (but see Usher and McClelland 2001;
Davelaar et al. 2005), in computational neuroscience they
have been treated in much closer proximity. Indeed, the
state of a perfect integrator reflects its previous inputs (1).
In computational neuroscience, decision-making models
use similar recurrent dynamics (Wong et al. 2007; Wang
2002) that are used for working memory maintenance (e.g.,
Chaudhuri and Fiete 2016; Machens et al. 2005; Romo et al.
1999). At the neural level, a perfect integrator predicts stable
states in the absence of external activation (Funahashi et al.
1989), analogous to the binary presence of an item in a
fixed-capacity working memory buffer.

In cognitive psychology models of evidence accumula-
tion and timing have been more closely linked. Noting that
in the case of a constant drift rate, Xt is proportional to the
time since evidence accumulation began, models have used
integrators to model timing (Rivest and Bengio 2011; Simen
et al. 2011; Simen et al. 2013; Luzardo et al. 2017b; Balcı
and Simen 2016). “Diffusion models for timing” are also
closely related to models of learning (Gallistel and Gibbon
2000; Killeen and Fetterman 1988; Luzardo et al. 2017a)
and the scalar expectancy theory of timing (Gibbon and
Church 1984; Gibbon et al. 1984). At the neural level, these
models predict that during timing tasks, firing rate should
grow monotonically, a phenomenon that has been reported
(e.g., Kim et al. 2013; Xu et al. 2014).

In both of these cases, the neural implementations of
the cognitive models have found some neurophysiologi-
cal support. In each of the foregoing cases, neural models
implement a scalar value from an algorithmic cognitive
model as an average over many representative neurons. In
the case of timing models as in evidence accumulation mod-
els, this predicts monotonically increasing or decreasing
firing rates. As we have seen here, monotonically increas-
ing or decreasing functions can be generated by neurons
participating in the Laplace transform of a function rep-
resenting a scalar value over a set of neurons. However,
the present framework also predicts that populations with
monotonically changing firing rates should be coupled to
populations with sequentially activated neurons like those

found in f̃ (
∗
x) and that these two forms of representation are

closely connected to one another. Thus, findings that work-
ing memory maintenance is accompanied by sequentially
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activated cells during the delay period of a working memory
task (Tiganj et al. 2018) or that timing tasks give rise to
sequentially activated neurons (Tiganj et al. 2017) can be
readily reconciled with the present approach but are dif-
ficult to reconcile with models that require representation
of a scalar value as an average over many representative
neurons. The present approach and much previous work in
computational neuroscience differ in their account of how
information is distributed over neurons.

Function representation via the Laplace domain also
has potentially great explanatory power in developing
neural models of relatively complex computations. It has
been long appreciated that computations can be efficiently
performed in the Laplace domain. In much the same way
that understanding of the mathematics lets us readily specify
how to set α to accomplish various goals such as initializing
with a specific response bias in the evidence accumulation
framework described here, access to the Laplace domain
lets us readily write down mechanisms for translation
of functions (Shankar et al. 2016) or perform arithmetic
operations on different functions (Howard et al. 2015).
Computations in the Laplace domain require a large-scale
organization for macroscopic numbers of neurons; this
large-scale organization enables basic computations. Insofar
as many different forms of information in the brain use
the same form of compact compressed coding, one can
in principle recycle the same computational mechanisms
for very different forms of information, including sensory
representations, representations of time and space, or
numerosity.

Acknowledgements We acknowledge helpful discussions with Bing
Brunton, Josh Gold, Chandramouli Chandrasekaran, Chris Harvey,
Ben Scott, and Karthik Shankar.

Funding Information This work was supported by NIBIB R01EB022864,
ONR MURI N00014-16-1-2832, and NIMH R01MH112169.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

References

Atkinson, R.C., & Shiffrin, R.M. (1968). Human memory: a proposed
system and its control processes. In Spence, K.W., & Spence,
J.T. (Eds.) The psychology of learning and motivation, (Vol. 2
pp. 89–105). New York: Academic Press.

Balcı, F., & Simen, P. (2016). A decision model of timing. Curr. Opin.
Behav. Sci., 8, 94–101.

Beck, J.M., Ma, W.J., Kiani, R., Hanks, T., Churchland, A.K.,
Roitman, J., Pouget, A. (2008). Probabilistic population codes for
bayesian decision making. Neuron, 60(6), 1142–1152.

Bogacz, R., Brown, E., Moehlis, J., Holmes, P., Cohen, J.D. (2006).
The physics of optimal decisionmaking: a formal analysis of
models of performance in two-alternative forced-choice tasks.
Psychol. Rev., 113(4), 700–765.

Bolkan, S.S., Stujenske, J.M., Parnaudeau, S., Spellman, T.J., Rauffen-
bart, C., Abbas, A.I., Kellendonk, C. (2017). Thalamic projections
sustain prefrontal activity during working memory maintenance.
Nat. Neurosci., 20(7), 987–996. https://doi.org/10.1038/nn.4568.

Britten, K.H., Shadlen, M.N., Newsome, W.T., Movshon, J.A.
(1992). The analysis of visual motion: a comparison of neuronal
andpsychophysical performance. J. Neurosci., 12(12), 4745–4765.

Brody, C.D., & Hanks, T.D. (2016). Neural underpinnings of the
evidence accumulator. Curr. Opin. Neurobiol., 37, 149–157.
https://doi.org/10.1016/j.conb.2016.01.003.

Brown, S.D., & Heathcote, A. (2008). The simplest complete model
of choice response time: linear ballisticaccumulation. Cogn.
Psychol., 57(3), 153–78. https://doi.org/10.1016/j.cogpsych.2007.
12.002.

Brunton, B.W., Botvinick, M.M., Brody, C.D. (2013). Rats and
humans can optimally accumulate evidence for decision-making.
Science, 340(6128), 95–98.

Busemeyer, J.R., & Townsend, J.T. (1993). Decision field theory: a
dynamic-cognitive approach todecision making in an uncertain
environment. Psychol. Rev., 100(3), 432.

Campbell, M.G., Ocko, S.A., Mallory, C.S., Low, I.I.C., Gan-
guli, S., Giocomo, L.M. (2018). Principles governing the inte-
gration of landmark and self-motion cues in entorhinal cor-
tical codes for navigation. Nat. Neurosci., 21(8), 1096–1106.
https://doi.org/10.1038/s41593-018-0189-y.

Chance, F.S., Abbott, L.F., Reyes, A.D. (2002). Gain modulation from
background synaptic input. Neuron, 35(4), 773–82.

Chaudhuri, R., & Fiete, I. (2016). Computational principles of
memory. Nat. Neurosci., 19(3), 394–403.

Compte, A., Brunel, N., Goldman-Rakic, P.S., Wang, X.J. (2000).
Synaptic mechanisms and network dynamics underlying spatial
working memory in a cortical network model. Cereb. Cortex,
10(9), 910–23.

Cook, E.P., & Maunsell, J.H. (2002). Dynamics of neuronal responses
in macaque MT and VIP during motion detection. Nat. Neurosci.,
5(10), 985.

Davelaar, E.J., Goshen-Gottstein, Y., Ashkenazi, A., Haarmann, H.J.,
Usher, M. (2005). The demise of short-term memory revisited:
empirical and computational investigations of recency effects.
Psychol. Rev., 112(1), 3–42.

Funahashi, S., Bruce, C.J., Goldman-Rakic, P.S. (1989). Mnemonic
coding of visual space in the monkey’s dorsolateral prefrontalcor-
tex. J. Neurophysiol., 61(2), 331–349.

Fuster, J.M., & Jervey, J.P. (1982). Neuronal firing in the inferotempo-
ral cortex of the monkey in a visual memory task. J. Neurosci., 2,
361–375.

Gallistel, C.R., & Gibbon, J. (2000). Time, rate, and conditioning.
Psychol. Rev., 107(2), 289–344.

Gershman, S.J., Horvitz, E.J., Tenenbaum, J.B. (2015). Computational
rationality: a converging paradigm for intelligence in brains,
minds, and machines. Science, 349(6245), 273–278.

Gibbon, J., & Church, R.M. (1984). Sources of variance in an
information processing theory of timing. In Roitblat, H.L.,
Terrace, H.S., Bever, T.G. (Eds.) Animal cognition (pp. 465–488).
Hillsdale: Erlbaum.

Gibbon, J., Church, R.M., Meck, W.H. (1984). Scalar timing in
memory. Ann. N. Y. Acad. Sci., 423(1), 52–77.

Gold, J.I., & Shadlen, M.N. (2007). The neural basis of decision
making. Annual Review Neuroscience, 30, 535–574.

Goldman-Rakic, P.S. (1996). Regional and cellular fractionation of
working memory. Proc. Natl. Acad. Sci. USA, 93(24), 13473–
13480.

Goldman, M.S. (2009). Memory without feedback in a neural network.
Neuron, 61(4), 621–634.

Gothard, K.M., Skaggs, W.E., Moore, K.M., McNaughton, B.L.
(1996). Binding of hippocampal CA1 neural activity to multiple

Comput Brain Behav (2018) 1:237–251 249

https://doi.org/10.1038/nn.4568
https://doi.org/10.1016/j.conb.2016.01.003
https://doi.org/10.1016/j.cogpsych.2007.12.002
https://doi.org/10.1016/j.cogpsych.2007.12.002
https://doi.org/10.1038/s41593-018-0189-y


reference frames in a landmark-based navigation task. J.
Neurosci., 16(2), 823–35.

Gothard, K.M., Hoffman, K.L., Battaglia, F.P., McNaughton, B.L.
(2001). Dentate gyrus and CA1 ensemble activity during spatial
reference frame shifts in the presence and absence of visual input.
J. Neurosci., 21(18), 7284–92.

Hanes, D.P., & Schall, J.D. (1996). Neural control of voluntary
movement initiation. Science, 274(5286), 427–430.

Hanks, T.D., Kopec, C.D., Brunton, B.W., Duan, C.A., Erlich,
J.C., Brody, C.D. (2015). Distinct relationships of parietal and
prefrontal cortices to evidence accumulation. Nature, 520(7546),
220.

Howard, M.W., MacDonald, C.J., Tiganj, Z., Shankar, K.H., Du,
Q., Hasselmo, M.E., Eichenbaum, H. (2014). A unified math-
ematical framework for coding time, space, and sequences
in the hippocampal region. J. Neurosci., 34(13), 4692–707.
https://doi.org/10.1523/JNEUROSCI.5808-12.2014.

Howard, M.W., Shankar, K.H., Aue, W., Criss, A.H. (2015). A
distributed representation of internal time. Psychol. Rev., 122(1),
24–53.

Howard, M.W., & Shankar, K.H. (2018). Neural scaling laws for
an uncertain world. Psychol. Rev., 125, 47–58. https://doi.org/10.
1037/rev0000081.

Jin, D.Z., Fujii, N., Graybiel, A.M. (2009). Neural representation
of time in cortico-basal ganglia circuits. Proc. Natl. Acad. Sci.,
106(45), 19156–19161.

Katz, L.N., Yates, J.L., Pillow, J.W., Huk, A.C. (2016). Dissociated
functional significance of decision-related activityin the primate
dorsal stream. Nature, 535(7611), 285–8. https://doi.org/10.1038/
nature18617.

Kiani, R., Hanks, T.D., Shadlen, M.N. (2008). Bounded integration in
parietal cortex underlies decisions even when viewing duration is
dictated by the environment. J. Neurosci., 28(12), 3017–3029.

Killeen, P.R., & Fetterman, J.G. (1988). A behavioral theory of timing.
Psychol. Rev., 95(2), 274–295.

Kim, J., Ghim, J.W., Lee, J.H., Jung, M.W. (2013). Neural correlates
of interval timing in rodent prefrontal cortex. J. Neurosci., 33(34),
13834–47. https://doi.org/10.1523/JNEUROSCI.1443-13.2013.

Kraus, B.J., Robinson, R.J. II., White, J.A., Eichenbaum, H., Has-
selmo, M.E. (2013). Hippocampal “time cells”: time versus path
integration. Neuron, 78(6), 1090–101. https://doi.org/10.1016/j.
neuron.2013.04.015.

Laming, D.R.J. (1968). Information theory of choice-reaction times.
Latimer, K.W., Yates, J.L., Meister, M.L., Huk, A.C., Pillow, J.W.

(2015). Single-trial spike trains in parietal cortex reveal discrete
steps during decision-making. Science, 349(6244), 184–187.

Lever, C., Burton, S., Jeewajee, A., O’Keefe, J., Burgess, N. (2009).
Boundary vector cells in the subiculum of the hippocampal
formation. J. Neurosci., 29(31), 9771–7.

Link, S.W. (1975). The relative judgment theory of two choice
response time. J. Math. Psychol., 12(1), 114–135.

Lisman, J.E., & Idiart, M.A. (1995). Storage of 7 ± 2 short-term
memories in oscillatory subcycles. Science, 267, 1512–1515.

Liu, Y., Tiganj, Z., Hasselmo, M.E., Howard, M.W. (in press). A neural
microcircuit model for a scalable scale-invariant representation
oftime. Hippocampus.

Luce, R.D. (1986). Response times: their role in inferring elementary
mental organization (No. 8). Oxford: Oxford University Press on
Demand.

Luzardo, A., Alonso, E., Mondragón, E. (2017a). A Rescorla-Wagner
drift-diffusion model of conditioning and timing. PLoS Com-
put. Biol., 13(11), e1005796. https://doi.org/10.1371/journal.pcbi.
1005796.

Luzardo, A., Rivest, F., Alonso, E., Ludvig, E.A. (2017b). A drift–
diffusion model of interval timing in the peak procedure. J. Math.
Psychol., 77, 111–123. https://doi.org/10.1016/j.jmp.2016.10.002.

MacDonald, C.J., Lepage, K.Q., Eden, U.T., Eichenbaum, H. (2011).
Hippocampal “time cells” bridge the gap in memory for
discontiguous events. Neuron, 71(4), 737–749.

Machens, C.K., Romo, R., Brody, C.D. (2005). Flexible control of
mutual inhibition: a neural model of two-interval discrimination.
Science, 307(5712), 1121–1124.

Mau, W., Sullivan, D.W., Kinsky, N.R., Hasselmo, M.E., Howard,
M.W., Eichenbaum, H. (2018). The same hippocampal CA1
population simultaneously codes temporal information over
multiple timescales. Curr. Biol., 28, 1499–1508.

McNaughton, B.L., & O’Keefe, J. (1983). The contributions of
position, direction, and velocity to single unit activity in the
hippocampus of freely-moving rats. Exp. Brain Res., 52(1), 41–
9.

Meister, M.L.R., Hennig, J.A., Huk, A.C. (2013). Signal mul-
tiplexing and single-neuron computations in lateral intrapari-
etal area during decision-making. J. Neurosci., 33(6), 2254–67.
https://doi.org/10.1523/JNEUROSCI.2984-12.2013.

Mello, G.B., Soares, S., Paton, J.J. (2015). A scalable population code
for time in the striatum. Curr. Biol., 25(9), 1113–1122.

Morcos, A.S., & Harvey, C.D. (2016). History-dependent variability
in population dynamics during evidence accumulation in cortex.
Nat. Neurosci., 19(12), 1672–1681.

Newsome, W.T., Britten, K.H., Movshon, J.A. (1989). Neuronal
correlates of a perceptual decision. Nature, 341(6237), 52.

Pastalkova, E., Itskov, V., Amarasingham, A., Buzsaki, G. (2008).
Internally generated cell assembly sequences in the rat hippocam-
pus. Science, 321(5894), 1322–7.

Peixoto, D., Kiani, R., Chandrasekaran, C., Ryu, S.I., Shenoy,
K.V., Newsome, W.T. (2018). Population dynamics of choice
representation in dorsal premotor and primary motor cortex.
bioRxiv, 283960.

Post, E. (1930). Generalized differentiation. Trans. Am. Math. Soc., 32,
723–781.

Ratcliff, R. (1978). A theory of memory retrieval. Psychol. Rev., 85,
59–108.

Ratcliff, R., & McKoon, G. (2008). The diffusion decision model:
theory and data for two-choice decision tasks. Neural Comput.,
20(4), 873–922.

Rivest, F., & Bengio, Y. (2011). Adaptive drift-diffusion process to
learn time intervals. arXiv:1103.2382.

Roitman, J.D., & Shadlen, M.N. (2002). Response of neurons in the
lateral intraparietal area during a combined visual discrimination
reaction time task. J. Neurosci., 22(21), 9475–9489.

Romo, R., Brody, C.D., Hernández, A., Lemus, L. (1999). Neuronal
correlates of parametric working memory in the prefrontal cortex.
Nature, 399(6735), 470.

Salz, D.M., Tiganj, Z., Khasnabish, S., Kohley, A., Sheehan,
D., Howard, M.W., Eichenbaum, H. (2016). Time cells in
hippocampal area CA3. J. Neurosci., 36, 7476–7484.

Schultz, W., Dayan, P., Montague, P.R. (1997). A neural substrate of
prediction and reward. Science, 275, 1593–1599.

Scott, B.B., Constantinople, C.M., Akrami, A., Hanks, T.D., Brody,
C.D., Tank, D.W. (2017). Fronto-parietal cortical circuits encode
accumulated evidence with a diversity of timescales. Neuron,
95(2), 385–398.

Shadlen, M.N., & Newsome, W.T. (2001). Neural basis of a perceptual
decision in the parietal cortex (area LIP) of the rhesus monkey. J.
Neurophys., 86(4), 1916–1936.

Shankar, K.H., & Howard, M.W. (2012). A scale-invariant internal
representation of time. Neural Comput., 24(1), 134–193.

Shankar, K.H., & Howard, M.W. (2013). Optimally fuzzy temporal
memory. J. Mach. Learn. Res., 14, 3753–3780.

Shankar, K.H., Singh, I., Howard, M.W. (2016). Neural mechanism
to simulate a scale-invariant future. Neural Comput., 28, 2594–
2627.

250 Comput Brain Behav (2018) 1:237–251

https://doi.org/10.1523/JNEUROSCI.5808-12.2014
https://doi.org/10.1037/rev0000081
https://doi.org/10.1037/rev0000081
https://doi.org/10.1038/nature18617
https://doi.org/10.1038/nature18617
https://doi.org/10.1523/JNEUROSCI.1443-13.2013
https://doi.org/10.1016/j.neuron.2013.04.015
https://doi.org/10.1016/j.neuron.2013.04.015
https://doi.org/10.1371/journal.pcbi.1005796
https://doi.org/10.1371/journal.pcbi.1005796
https://doi.org/10.1016/j.jmp.2016.10.002
https://doi.org/10.1523/JNEUROSCI.2984-12.2013
http://arXiv.org/abs/1103.2382


Silver, R.A. (2010). Neuronal arithmetic. Nat. Rev. Neurosci., 11(7),
474–489.

Simen, P., Balci, F., de Souza, L., Cohen, J.D., Holmes, P. (2011).
A model of interval timing by neural integration. J. Neurosci.,
31(25), 9238–53. https://doi.org/10.1523/JNEUROSCI.3121-10.
2011.

Simen, P., Rivest, F., Ludvig, E.A., Balci, F., Killeen, P. (2013).
Timescale invariance in the pacemaker-accumulator family of
timing models. Timing & Time Perception, 1(2), 159–188.
https://doi.org/10.1163/22134468-00002018.

Singh, I., Tiganj, Z., Howard, M.W. (in press). Is working memory
stored along a logarithmic timeline? Converging evidence from
neuroscience, behavior and models. Neurobiology of Learning and
Memory.

Smith, P.L., & Ratcliff, R. (2004). Psychology and neurobiology of
simple decisions. Trends Neurosci., 27(3), 161–8.

Solstad, T., Boccara, C.N., Kropff, E., Moser, M.B., Moser, E.I.
(2008). Representation of geometric borders in the entorhinal
cortex. Science, 322(5909), 1865–8.

Sutton, R.S., & Barto, A.G. (1981). Toward a modern theory of
adaptive networks: expectation and prediction. Psychol. Rev., 88,
135–171.

Tiganj, Z., Hasselmo, M.E., Howard, M.W. (2015). A simple
biophysically plausible model for long time constants in single
neurons. Hippocampus, 25(1), 27–37.

Tiganj, Z., Kim, J., Jung, M.W., Howard, M.W. (2017). Sequential
firing codes for time in rodent mPFC. Cereb. Cortex, 27, 5663–
5671.

Tiganj, Z., Cromer, J.A., Roy, J.E., Miller, E.K., Howard, M.W.
(2018). Compressed timeline of recent experience in monkey
lPFC. J. Cogn. Neurosci., 30, 935–950.

Tsao, A., Sugar, J., Lu, L., Wang, C., Knierim, J.J., Moser, M.B.,
Moser, E.I. (2018). Integrating time from experience in the lateral
entorhinal cortex. Nature. https://doi.org/10.1038/s41586-018-
0459-6.

Usher, M., & McClelland, J.L. (2001). The time course of perceptual
choice: the leaky, competing accumulator model. Psychol. Rev.,
108(3), 550–92.

Waelti, P., Dickinson, A., Schultz, W. (2001). Dopamine responses
comply with basic assumptions of formal learning theory. Nature,
412(6842), 43–8.

Wald, A. (1945). Sequential tests of statistical hypotheses. Ann. Math.
Stat., 16(2), 117–186.

Wald, A. (1947). Foundations of a general theory of sequential
decision functions. Econometrica, Journal of the Econometric
Society, 15, 279–313.

Wald, A., & Wolfowitz, J. (1948). Optimum character of the sequential
probability ratio test. The Annals of Mathematical Statistics, 19,
326–339.

Wang, X.J. (2002). Probabilistic decision making by slow reverbera-
tion in cortical circuits. Neuron, 36(5), 955–968.

Wang, X.J. (2008). Decision making in recurrent neuronal circuits.
Neuron, 60(2), 215–234.

Wong, K.F., Huk, A.C., Shadlen, M.N., Wang, X.J. (2007).
Neural circuit dynamics underlying accumulation oftime-varying
evidence during perceptual decision making. Front. Comput.
Neurosci., 1, 6.

Xu, M., Zhang, S.-y., Dan, Y., Poo, M.-m. (2014). Representation
of interval timing by temporally scalable firing patterns in rat
prefrontal cortex. Proc. Natl. Acad. Sci., 111(1), 480–485.

Zandbelt, B., Purcell, B.A., Palmeri, T.J., Logan, G.D., Schall, J.D.
(2014). Response times from ensembles of accumulators. Proc.
Natl. Acad. Sci, 111(7), 2848–2853.

Zhang, H., & Maloney, L.T. (2012). Ubiquitous log odds: a
common representation of probability and frequency distortion in
perception, action, and cognition. Front. Neurosci., 6, 1.

Zoltowski, D.M., Latimer, K.W., Yates, J.L., Huk, A.C., Pillow,
J.W. (2018). Discrete stepping and nonlinear ramping dynamics
underlie spiking responses of lip neurons during decision-making.
bioRxiv, 433458.

Comput Brain Behav (2018) 1:237–251 251

https://doi.org/10.1523/JNEUROSCI.3121-10.2011
https://doi.org/10.1523/JNEUROSCI.3121-10.2011
https://doi.org/10.1163/22134468-00002018
https://doi.org/10.1038/s41586-018-0459-6
https://doi.org/10.1038/s41586-018-0459-6

	Evidence Accumulation in a Laplace Domain Decision Space
	Abstract
	The Diffusion Model and Sequential Sampling
	Neural Evidence for Evidence Accumulation Models
	Neurons that Integrate to a Bound
	Sequential Neural Responses During Evidence Accumulation


	The Laplace Transform in Cognitive Science and Computational Neuroscience
	The Laplace Transform Contains all the Information About the Transformed Function
	Generalization to Hidden Variables Other than Time
	Optimal Weber-Fechner Distribution of s



	The Laplace Transform of the Diffusion Model
	Compression of 0mu mumu xxdottedx* Gives Equal Discriminability in Probability Space
	Implementing Response Bias and Imposing a Response Deadline
	Neural Simulations
	Constant Input in the Random Dot Motion Paradigm
	Information Accumulators and Position Along a Decision Axis


	Novel Neural Predictions
	Prediction 1: Exponential Functions
	Prediction 2: Spectrum of s Values
	Prediction 3: Laplace/Inverse Pairs Across Tasks
	Prediction 4: Linked Non-uniform Spectra of Rate Constants s and 0mu mumu xxdottedx*



	Discussion
	Alternative Algorithmic Evidence Accumulation Models in the Laplace Domain
	Unification of Working Memory, Timing, and Evidence Accumulation in the Laplace Domain

	Acknowledgements
	Funding Information
	Publisher's Note
	References


