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Abstract
Cross-validation (CV) is increasingly popular as a generic method to adjudicate between mathematical models of cognition
and behavior. In order to measure model generalizability, CV quantifies out-of-sample predictive performance, and the
CV preference goes to the model that predicted the out-of-sample data best. The advantages of CV include theoretic
simplicity and practical feasibility. Despite its prominence, however, the limitations of CV are often underappreciated. Here,
we demonstrate the limitations of a particular form of CV—Bayesian leave-one-out cross-validation or LOO—with three
concrete examples. In each example, a data set of infinite size is perfectly in line with the predictions of a simple model
(i.e., a general law or invariance). Nevertheless, LOO shows bounded and relatively modest support for the simple model.
We conclude that CV is not a panacea for model selection.
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[...] if you can’t do simple problems, how can you do
complicated ones?

Dennis Lindley (1985, p. 65)

Model selection is a perennial problem, both in mathemati-
cal psychology (e.g., the three special issues for the Journal
of Mathematical Psychology: Mulder and Wagenmakers
2016; Myung et al. 2000; Wagenmakers and Waldorp 2006)
and in statistics (e.g., Ando 2010; Burnham and Ander-
son 2002; Claeskens and Hjort 2008; Grünwald et al. 2005;
Wrinch and Jeffreys 1921). The main challenge for model
selection is known both as the bias-variance tradeoff and
as the parsimony-fit tradeoff (e.g., Myung and Pitt 1997;
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Myung 2000). These tradeoffs form the basis of what may
be called the fundamental law of model selection: when
the goal is to assess a model’s predictive performance,
goodness-of-fit ought to be discounted by model complex-
ity. For instance, consider the comparison between two
regression models, MS and MC ; the “simple” model MS

has k predictors, whereas the “complex” model MC has l

predictors more, for a total of k+ l. Hence, MS is said to be
nested under MC . In such cases, MC always outperforms
MS in terms of goodness-of-fit (e.g., variance explained),
even when the l extra predictors are useless in the sense that
they capture only the idiosyncratic, nonreplicable noise in
the sample at hand. Consequently, model selection methods
that violate the fundamental law trivially fail, because they
prefer the most complex model regardless of the data.

All popular methods of model selection adhere to the
fundamental law in that they seek to chart a route that avoids
the Scylla of “overfitting” (i.e., overweighting goodness-of-
fit such that complex models receive an undue preference)
and the Charybdis of “underfitting” (i.e., overweighting
parsimony such that simple models receive an undue
preference). Both Scylla and Charybdis result in the
selection of models with poor predictive performance;
models that fall prey to Scylla mistake what is idiosyncratic
noise in the sample for replicable signal, leading to excess
variability in the parameter estimates; in contrast, models
that fall prey to Charybdis mistake what is replicable
signal for idiosyncratic noise, leading to bias in the
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parameter estimates. Both excess variability and bias result
in suboptimal predictions, that is, poor generalizability.

The cornucopia of model selection methods includes
(1) approximate methods such as AIC (Akaike 1973) and
BIC (Nathoo and Masson 2016; Schwarz 1978), which
punish complexity by an additive term that includes the
number of free parameters; (2) methods that quantify
predictive performance by averaging goodness-of-fit across
the model’s entire parameter space (i.e., the Bayes factor,
e.g., Jeffreys 1961; Kass and Raftery 1995; Ly et al.
2016; Rouder et al. 2012); note that the averaging process
indirectly penalizes complexity, as a vast parameter space
will generally contain large swathes that produce a poor
fit (Vandekerckhove et al. 2015); (3) methods based on
minimum description length (Grünwald 2007; Myung et al.
2006; Rissanen 2007), where the goal is the efficient
transmission of information, that is, a model and the data
it encodes; complex models take more bits to describe
and transmit; and (4) methods such as cross-validation
(CV; Browne 2000; Stone 1974) that assess predictive
performance directly, namely by separating the data in a part
that is used for fitting (i.e., the calibration set or training set)
and a part that is used to assess predictive adequacy (i.e., the
validation set or test set).

Each model selection method comes with its own set
of assumptions and operating characteristics which may or
may not be appropriate for the application at hand. For
instance, AIC and BIC assume that model complexity can
be approximated by counting the number of free parameters,
and the Bayes factor presupposes the availability of a
reasonable joint prior distribution across the parameter
space (Lee and Vanpaemel 2018). The focus of the current
manuscript is on CV, an increasingly popular and generic
model selection procedure (e.g., Doxas et al. 2010; Hastie
et al. 2008; Yarkoni and Westfall 2017). Specifically, our
investigation concerns leave-one-out CV, where the model
is trained on all observations except one, which then forms
the test set. The procedure is repeated for all n observations,
and the overall predictive CV performance is the sum of the
predictive scores for each of the n test sets.

Originally developed within a frequentist framework,
leave-one-out CV can also be executed within a Bayesian
framework; in the Bayesian framework, the predictions for
the test sets are based not on a point estimate but on
the entire posterior distribution (Geisser and Eddy 1979;
Gelfand et al. 1992; see also Geisser 1975). Henceforth, we
will refer to this Bayesian version of leave-one-out CV as
LOO (e.g., Gelman et al. 2014; Vehtari and Ojanen 2012;
Vehtari et al. 2017).1

1The LOO functionality is available through the R package “loo”
(Vehtari et al. 2018), see also http://mc-stan.org/loo/.

To foreshadow our conclusion, we demonstrate below
with three concrete examples how LOO can yield conclu-
sions that appear undesirable; specifically, in the idealized
case where there exists a data set of infinite size that is
perfectly consistent with the simple model MS , LOO will
nevertheless fail to strongly endorse MS . It has long been
known that CV has this property, termed “inconsistency”
(e.g., Shao 1993).2 Our examples demonstrate not just that
CV is inconsistent, but also serve to explicate the reason for
the inconsistency. Moreover, the examples show not only
that CV is inconsistent, that is, the support for the true MS

does not increase without bound,3 but they also show that
the degree of the support for the true MS is surprisingly
modest. One of our examples also reveals that, in contrast
to what is commonly assumed, the results for LOO can
depend strongly on the prior distribution, even asymptoti-
cally; finally, in all three examples, the observation of data
perfectly consistent with MS may nevertheless cause LOO
to decrease its preference for MS . Before we turn to the
three examples, we first introduce LOO in more detail.

Bayesian Leave-One-Out Cross-Validation

The general principle of cross-validation is to partition a
data set consisting of n observations y1, y2, . . . , yn into a
training set and a test set. The training set is used to fit the
model and the test set is used to evaluate the fitted model’s
predictive adequacy. LOO repeatedly partitions the data set
into a training set which consists of all data points except
the ith one, denoted as y−i , and then evaluates the predictive
density for the held-out data point yi . The log of these
predictive densities for all data points is summed to obtain
the LOO estimate of the expected log pointwise predictive
density (elpd; Gelman et al. 2014; Vehtari et al. 2017):4

elpdloo =
n∑

i=1

log p(yi | y−i ), (1)

where

p(yi | y−i ) =
∫

p(yi | θ) p(θ | y−i ) dθ (2)

2“[...] it is known to many statisticians (although a rigorous statement
has probably not been given in the literature) that the cross-validation
with nv ≡ 1 is asymptotically incorrect (inconsistent) and is too
conservative in the sense that it tends to select an unnecessarily large
model” (Shao 1993, p. 486).
3The authors agree with Bayarri et al. (2012, p. 1553) who argued that
“[...] it would be philosophically troubling to be in a situation with
infinite data generated from one of the models being considered, and
not choosing the correct model.”
4Note that the following expressions are conditional on a specific
model. However, we have omitted conditioning on the model for
enhanced legibility.

http://mc-stan.org/loo/
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is the leave-one-out predictive density for data point yi given
the remaining data points y−i and θ denotes the model
parameters.

It is insightful to note the close connection of LOO
to what Gelfand and Dey (1994) called the pseudo-Bayes
factor (PSBF) which they attribute to Geisser and Eddy
(1979). Recall that the Bayes factor that compares models
M1 and M2 (Kass and Raftery 1995) is defined as:

BF12 = p(y | M1)

p(y | M2)
, (3)

where y = (y1, y2, . . . , yn) and p(y | Mm) = ∫
�m

p(y |
θm,Mm) p(θm | Mm) dθm denotes the marginal likelihood
of model Mm, m ∈ {1, 2}. The pseudo-Bayes factor (PSBF)
replaces the marginal likelihood of each model by the
product of the leave-one-out predictive densities so that:

PSBF12 =
∏n

i=1
p(yi | y−i ,M1)

∏n

i=1
p(yi | y−i ,M2)

= exp
{
�elpdM1,M2

loo

}
, (4)

where �elpdM1,M2
loo = elpdM1

loo − elpdM2
loo and elpdMm

loo
denotes the LOO estimate for model Mm, m ∈ {1, 2}. It
is also worth mentioning that LOO can be used to compute
model weights (e.g., Yao et al. in press; see also Burnham
and Anderson 2002; Wagenmakers and Farrell 2004) as
follows:

wm =
exp

{
elpdMm

loo

}

∑M

j=1
exp

{
elpd

Mj

loo

} , (5)

where wm denotes the model weight for model Mm and
M is the number of models under consideration. The LOO
results from the three examples below will be primarily
presented as weights.

Example 1: Induction

As a first example, we consider what is perhaps the
world’s oldest inference problem, one that has occupied
philosophers for over two millennia: given a general
law such as “all X’s have property Y,” how does the
accumulation of confirmatory instances (i.e., X’s that indeed
have property Y) increase our confidence in the general
law? Examples of such general laws include “all ravens are
black,” “all apples grow on apple trees,” “all neutral atoms
have the same number of protons and electrons,” and “all
children with Down syndrome have all or part of a third
copy of chromosome 21.”

To address this question statistically, we can compare
two models (e.g., Etz and Wagenmakers 2017; Wrinch

and Jeffreys 1921). The first model corresponds to the
general law and can be conceptualized as H0 : θ = 1,
where θ is a Bernoulli probability parameter. This model
predicts that only confirmatory instances are encountered.
The second model relaxes the general law and is therefore
more complex; it assigns θ a prior distribution, which, for
mathematical convenience, we take to be from the beta
family— consequently, we have H1 : θ ∼ Beta(a, b).

In the following, we assume that, in line with the
prediction from H0, only confirmatory instances are
observed. In such a scenario, we submit that there are at
least three desiderata for model selection. First, for any
sample size n > 0 of confirmatory instances, the data
ought to support the general law H0; second, as n increases,
so should the level of support in favor of H0; third, as n

increases without bound, the support in favor of H0 should
grow infinitely large.

How does LOO perform in this scenario? Before
proceeding, note that when LOO makes predictions based
on the maximum likelihood estimate (MLE), none of the
above desiderata are fulfilled. Any training set of size
n − 1 will contain k = n − 1 confirmatory instances,
such that the MLE under H1 is θ̂ = k/(n − 1) = 1; of
course, the general law H0 does not contain any adjustable
parameters and simply stipulates that θ = 1. When the
models’ predictive performance is evaluated for the test
set observation, it then transpires that both H0 and H1

have θ set to 1 (H0 on principle, H1 by virtue of having
seen the n − 1 confirmatory instances from the training
set), so that they make identical predictions. Consequently,
according to the maximum likelihood version of LOO, the
data are completely uninformative, no matter how many
confirmatory instances are observed.5

The Bayesian LOO makes predictions using the leave-
one-out posterior distribution for θ under H1, and this
means that it at least fulfills the first desideratum: the
prediction under H0 : θ = 1 is perfect, whereas the
prediction under H1 : θ ∼ Beta(a + n − 1, b) involves
values of θ that do not make such perfect predictions. As a
result, the Bayesian LOO will show that the general law H0

outpredicts H1 for the test set.
What happens when sample size n grows large?

Intuitively, two forces are in opposition: on the one hand,
as n grows large, the leave-one-out posterior distribution
of θ under the complex model H1 will be increasingly
concentrated near 1, generating predictions for the test set
data that are increasingly similar to those made by H0. On
the other hand, even with n large, the predictions from H1

will still be inferior to those from H0, and these inferior
predictions are multiplied by n, the number of test sets.

5This holds for k-fold CV in general.
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As it turns out, these two forces are asymptotically
in balance, so that the level of support in favor of H0

approaches a bound as n grows large. We first provide the
mathematical result and then show the outcome for a few
select scenarios.

Mathematical Result

In example 1, the data consist of n realizations drawn from
a Bernoulli distribution, denoted by yi , i = 1, 2, . . . , n.
Under H0, the success probability θ is fixed to 1 and
under H1, θ is assigned a Beta(a, b) prior. We consider
the case where only successes are observed, that is,
yi = 1, ∀i ∈ {1, 2, . . . , n}. The model corresponding to
H0 : θ = 1 has no free parameters and predicts yi = 1
with probability one. Therefore, the Bayesian LOO estimate
elpdH0

loo is equal to 0. To calculate the LOO estimate under
H1, one needs to be able to evaluate the predictive density
for a single data point given the remaining data points.
Recall that the posterior based on n − 1 observations is a
Beta(a+n−1, b) distribution. Consequently, the leave-one-
out predictive density is obtained as a generalization (with
a and b potentially different from 1) of Laplace’s rule of
succession applied to n − 1 observations,

p(yi | y−i ) =
∫ 1

0
θ︸︷︷︸

p(yi |θ)

�(a+n−1+b)
�(a+n−1) �(b)

θa+n−2 (1 − θ)b−1

︸ ︷︷ ︸
p(θ |y−i )

dθ

= a + n − 1

a + n − 1 + b
, (6)

and the Bayesian LOO estimate under H1 is given by

elpdH1
loo = n log

(
a + n − 1

a + n − 1 + b

)
. (7)

The difference in the LOO estimates is

�elpdH0,H1
loo = elpdH0

loo − elpdH1
loo

= −n log

(
a + n − 1

a + n − 1 + b

)
. (8)

As the number of confirmatory instances n grows large, the
difference in the LOO estimates approaches a bound (see
Appendix A for a derivation):

lim
n→∞ �elpdH0,H1

loo = b. (9)

Hence, the asymptotic difference in the Bayesian LOO
estimates under H0 and under H1 equals the Beta prior
parameter b. Consequently, the limit of the pseudo-Bayes
factor is

lim
n→∞ PSBF01 = exp {b} , (10)

and the limit of the model weight for H0 is

lim
n→∞ w0 = exp {b}

1 + exp {b} . (11)

Select Scenarios

The mathematical result can be applied to a series of
select scenarios. Figure 1 shows the LOO weight in favor
of the general law H0 as a function of the number of
confirmatory instances n, separately for five different prior
specifications under H1. The figure confirms that for each
prior specification, the LOO weight for H0 approaches its
asymptotic bound as n grows large.

We conclude the following: (1) as n grows large, the
support for the general law H0 approaches a bound; (2) for
many common prior distributions, this bound is surprisingly
low. For instance, the Laplace prior θ ∼ Beta(1,1) (case
d) yields a weight of e/(1 + e) ≈ 0.731; (3) contrary to
popular belief, our results provide an example of a situation
in which the results from LOO are highly dependent on
the prior distribution, even asymptotically. This is clear
from Eq. 11 and evidenced in Fig. 1; and (4) as shown
by case e in Fig. 1, the choice of Jeffreys’s prior (i.e.,
θ ∼ Beta(0.5, 0.5)) results in a function that approaches
the asymptote from above. This means that, according to
LOO, the observation of additional confirmatory instances
actually decreases the support for the general law, violating
the second desideratum outlined above. This violation can
be explained by the fact that the confirmatory instances
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Fig. 1 Example 1: LOO weights for H0 : θ = 1 as a function
of the number of confirmatory instances n, evaluated in relation to
five different prior specifications for H1: a H1 : θ ∼ Beta(1, 5); b
H1 : θ ∼ Beta(5, 5); c H1 : θ ∼ Beta(2, 2); d H1 : θ ∼ Beta(1, 1);
and e H1 : θ ∼ Beta(0.5, 0.5). The dotted horizontal lines indicate
the corresponding analytical asymptotic bounds (see text for details).
Available at https://tinyurl.com/ya2r4gx8 under CC license https://
creativecommons.org/licenses/by/2.0/
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help the complex model H1 concentrate more mass near 1,
thereby better mimicking the predictions from the simple
model H0. For some prior choices, this increased ability to
mimic outweighs the fact that the additional confirmatory
instances are better predicted by H0 than by H1.

One counterargument to this demonstration could be
that, despite its venerable history, the case of induction
is somewhat idiosyncratic, having to do more with logic
than with statistics. To rebut this argument, we present two
additional examples.

Example 2: Chance

As a second example, we consider the case where the
general law states that the Bernoulli probability parameter
θ equals 1/2 rather than 1. Processes that may be guided by
such a law include “the probability that a randomly chosen
digit from the decimal expansion of π is odd rather than
even” (Gronau and Wagenmakers in press), “the probability
that a particular uranium-238 atom will decay in the next
4.5 billion years,” or “the probability that an extrovert
participant in an experiment on extra-sensory perception
correctly predicts whether an erotic picture will appear on
the right or on the left side of a computer screen” (Bem
2011).

Hence, the general law holds that H0 : θ = 1/2, and
the model that relaxes that law is given by H1 : θ ∼
Beta(a, b), as in example 1. Also, similar to example 1, we
consider the situation where the observed data are perfectly
consistent with the predictions from H0. To accomplish this,
we consider only even sample sizes n and set the number
of successes k equal to n/2. In other words, the binary
data come as pairs, where one member is a success and
the other is a failure. The general desiderata are similar
to those from example 1: First, for any sample size with
k = n/2 successes, the data ought to support the general law
H0; second, as n increases (for n even and with k = n/2
successes), so should the level of support in favor of H0;
third, as n increases without bound, the support in favor of
H0 should grow infinity large.

Mathematical Result

In example 2, the data consist again of n realizations
drawn from a Bernoulli distribution, denoted by yi , i =
1, 2, . . . , n. Under H0, the success probability θ is now
fixed to 1/2; under H1, θ is again assigned a Beta(a, b)

prior. The model corresponding to H0 : θ = 1/2 has
no free parameters and predicts yi = 0 with probability
1/2 and yi = 1 with probability 1/2. Therefore, the LOO
estimate is given by elpdH0

loo = −n log (2). To calculate the
LOO estimate under H1, one needs to be able to evaluate

the predictive density for a single data point given the
remaining data points. Recall that the posterior based on
n − 1 observations is a Beta(a + k−i , b + n − 1 − k−i )

distribution, where k−i = ∑
j 	=iyj denotes the number

of successes based on all data points except the ith one.
Consequently, the leave-one-out predictive density is given
by:

p(yi |y−i ) =
∫ 1

0
θyi (1− θ)1−yi

︸ ︷︷ ︸
p(yi |θ)

× �(a+b+n−1)
�(a+k−i ) �(b+n−k−i−1)

θa+k−i−1 (1 − θ)b+n−k−i−2

︸ ︷︷ ︸
p(θ |y−i )

dθ

=
⎧
⎨

⎩

a+k−1
a+b+n−1 if yi = 1

b+n−k−1
a+b+n−1 if yi = 0,

(12)

where k = ∑n
i=1yi denotes the total number of successes.

Example 2 considers the case where n is even and the
number of successes k equals n

2 . The Bayesian LOO
estimate under H1 is then given by:

elpdH1
loo = n

2
log

(
a+ n

2 −1

a+b+n−1

)
+ n

2
log

(
b+ n

2 − 1

a+b + n − 1

)
.

(13)

The difference in the LOO estimates can be written as

�elpdH0,H1
loo = n

2
log

(
a + b + n − 1

2a + n − 2

)

+n

2
log

(
a + b + n − 1

2b + n − 2

)
. (14)

As the even sample size n grows large, the difference in the
LOO estimates approaches a bound (see Appendix B for a
derivation):

lim
n→∞ �elpdH0,H1

loo = 1. (15)

Consequently, the limit of the pseudo-Bayes factor is

lim
n→∞ PSBF01 = e ≈ 2.718, (16)

and the limit of the model weight for H0 is

lim
n→∞ w0 = e

1 + e
≈ 0.731. (17)

Select Scenarios

The mathematical result can be applied to a series of select
scenarios, as before. Figure 2 shows the LOO weight in
favor of the general law H0 as a function of the even
number of observations n, separately for five different prior
specifications under H1. The figure confirms that for each
prior specification, the LOO weight for H0 approaches its
asymptotic bound as n grows large.
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Fig. 2 Example 2: LOO weights for H0 : θ = 1/2 as a function of the
number of observations n, where the number of successes k = n/2,
evaluated in relation to five different prior specifications for H1: a
H1 : θ ∼ Beta(1, 5); b H1 : θ ∼ Beta(5, 5); c H1 : θ ∼
Beta(2, 2); d H1 : θ ∼ Beta(1, 1); and e H1 : θ ∼ Beta(0.5, 0.5).
The dotted horizontal line indicates the corresponding analytical
asymptotic bound. Note that only even sample sizes are displayed (see
text for details). Available at https://tinyurl.com/y8azu4hc under CC
license https://creativecommons.org/licenses/by/2.0/

We conclude the following: (1) as n grows large, the
support for the general law H0 approaches a bound;
(2) in contrast to example 1, this bound is independent
of the particular choice of Beta prior distribution for
θ under H1; however, consistent with example 1, this
bound is surprisingly low. Even with an infinite number
of observations, exactly half of which are successes and
half of which are failures, the model weight for the general
law H0 does not exceed a modest 0.731; (3) as shown
by case e in Fig. 2, the choice of Jeffreys’s prior (i.e.,
θ ∼ Beta(0.5, 0.5)) results in a function that approaches
the asymptote from above. This means that, according to
LOO, the observation of additional success-failure pairs
actually decreases the support for the general law, violating
the second desideratum outlined above; (4) as shown by
case a in Fig. 2, the choice of a Beta(1, 5) prior results
in a nonmonotonic relation, where the addition of H0-
consistent pairs initially increases the support for H0, and
later decreases it.

In sum, the result of the LOO procedure for a test
against a chance process, H0 : θ = 1/2, reveals behavior
that is broadly similar to that for the test of induction
(H0 : θ = 0 or H0 : θ = 1), and that violates
two seemingly uncontroversial desiderata, namely that the
additional observation of data that are perfectly consistent
with the general law H0 ought to result in more support for
H0, and do so without bound as n grows indefinitely. The
final example concerns continuous data.

Example 3: Nullity of a Normal Mean

As a final example, we consider the case of the z test:
data are normally distributed with unknown mean μ and
known variance σ 2 = 1. For concreteness, we consider
a general law which states that the mean μ equals 0, that
is, H0 : μ = 0. The model that relaxes the general law
assigns a prior distribution to μ; specifically, we consider
H1 : μ ∼ N (0, σ 2

0 ). Similar to examples 1 and 2, we
consider the situation where the observed data are perfectly
consistent with the predictions from H0. Consequently, we
consider data for which the sample mean ȳ is exactly 0 and
the sample variance s2 = 1

n−1

∑n
i=1(yi − ȳ)2 is exactly 1.

The general desiderata are similar to those from
examples 1 and 2: First, for any sample size n with sample
mean equal to zero and sample variance equal to 1, the data
ought to support the general law H0; second, as n increases,
so should the level of support in favor of H0; third, as n

increases without bound, the support in favor of H0 should
grow infinitely large.

Mathematical Result

In example 3, the data consist of n realizations drawn from
a normal distribution with mean μ and known variance
σ 2 = 1: yi ∼ N (μ, 1), i = 1, 2, . . . , n. Under H0, the
mean μ is fixed to 0; under H1, μ is assigned a N (0, σ 2

0 )

prior. The model corresponding to H0 : μ = 0 has no free
parameters so that the Bayesian LOO estimate is obtained
by summing the log likelihood values:

elpdH0
loo = −n

2
log (2π) − n − 1

2
. (18)

To calculate the LOO estimate under H1, one needs to be
able to evaluate the predictive density for a single data point
given the remaining data points. Recall that the posterior for
μ based on n − 1 observations is a N (μ−i , σ

2−i ) normal
distribution distribution, with

μ−i = (n − 1)ȳ−i

n − 1 + 1
σ 2

0

, (19)

and

σ 2−i = 1

n − 1 + 1
σ 2

0

, (20)

where ȳ−i = 1
n−1

∑
j 	=iyj denotes the mean of the obser-

vations without the ith data point. Consequently, the leave-
one-out predictive density is given by a N (μ−i , 1 + σ 2−i )

distribution which follows from well-known properties of a
product of normal distributions. Example 3 considers data
sets that convey the maximal possible evidence for H0 by
having a sample mean of ȳ = 0 and a sample variance of

https://tinyurl.com/y8azu4hc
https://creativecommons.org/licenses/by/2.0/
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s2 = 1. The Bayesian LOO estimate under H1 is then given
by:

elpdH1
loo = −n

2
log (2π) − n

2
log

⎛

⎝
n + 1

σ 2
0

n − 1 + 1
σ 2

0

⎞

⎠

−
(n − 1)

(
n + 1

σ 2
0

)

2

(
n − 1 + 1

σ 2
0

) . (21)

The difference in the LOO estimates can be written as:

�elpdH0,H1
loo = n

2
log

⎛

⎝
n + 1

σ 2
0

n − 1 + 1
σ 2

0

⎞

⎠+ n − 1

2

(
n − 1 + 1

σ 2
0

) .

(22)

As the sample size n grows without bound, the difference in
the LOO estimates approaches a bound (see Appendix C for
a derivation):

lim
n→∞ �elpdH0,H1

loo = 1. (23)

Consequently, the limit of the pseudo-Bayes factor is

lim
n→∞ PSBF01 = e ≈ 2.718, (24)

and the limit of the model weight for H0 is

lim
n→∞ w0 = e

1 + e
≈ 0.731, (25)

which is identical to the limit obtained in example 2.

Select Scenarios

As in the previous two examples, the mathematical result
can be applied to a series of select scenarios. Figure 3 shows
the LOO weight in favor of the general law H0 as a function
of the sample size n with sample mean exactly zero and
sample variance exactly one, separately for four different
prior specifications of H1. The figure confirms that for each
prior specification, the LOO weight for H0 approaches the
asymptotic bound as n grows large.

We conclude the following: (1) as n grows large, the
support for the general law H0 approaches a bound; (2) in
contrast to example 1, but consistent with example 2, this
bound is independent of the particular choice of normal
prior distribution for μ under H1; however, consistent with
both earlier examples, this bound is surprisingly low. Even
with an infinite number of observations and a sample mean
of exactly zero, the model weight on the general law H0

does not exceed a modest 0.731; (3) as shown by case
a in Fig. 3, the choice of a N (0, 32) prior distribution
results in a function that approaches the asymptote from
above. This means that, according to LOO, increasing the
sample size of observations that are perfectly consistent
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Fig. 3 Example 3: LOO weights for H0 : μ = 0 as a function
of sample size n, for data sets with sample mean equal to zero and
sample variance equal to one, evaluated in relation to four different
prior specifications for H1: a H1 : μ ∼ N (0, 32); b H1 : μ ∼
N (0, 1.52); c H1 : μ ∼ N (0, 1); and d H1 : μ ∼ N (0, 0.52).
The dotted horizontal line indicates the corresponding analytical
asymptotic bound (see text for details). Available at https://tinyurl.
com/y7qhtp3o under CC license https://creativecommons.org/licenses/
by/2.0/

with H0 actually decreases the support for H0, violating
the second desideratum outlined earlier; and (4) some
prior distributions (e.g., μ ∼ N (0, 2.0352)) result in a
nonmonotonic relation, where the addition of H0-consistent
observations initially increases the support for H0, and later
decreases it toward asymptote.6

In sum, the result of the LOO procedure for a z test
involving H0 : μ = 0 shows a behavior similar to that for
the test of induction (H0 : θ = 0 or H0 : θ = 1) and the test
against chance (H0 : θ = 1/2); this behavior violates two
seemingly uncontroversial desiderata of inference, namely
that the additional observation of data that are perfectly
consistent with the general law H0 ought to result in more
support for H0, and do so without bound.

Closing Comments

Three simple examples revealed some expected as well
as some unexpected limitations of Bayesian leave-one-
out cross-validation or LOO. In the statistical literature,
it is already well known that LOO is inconsistent (Shao
1993), meaning that the true data-generating model will
not be chosen with certainty as the sample size approaches
infinity. Our examples provide a concrete demonstration of
this phenomenon; moreover, our examples highlighted that,

6Because the size of this nonmonotonicity is relatively small, we have
omitted it from the figure. The OSF project page https://osf.io/6s5zp/
contains a figure that zooms in on the nonmonotonicity.

https://tinyurl.com/y7qhtp3o
https://tinyurl.com/y7qhtp3o
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/
https://osf.io/6s5zp/
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as the number of H0-consistent observations n increases
indefinitely, the bound on support in favor of H0 may
remain modest. Inconsistency is arguably not a practical
problem when the support is bounded at a level of evidence
that is astronomically large, say a weight of 0.99999999;
however, for both the test against chance and the z test, the
level of asymptotic LOO support for H0 was categorized by
Jeffreys (1939) as “not worth more than a bare comment”
(p. 357).

It thus appears that, when the data are generated from a
simple model, LOO falls prey to the Scylla of overfitting,
giving undue preference to the complex model. The reason
for this cuts to the heart of cross-validation: when two
candidate models are given access to the same training set,
this benefits the complex more than it benefits the simple
model. In our examples, the simple model did not have any
free parameters at all, and consequently these models gained
no benefit whatsoever from having been given access to
the training data; in contrast, the more complex models did
have free parameters, and these parameters greatly profited
from having been given access to the data set. Perhaps this
bias may be overcome by introducing a cost function, such
that the price for advance information (i.e., the training set)
depends on the complexity of the model—models that stand
to benefit more from the training set should pay a higher
price for being granted access to it. Another approach is
to abandon the leave-one-out idea and instead decrease the
size of the training set as the number of observations n

increases;7 Shao (1993) demonstrated that this approach can
yield consistency.

In order to better understand the behavior of leave-one-
out cross-validation, it is also useful to consider AIC, a
method to which it is asymptotically equivalent (Stone
1977). Indeed, for example 2 and example 3, the asymptotic
LOO model weight equals that obtained when using AIC
(Burnham and Anderson 2002; Wagenmakers and Farrell
2004). In addition, as pointed out by O’Hagan and Forster
(2004, p. 187), “AIC corresponds to a partial Bayes factor
in which one-fifth of the data are applied as a training
sample and four-fifths are used for model comparison.”
O’Hagan and Forster (2004) further note that this method is
not consistent. It is also not immediately clear, in general,
why setting aside one-fifth of the data for training is a
recommendable course of action.

Another unexpected result was that, depending on the
prior distribution, adding H0-consistent information may
decrease the LOO preference for H0; sometimes, as the H0-
consistent observations accumulate, the LOO preference

7Critics of cross-validation might argue that one weakness of the
approach is that it is not a unique method for assessing predictive
performance. That is, users of cross-validation need to decide which
form to use exactly (e.g., leave-one-out, leave-two-out, k-fold), and
different choices generally yield different results.

for H0 may even be nonmonotonic, first increasing (or
decreasing) and later decreasing (or increasing).

The examples outlined here are simple, and a LOO propo-
nent may argue that, in real-world applications of substantive
interest, simple models are never true, that is, the asymptotic
data are never fully consistent with a simple model. Never-
theless, when researchers use LOO to compare two different
models, it is important to keep in mind that the comparison
is not between the predictive adequacy of the two models
as originally entertained; the comparison is between predic-
tive adequacy of two models where both have had advance
access to all of the observations except one.

In sum, cross-validation is an appealing method for
model selection. It directly assesses predictive ability, it
is intuitive, and oftentimes it can be implemented with
little effort. In the literature, it is occasionally mentioned
that a drawback of cross-validation (and specifically
LOO) is the computational burden involved. We believe
that there is another, more fundamental drawback that
deserves attention, namely the fact that LOO violates
several common sense desiderata of statistical support.
Researchers who use LOO to adjudicate between competing
mathematical models for cognition and behavior should be
aware of this limitation and perhaps assess the robustness of
their LOO conclusions by employing alternative procedures
for model selection as well.
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Appendix A: Derivation Example
1—Induction

To investigate how the difference in the LOO estimates

�elpdH0,H1
loo = elpdH0

loo − elpdH1
loo

= − log

[(
a + n − 1

a + n − 1 + b

)n]

behaves as the number of observations goes to infinity, one

can consider the limit of
(

a+n−1
a+n−1+b

)n

as n → ∞:

lim
n→∞

(
a + n − 1

a + n − 1 + b

)n

= exp

⎧
⎨

⎩ lim
n→∞

log
[

a+n−1
a+n−1+b

]

1
n

⎫
⎬

⎭ .

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Comput Brain Behav (2019) 2:1–11 9

The limit of the denominator is limn→∞ 1
n

= 0 and it is

also straightforward to show that limn→∞ log
[

a+n−1
a+n−1+b

]
=

0. Therefore, both the limit of the numerator and of the
denominator are 0 and L’Hôpital’s rule can be applied which
yields

lim
n→∞

(
a + n − 1

a + n − 1 + b

)n

= exp

⎧
⎨

⎩− lim
n→∞

b

1 + (2a − 2 + b) 1
n

+ a2−2a+ab+1−b

n2

⎫
⎬

⎭ .

Hence,

lim
n→∞

(
a + n − 1

a + n − 1 + b

)n

= exp {−b} .

Therefore, the difference in the Bayesian LOO estimates
�elpdH0,H1

loo as n → ∞ is given by:

lim
n→∞ �elpdH0,H1

loo = b.

Appendix B: Derivation Example 2—Chance

The difference in the LOO estimates can be written as

�elpdH0,H1
loo = log

[(
a + b + n − 1

2a + n − 2

) n
2
]

+ log

[(
a + b + n − 1

2b + n − 2

) n
2
]

.

To investigate how this difference behaves as the number
of observations goes to infinity, one can consider the limit

of
(

a+b+n−1
2a+n−2

) n
2

and of
(

a+b+n−1
2b+n−2

) n
2

as n → ∞. We first

introduce a new variable m so that n = 2m, where m =
1, 2, 3, . . ., which ensures that the number of observation is
even, and then consider the limits as m → ∞. The limit of
the first expression is given by

lim
m→∞

(
a+b+2m−1

2a+2m−2

)m

= exp

⎧
⎨

⎩ lim
m→∞

log
(

a+b+2m−1
2a+2m−2

)

1
m

⎫
⎬

⎭ .

The limit of the denominator is 0 and it is also
straightforward to show that the limit of the numerator is 0.
Hence, L’Hôpital’s rule can be applied which yields

lim
m→∞

(
a + b + 2m − 1

2a + 2m − 2

)m

= exp

{
b − a + 1

2

}
.

Next, we consider the limit of the expressions in the second
logarithm as m → ∞:

lim
m→∞

(
a+b +2m −1

2b+2m −2

)m

=exp

⎧
⎨

⎩ lim
m→∞

log
(

a+b+2m−1
2b+2m−2

)

1
m

⎫
⎬

⎭ .

The limit of the denominator is 0 and it is also straightfor-
ward to show that the limit of the numerator is 0. Hence,
L’Hôpital’s rule can be applied which yields

lim
m→∞

(
a + b + 2m − 1

2b + 2m − 2

)m

= exp

{
a − b + 1

2

}
.

Therefore, the difference in the LOO of the two models as
m → ∞ is given by:

lim
m→∞

[
�elpdH0,H1

loo

]
= b − a + 1

2
+ a − b + 1

2
= 1.

Appendix C: Derivation Example 3—Nullity
of a Normal Mean

We first show how to obtain the expression for the difference
in the LOO estimates. Note that the LOO estimate under H1

can be written as:

elpdH1
loo = − n

2
log (2π) − n

2
log

⎛

⎝
n + 1

σ 2
0

n − 1 + 1
σ 2

0

⎞

⎠

−
n − 1 + 1

σ 2
0

2

(
n + 1

σ 2
0

)
n∑

i=1

y2
i

+ n − 1

n + 1
σ 2

0

n∑

i=1

yi ȳ−i

− (n − 1)2

2

(
n + 1

σ 2
0

) (
n − 1 + 1

σ 2
0

)
n∑

i=1

ȳ2−i .

Since we consider data sets that have a sample mean of
exactly 0, we know that

∑n
i=1yi = 0 so that

∑
j 	=iyj =

−yi . Furthermore, since the sample variance is exactly 1 and
the sample mean is exactly zero, we know that s2 = 1 =

1
n−1

∑n
i=1(yi − 0)2, hence,

∑n
i=1y

2
i = n − 1. Using these

observations, one can show that

n∑

i=1

yi ȳ−i =
n∑

i=1

yi

⎡

⎣ 1

n − 1

∑

j 	=i

yj

⎤

⎦

=
n∑

i=1

yi

[
− 1

n − 1
yi

]

= − 1

n − 1

n∑

i=1

y2
i

︸ ︷︷ ︸
n−1

= −1,
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and

n∑

i=1

ȳ2−i =
n∑

i=1

[
− 1

n−1yi

]2

= 1
(n−1)2

n∑

i=1

y2
i

︸ ︷︷ ︸
n−1

= 1
n−1 .

Hence, using these results and after some further sim-
plifications, the LOO estimate under H1 can be written
as:

elpdH1
loo = − n

2
log (2π) − n

2
log

⎛

⎝
n + 1

σ 2
0

n − 1 + 1
σ 2

0

⎞

⎠

−
(n − 1)

(
n + 1

σ 2
0

)

2

(
n − 1 + 1

σ 2
0

) .

Therefore, the difference in the LOO estimates can be
written as:

�elpdH0,H1
loo = log

⎡

⎢⎣

⎛

⎝
n + 1

σ 2
0

n − 1 + 1
σ 2

0

⎞

⎠

n
2
⎤

⎥⎦+ n − 1

2

(
n−1+ 1

σ 2
0

) .

To investigate how this difference behaves as the number of
observations goes to infinity, we take the limit of each of the
terms. The limit of the first term is obtained by taking the
limit of the expression in the logarithm:

lim
n→∞

⎛

⎝
n + 1

σ 2
0

n − 1 + 1
σ 2

0

⎞

⎠

n
2

= exp

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1

2
lim

n→∞

log

[
n+ 1

σ2
0

n−1+ 1
σ2

0

]

1
n

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

.

The limit of the denominator is 0 and it is also
straightforward to show that the limit of the numerator is 0.
Hence, L’Hôpital’s rule can be applied which yields

lim
n→∞

⎛

⎝
n+ 1

σ 2
0

n−1+ 1
σ 2

0

⎞

⎠

n
2

= exp

{
1

2

}
.

The limit of the second term is given by:

lim
n→∞

n − 1

2

(
n − 1 + 1

σ 2
0

) = 1

2
.

Therefore, the difference in the LOO of the two models as
n → ∞ is given by:

lim
n→∞

[
�elpdH0,H1

loo

]
= log

[
exp

{
1

2

}]
+ 1

2
= 1.
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