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Abstract
In everyday life, people need to make choices without full information about the environment, which poses an explore-
exploit dilemma in which one must balance the need to learn about the world and the need to obtain rewards from it. The
explore-exploit dilemma is often studied using the multi-armed restless bandit task, in which people repeatedly select from
multiple options, and human behaviour is modelled as a form of reinforcement learning via Kalman filters. Inspired by work
in the judgment and decision-making literature, we present two experiments using multi-armed bandit tasks in both static
and dynamic environments, in situations where options can become unviable and vanish if they are not pursued. A Kalman
filter model using Thompson sampling provides an excellent account of human learning in a standard restless bandit task, but
there are systematic departures in the vanishing bandit task. We explore the nature of this loss aversion signal and consider
theoretical explanations for the results.

Keywords Sequential decision making · Loss aversion · Dynamic environments · Reinforcement learning · Bandit tasks

Introduction

In everyday life, we make a variety of decisions ranging
from simple questions (e.g. what should I have for lunch?)
to complex life choices (e.g. should I change jobs?). Often,
we need to make these choices without full information
about what the payoffs will be, and in an environment
where the payoff distribution itself can change over time—
some careers might be lucrative today but irrelevant
tomorrow—posing a complex explore-exploit dilemma for
the decision maker (Mehlhorn et al. 2015). The explore-
exploit trade-off has been studied in a variety of literatures
including machine learning (Kaelbling et al. 1998), statistics
(Wald 1947) and psychology (Wilson et al. 2014). In the
psychological literature, these problems are often studied
using multi-armed bandit problems, where the decision
maker is presented with several possible options that they
must repeatedly choose between, and the distribution of
rewards associated with each option is unknown to the
decision maker (e.g. Banks et al. 1997; Speekenbrink and
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Konstantinidis 2015; Daw et al. 2006; Steyvers et al. 2009;
Cohen et al. 2007; Zhang and Yu 2013; Biele et al. 2009;
Acuna and Schrater 2010; Yi et al. 2009; Anderson 2012;
Reverdy et al. 2014). For simpler versions of the multi-
armed bandit problem, there are closed-form solutions for
optimal decisions (Whittle 1980), but in general this is not
the case (see Burtini et al. 2015).

There is a relatively well-established pattern of findings
for human performance in this kind of sequential decision
task. For instance, people typically show an inherent
preference for information (Bennett et al. 2016; Navarro
et al. 2016), though there are a number of learning and
decision making problems that show different patterns
(Iigaya et al. 2016; Zhu et al. 2017; Gigerenzer and Garcia-
Retamero 2017). Moreover, the tendency to engage in
exploratory behaviour changes systematically: it increases
with cognitive capacity (Hills and Pachur 2012), aspiration
level (Hausmann and Läge 2008) and level of resources
(Perry and Barron 2013), decreases with age (Mata et al.
2013), and is influenced by prior knowledge about payoff
distributions (Mulder et al. 2012) and beliefs about the
volatility of the environment (Yi et al. 2009; Navarro
et al. 2016). Finally, the decision policies that human
and machine agents employ typically shift when the
environment is in some sense responsive (e.g. Gureckis and
Love 2009; Bogacz et al. 2007; Neth et al. 2014; Hotaling
et al. 2018).
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In this paper, we consider a related though somewhat
distinct issue. The inherent viability of options in real life
depends on the extent to which one pursues them. If I do not
exercise, my ability to pursue an athletic career is greatly
reduced, and if I do not show up for a first date I am unlikely
to be asked to go on a second. A house I wish to purchase
will likely only remain on the market for a limited amount
of time. In many situations, the viability of an option is
entirely beyond my control, but in others it is dependent on
the investment of effort in pursuing the option. Perhaps I
may not want to go to the workshop on Friday, but if I do
not register my interest in it on Monday I will lose my place,
so a modest amount of effort is required now in order to
preserve my ability to pursue the option later.

This problem has not received as much interest as other
variations on the explore-exploit dilemma, but there is
some research on it. Shin and Ariely (2004) presented
people with a variation of the three-armed bandit task in
which each option was associated with a fixed reward
distribution, and all three options had the same expected
value. The task imposed switching costs, with participants
accruing a penalty (either monetary or opportunity cost)
when switching between options. Whenever an option was
left unchosen for a sufficiently long time, it would “vanish”
and subsequently become inaccessible to participants for
the remainder of the task. In the original work, human
behaviour appeared irrational, with participants preferring
to accrue considerable penalty in order to maintain all three
options even though they had the same value. Later papers
using a larger number of options that could differ in their
value suggested a slightly more moderate view: people tend
to prune the options down to a small number of relatively
good options, but are reluctant to limit themselves to a single
option (Ejova et al. 2009). Nevertheless, the central finding
that people are reluctant to trim the option set down to the
single best possibility has been replicated multiple times
(Bonney et al. 2016; Ejova et al. 2009; Neth et al. 2014).

Theoretically, the explanation for this behaviour has
tended to focus on loss aversion (Shin and Ariely 2004)
and the desire to preserve flexibility in future choices (Neth
et al. 2014). Perhaps surprisingly, then, there are very
few studies in the explore-exploit literature—at least to
our knowledge—that have employed a “vanishing options”
design in a restless bandit context. After all, one very
obvious reason to show aversion to option loss is to hedge
one’s bets against the possibility that the payoff distributions
might change. In an environment where good options can go
bad simply due to unpredictable fluctuations, it is natural to
want to keep options open. Suggestive evidence that people
might be appropriately sensitive to this comes from Neth
et al. (2014), who took an ecological perspective to the Shin
and Ariely (2004) task and found that when the rewards
associated with each option would diminish the more they

are chosen (“exhaustive” environments), people tended to
switch between options in order to keep more options viable
moreso than when the environment is stable or when options
improved with use (“progressive” environments).

With this in mind, we examine human performance on
several variations of a vanishing bandits task, involving
different levels of volatility (i.e. rate of change to the reward
distribution), comparing it to a standard restless bandit task
in which options do not vanish. To provide a point of
comparison, we follow Speekenbrink and Konstantinidis
(2015) and apply a Bayesian reinforcement learning model
employing a Kalman filter learning rule (Kalman 1960;
Daw et al. 2006) and a Thompson sampling decision
rule that selects options with probability proportional to
the likelihood that they are the maximum utility option
(Thompson 1933; Chapelle and Li 2011). Using the
Kalman filter as a quasi-ideal observer model—setting all
parameters to veridical values for the task—we replicate
earlier results showing that human performance in the
standard restless bandit task is closely approximated by the
Kalman filter model. Armed with this knowledge, we take
the same model, apply it to the vanishing bandit task and
investigate the systematic differences between the Kalman
filter model and human performance in the vanishing bandit
task.

Experiments

Method

Task The experimental task was designed to be a compro-
mise between the so-called doors task used to study option
loss (Shin and Ariely 2004) and a more traditional multi-
armed bandit task. Participants were presented with a simple
experimental interface delivered through a Web browser,
that consisted of six distinct options labelled A to F that
could be selected by clicking on the appropriate button,
illustrated in Fig. 1a. The instructions explained that during
the “game” they would have a budget of 50 “actions” (button
clicks), that every time they selected an option they would
receive points and that the goal of the task was to earn as
many points as possible with their 50 clicks. On each trial,
they would be shown the points they received in a visually
salient way (see Fig. 1b) and feedback remained on screen
for 800 ms. The number of points accrued and the number
of actions left stayed onscreen at all times.

The task as described closely mirrors a typical multi-
armed bandit task. To introduce option loss into this
task, a variant on the game introduced the concept of
an “availability counter” displayed adjacent to the option.
The instructions explained to participants that this counter
indicated how long it would be (in terms of number of
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Fig. 1 a Schematic illustration
of the experiment as it appeared
to participants in the decreasing
availability condition. Each of
the six options (A–F) is shown
with a colour-coded “availability
counter”, indicating the number
of trials left before the option
vanishes if left unchosen. The
color scheme used red for
immediate (1–3), orange for
soon (4–6) and green for later
(7–15). The display for the
constant availability condition
removed the availability
counters, but was otherwise
identical. b Feedback as it was
shown to participants

a

b

actions) before this option “vanished” if it was not selected.
All six availability counters started at a value of 15. The
availability counters for every non-selected option would
decrease by one after every action, whereas the counter for
the selected option would reset to 15. To ensure that the
availability counters were visually salient, they were colour-
coded: options that were close to vanishing (availability
1–3) were shown in red, options that would disappear
soon (availability 4–6) were shown in orange and other
options were shown in green (availability 7–15). Once the
availability of an option reached 0, it “expired”: the option
and the corresponding response button both disappeared
from the screen and could no longer be selected.

In all versions of the task, the rewards r generated by
each option were sampled from a normal distribution with
mean μ and fixed standard deviation σn = 6. Two of
the six options (randomly chosen) were initially set to
have mean reward μ = 20, one had mean μ = 40,
one had μ = 60 and the remaining two had μ = 80.
However, for most participants, the expected value of each
option drifted randomly across trials: the mean μt+1 for
any given option on trial t + 1 was sampled from a normal
distribution with centred on the mean from the previous
trial μt , with variability given by the standard deviation σo

(which differed between conditions).

Design Both experiments employed a 2 × 3 between-
subjects design, with the availability of options (constant
or diminishing) and the rate of environmental change
(static, slow and fast) as the manipulated variables. For the
constant availability condition, options remained available
throughout the task; whereas in the diminishing availability
condition, participants were given the version of the task in
which options could vanish, as described above. To create
the three levels of environmental change, we set σo = 0

in the static condition, σo = 6 in the slow condition and
σo = 12 in the fast condition.

The two experiments were matched in every detail except
one. In Experiment 1, the rewards r were constrained to lie
between 1 and 99 points, and a corresponding constraint
was placed on the mean μ.1 In Experiment 2, the upper
bound was removed, allowing the rewards to increase well
beyond the initial value. The original motivation for doing
so was to see what effect the ceiling has on people strategies,
but it quickly became apparent that removing the upper
bound can change the dynamics of the task environment.
An illustration of what the dynamic structure of the
environment looked like for static, slow and fast conditions
in both experiments is shown in Fig. 2. When the dynamics
apply only over a bounded range (Experiment 1), it is quite
typical to see the best options change: good options go bad
and vice versa. When the bound is removed (Experiment 2),
it is quite common to see a “runaway winner” where one
option quickly dominates over all the others and remains
dominant for the entire task. Accordingly, the main goal for
pursuing both versions of the task was exploratory, to see
how people respond to environments with these different
dynamic structures.

Participants Workers from Amazon Mechanical Turk were
recruited to participate in the experiment (400 in Experi-
ment 1, 300 in Experiment 2), and assigned randomly to
conditions. Informed consent was obtained from all partic-
ipants. As per the exclusion criteria, two participants were
excluded from analyses because they selected the same
option on every trial. For Experiment 1, 179 participants
identified as female, 219 as male and 2 selected other. Mean
reported age was 34.9 (SD = 11.4; range = 18–76). For

1This was implemented by forcing any values outside the range to lie
at the boundary value, producing a slightly “sticky” boundary.
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Fig. 2 The dynamics used in
both experiments and all three
conditions
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Experiment 2, 110 participants identified as female, and
190 as male. Mean reported age was 34.4 (SD = 10.4;
range 18–73). In both experiments, participants were almost
exclusively (> 95%) located in the USA. Tasks took about
10 min to complete and participants were paid US$1.70 for
their time.

Materials and Procedure Experiments were implemented
as a custom Web application hosted using Google Cloud
Platform, and made available to participants via Amazon
Mechanical Turk. At the beginning of the experiment, par-
ticipants were told they were taking part in a decision mak-
ing game as part of a short psychological study investigating
how people make decisions. They were then presented with
a consent form which informed them about the study and its
possible risks, the nature of confidentiality and disclosure of
information and their compensation for completing the task.
After providing consent and demographic information, they
received instructions corresponding to their assigned con-
dition. To ensure that the participants understood the task,
they then had to complete a knowledge check which con-
sisted of three multiple choice questions. Failure to answer
all three questions correctly resulted in participants being
redirected back to the instructions page to recheck their
knowledge before retaking the knowledge check. Partici-
pants were then directed to the actual game and completed
it as per instructions of the previous page. Following the
approach taken in earlier papers (Navarro et al. 2016; Hotal-
ing et al. 2018), each participant played the “game” three
times (where each game is a 50-trial bandit task), always in

the same condition. At the end of each game, participants
were told how many points they had achieved, in compari-
son to the theoretical maximum (and minimum) scores that
could be achieved if one were to select the best (or worst)
option on every trial. After participants had completed the
three games, a completion screen appeared that signalled
the end of the experiment. They were then given a comple-
tion code to receive payment through Amazon Mechanical
Turk.2

Data Availability

Data, analysis and experiment code associated with the
project are available as an OSF repository at https://osf.io/
nzvqp/.

Results and Discussion

As a simple measure of performance, we calculated the
average number of points per action that each participant
received during the game. Illustrating this, the solid
markers in Fig. 3 plot the mean score per action for
every experiment, game, dynamic condition and availability
condition; grey violin plots display kernel density estimates
of the distribution across subjects. Although point scores
are not easy to compare across conditions or experiments,

2Source code for the experiments is included in the OSF repository
along with data and analysis code, but for convenience, demonstration
versions of the experiment are available at http://compcogscisydney.
org/exp/#vanish

https://osf.io/nzvqp/
https://osf.io/nzvqp/
http://compcogscisydney.org/exp/#vanish
http://compcogscisydney.org/exp/#vanish
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Fig. 3 Average points awarded
per action, plotted as a function
of game, experiment and
condition. Grey violin plots
show kernel density estimates of
the between-subjects
distribution (averaged over
trial), and solid markers show
the average across participants

they are comparable across games. As shown in Fig. 3,
there is a slight tendency for scores to improve over games.
In Experiment 1, the mean of points awarded per action
rose from 65.5 in game 1 to 70.5 by game 3, with 283 of
400 (71%) of participants scoring higher on the final game
than on the initial one. In Experiment 2, the numbers were
81.0 and 87.2, respectively, with 202 out of 300 (67%) of
participants scoring higher on the final game. For simplicity,
our initial analyses aggregate performance across games,

but we return to this topic when introducing model-based
analyses.

To examine performance at a finer grain, we classified
individual responses as a “good” choice if it is among
the two options with the highest expected reward on that
trial, including options that have been allowed to expire.
Using this measure, the results for all six conditions in both
experiments are plotted in Fig. 4, aggregated across subjects
and repeated games and plotted in blocks of five trials.

Fig. 4 Human performance in
the task. Panels plot the
probability of choosing a ”good”
option (one of the top two) on
every block of five trials, broken
down by experiment, availability
and dynamics
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Fig. 5 The average number of
options still viable in the
decreasing availability
condition, plotted separately for
the three dynamic conditions,
two experiments and for every
block of five consecutive trials

As is clear from inspection, participants learned to make
good choices. When the environment was static and option
availability was constant, participants chose good options
in the final block on 96% of cases in Experiment 1 and
93% in Experiment 2, but when options could vanish in the
decreasing condition, these numbers fell to 82% and 82%
respectively. The same pattern is observed in the slowly-
changing restless bandit task, with performance levels of
68% and 75% in the constant availability conditions in
Experiments 1 and 2 falling to 54% and 60% in the
decreasing condition. In the fast-changing environment,
there was a difference between Experiments caused by the
fact that the unbounded drift in Experiment 2 allowed for the
possibility of a “runaway winner”—where one option grows
much faster than all the others as illustrated in the lower
left panel of Fig. 2—so, final performance in the constant
availability was only 50% in Experiment 1 but 70% in
Experiment 2. Importantly, however, the effect of allowing
options to become unviable was the same as that in other
cases: the performance drops to 41% and 53% respectively.
In every case, a Bayesian t test found strong evidence for
a difference in the proportion of good choices constant
availability and decreasing availability (Bayes factors for
the alternative, BF10, were never less than 47).3

3Analyses were conducted using the BayesFactor R package version
0.9.12–2 (Morey and Rouder 2015), using default priors in all cases
(i.e. t test analyses placed Cauchy priors with scale r = √

2/2 over
standardised effect sizes for H1, and ANOVA analyses used JSZ priors
with medium scale value r = 1/2). See Rouder et al. (2009) and
Rouder et al. (2012) for specifics. The t tests reported here used the
mean probability of a good choice across all trials as the dependent
measure (in order to minimise sensitivity to noise), but the result is
robust to the choice of operational measure: the same pattern of results
is found if the analyses are conducted looking only at the final trial
block.

To what extent do people keep options alive in the
decreasing availability condition? Figure 5 plots the
average number of options still viable as a function of trial
block, rate of change and experiment. Visual inspection
of the plot suggests that there are no differences between
Experiments 1 and 2 for the static and slow change
conditions (BF01 = 4.8 and 5.1 respectively), but in
Experiment 2, people retained fewer options in the fast
change condition than they did in Experiment 1 (BF10 =
89). The latter is perhaps unsurprising in light of the
fact that the dynamics of the fast change environment in
Experiment 2 are rather different from those in Experiment
1, as depicted in Fig. 2.

One question of theoretical interest is whether the
number of options that remain viable changes as a function
of the dynamics of the environment. In Experiment 1,
a Bayesian ANOVA suggests there is moderately strong
evidence (BF10 = 19.1) for the claim that on average people
retained slightly more options—operationally defined as
the average number of options still viable, taken across all
trials—as the volatility of the environment increased, rising
from 4.6 (SD = 0.9) in the static condition to 4.9 (SD =
1.1) in the slow change condition and 5.2 (SD = 0.8) in
the fast change condition. In Experiment 2, however, the
evidence weakly favoured a null effect (BF01 = 6.7): the
average number of options retained shows no systematic
pattern (mean = 4.7, 4.8 and 4.6 in static, slow and fast
respectively; SD = 0.9, 1.1, 1.1).

Model-Based Analysis

The fact that performance declines when option threat is
introduced to the task is consistent with previous literature,
and is unsurprising. To obtain a more detailed perspective on
how people respond to this manipulation, a computational
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Fig. 6 Human performance
versus a Kalman filter model
across all conditions and both
experiments. The dependent
variable plotted in this figure is
the probability of making a
“good” choice (operationally
defined as one of the top two
options). Each dot represents
human and model performance
aggregated across subject and
across model runs, with each
block of five trials, experiment
and condition plotted separately.
For the human data, the results
are plotted separately by game
(Kalman filter responses are the
same in every game)

approach is helpful. To minimise researcher degrees of
freedom, our approach is derived from the systematic
investigation of restless bandit tasks by Speekenbrink and
Konstantinidis (2015). Specifically, we relied on the model
that provided the best account of the largest number of
individual participants in that paper, namely a Kalman
filter learning model with a Thompson sampling decision
rule. The Kalman filter learning rule provides a Bayesian
approach to reinforcement learning (Daw et al. 2006) that is
well-suited to learning in dynamic environments. According
to the Kalman filter model, the learner’s knowledge is
represented by a posterior distribution over the expected
reward associated with each option,4 and under a Thompson
sampling decision rule, the model selects options with
probability proportional to the chance that they have
maximum utility. See Appendix for details.5

To provide a strong test of the Kalman filter model’s
ability to capture human behaviour on a standard (i.e.
constant availability) restless bandit task, we do not estimate

4More generally, one might use prospect theory (Tversky and
Kahneman 1992) to specify reference-point dependent non-linear
utility functions as Speekenbrink and Konstantinidis (2015) did, but
in this case a simpler approach where the utility is assumed to be
proportional to the number of points received provided a perfectly
adequate account of the data, so we avoid introducing this complexity
here.
5It is worth noting that the manner in which we are using the Kalman
filter model here is roughly in accordance with what Tauber et al.
(2017) refer to as “descriptive Bayesian modelling”. While we do
use it as a sensible standard against which we can evaluate human
behaviour, we do so because it has a track record of performing well
as an empirical model of human reinforcement learning. The fact that
it has a meaningful interpretation as a form of probabilistic Bayesian
reasoning is an added bonus as it allows us to link model parameters to
assumptions about the world. We do not claim that it should be viewed
as a genuine normative standard for the task, though we note that in
practice, human performance rarely surpasses the Kalman filter in our
data.

any free parameters. Instead, all parameters associated
with the noise and volatility in the environment were
fixed a priori at the true values for each condition,
and prior distributions were fixed to be very diffuse
(see Appendix). Moreover, the model was not yoked
to participant responses, and predicted the sequence of
responses without being fed information about how human
participants responded in the task (e.g. Yechiam and
Busemeyer 2005; Steingroever et al. 2014). In all cases,
model predictions are averaged across 500 independent
simulations.

ProportionofGoodChoices Despite the somewhat stringent
nature of the test, the Kalman filter model makes good
predictions about human performance in the standard
restless bandit task, as shown in the top row of Fig. 6.
These plots show every data point from the human data
in Fig. 4 plotted on the y-axis, broken down by game
number, against the corresponding choice probabilities that
emerged from the Kalman filter model simulations on the x-
axis. Across two experiments, three levels of volatility and
ten trial blocks, the correlation between model predictions
and human performance ranged from r = .93 to r =
.96 across games. Perhaps more impressively, the best
fitting regression line (solid line) is only slightly below the
“perfect” regression line with slope 0 and intercept 1 (dotted
line). In light of this, it is not unreasonable to propose that
the decision strategies that human participants applied in the
standard restless bandit task are well-approximated by the
Kalman filter model.

With this in mind, we can take the Kalman filter model
and apply it to the decreasing availability conditions, to
obtain some insight into what “would have” happened
if participants had employed the same strategies in both
versions of the task. When we do this, we obtain a
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systematic effect as illustrated in the lower panels of
Fig. 6. While the model still correlates well with human
performance (ranging from r = .83 to r = .96), the
regression line is now substantially shallower, especially
for the earlier games. When compared against the Kalman
filter model, people were much less likely to select a good
option in the vanishing bandit task, despite the fact that in
the standard task, human performance and the Kalman filter
were largely indistinguishable.

Switching BetweenOptions A slightly different perspective
is offered by Fig. 7, which plots the proportion of trials
on which human participants switched options (i.e. made
a different choice than the one made on the previous trial)
against the corresponding proportion for the Kalman filter
model. Again, the plots are shown separately for both
experiments, all three games, all three dynamic conditions
and both availability conditions, with separate markers for
each block of five consecutive trials. When the environment
is static and option availability is constant (top right panel),
human participants switch between options at essentially the
same rate as the Kalman filter throughout the task and across
all three games: the plot markers lie close to the dashed line
in all cases. When volatility and option loss are introduced
to the task, people switch between options in a fashion that
differs from the model.

Curiously, the two manipulations have different effects.
First consider what happens when volatility is added within
a standard (constant availability) restless bandit task. The
top row of Fig. 7 shows that in the slow change or fast
change conditions people tended to switch between options
slightly less than the model (i.e. the markers tend to

lie below the dashed lines), which might be expected if
people underestimate the volatility of the environment. In
contrast, consider the effect of adding option loss. Whereas
previously people were switching at a similar or reduced
rate to the model, in almost every case the plot markers in
the bottom row of Fig. 7 lie above the dashed line, indicating
that people now switch more often than the model. This
would be expected if people are engaging in some deliberate
strategy to retain options, or are in some respect averse to
allowing the availability counter to drop too low.

Number of Options Retained To explore how people
adapted to the threat of option loss in more detail, Fig. 8
plots the average number of options that remain viable at
every stage of the task, for both human participants and the
model. As is clear from inspection in every case, human
participants retained more options than the model: by the
end of the task, human participants typically have about 3–
4 options still viable, whereas the Kalman filter typically
retains only 1–2. Note also that although participants
retained fewer options in later games (i.e. in all six panels),
the curves shift downward from game 1 to game 3, in no
case does the number of options retained fall to the same
level as that in the Kalman filter model. Again, this is
suggestive of some form of aversion to option loss.

Choices by Availability If human participants are averse
to option loss relative to the Kalman filter model, what
precisely is the nature of this difference? Do people
roughly follow the Kalman filter model on almost all
trials, only occasionally shifting to “save” an option on
the very last trial before it vanishes? Is the signal driven

Fig. 7 Comparison of the
probability of switching options,
Kalman filter (x-axis) versus
human (y-axis). Every panel
displays six plots, one for each
experiment and game. Within
each plot, individual markers are
shown for every block of five
trials, with trial block number
increasing from right to left. The
panels separate the data by
availability condition (rows) and
dynamic condition (columns).
Human participants switch more
often than the Kalman filter in
the decreasing availability
condition (bottom row), but in
the constant conditions (top
row), the switch rates are
similar, or show the opposite
pattern with humans switching
less often
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Fig. 8 Average number of
options remaining for human
and model in the decreasing
availability condition,
aggregated across participants
and model runs, and plotted
separately for trial block,
dynamics condition, experiment
and game number. Trial block
number runs from right to left
within each plot

by perceptual cues, arising only when the option turns
red (i.e. when availability drops to three or less)? Or is
the effect more continuous, in which the subjective utility
associated with choosing an option rises gradually the closer
an option gets to vanishing? Although the task was not
designed to explicitly test this, we can obtain a preliminary
answer computing the average probability of selecting any
particular option as a function of its current availability
level for both human participants and the Kalman filter
model and look at the difference between the two, thereby
controlling for the fact that both humans and the model will
tend to ignore bad options. If participants are strategically
“saving” options at the last moment, we should see a spike in

human choice probability at availability level 1, whereas if
the signal is perceptual, this would appear over availability
levels 1–3. Alternatively, if a rising urgency explanation is
correct, we should see a more gradual bias where humans
prefer to choose lower availability options than the model.

The results of this analysis are plotted in Fig. 9. With one
rather notable exception—the “spike” at availability 10—the
pattern of results closely mirrors what we might expect if loss
aversion takes the form of a gradually rising signal. Across
all three levels of volatility, there is a smooth, roughly linear
relationship between the availability level and the difference
score. Visual inspection suggests the possibility that human
performance may mirror the Kalman filter model more

Fig. 9 Difference between
human and Kalman filter choice
probabilities in a vanishing
bandit task (y-axis), plotted as a
function of option availability
(x-axis) and level of volatility in
the environment (panels) and
experiment (shape and shading).
Averages are plotted as solid
black markers, and the
regressions (solid black lines)
are computed without
considering the outlier case at
availability 10 (see main text for
details)
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closely in highly dynamic environments, at least insofar
as the correlation appears stronger on the left panel and
the slope is flatter, but given the exploratory nature of the
analysis, this suggestion is somewhat speculative.

Why does the spike at availability 10 occur? The
answer is fairly unsurprising but perhaps important. When
human participants solve the task, a very typical pattern
is to cycle through the options A to F sequentially two
or three times, strategically and systematically exploring
all six options before making any decisions about which
options are good and which are a bad. If one does this,
the decrease in availability means that (with 6 options
that reset to availability 15 after they are selected) people
will produce a “run” of choices at availability 10 during
the exploratory phase. The Kalman filter model has no
equivalent behaviour. Because the model does not encode
motor costs associated with switching (why jump from
option A to option D when option B is closer?) and does
not have any structured encoding of the task that would
suggest that an “initial sweep” through the options would be
a sensible exploratory strategy, it produces no such pattern.
From the perspective of understanding aversion to option
loss, the observed spike at 10 is somewhat uninteresting, but
the strategic nature of the human behaviour that produces it
is arguably of considerable interest for thinking about how
people solve explore-exploit problems more generally.

General Discussion

Consistent with previous literature, human performance in
short-horizon restless bandit tasks is captured remarkably
well with a Kalman filter learning rule and Thompson sam-
pling decision procedure (Speekenbrink and Konstantini-
dis 2015). Even without parameter estimation and making
purely a priori model predictions, the correlation is very
strong. When we introduce the threat of option loss to this
task, there are systematic departures. While the correlation
between the Kalman filter model and human data remains
extremely strong, there is a systematic shift in the regres-
sion line relating the model and human behaviour. Relative
to this model, people retain more options and make less
rewarding choices.

These findings are consistent with the existing literature
on option loss (Shin and Ariely 2004; Bonney et al. 2016;
Ejova et al. 2009; Neth et al. 2014), but provide a stronger
test of the claim. The simple fact that options can vanish
in a vanishing bandit task means that two agents following
the same underlying strategy might produce vastly different
responses—by using the Kalman filter model as the basis
for comparing the two conditions, we can control for
systematic differences in the structure of the task. Indeed,
it is notable that the Kalman filter model also performs

worse in the vanishing conditions than it does in the
constant availability conditions even though (by design)
it makes responses using precisely the same learning and
decision rules in both cases. Even so, people’s choices in
the vanishing conditions tend to be poorer than those of
the Kalman filter model, strongly suggesting that people
employ different strategies when option loss is present.

Explaining the Effect of Option Threat

Why do people perform worse than the Kalman filter
model in the decreasing availability conditions? The results
seem intuitively plausible when viewed as a form of loss
aversion, but there are other possibilities that should be
considered. For instance, one possibility is that these tasks
involve a form of “choice overload”. Having too many
options can be overwhelming or demotivating (Iyengar
and Lepper 2000), and in a multi-armed bandit task,
maintaining representations of six possibly volatile reward
distributions is likely demanding and people need to
trim down the options to something manageable. Though
intuitively appealing in one sense—anecdotally, it does feel
cognitively demanding to maintain representations of the
values of six entities in working memory while doing this
task—it is unclear why an explanation based on cognitive
load would apply only when option viability is threatened.

Another possibility is the idea that people do not plan
very effectively in the task. One work on multi-armed bandit
tasks has argued that people are myopic planners (Zhang and
Yu 2013) who do not look ahead very far when considering
their next action. Taken literally, however, a myopic planner
should allow options to expire extremely readily, especially
when the environment is not too volatile. After all, an
option that is currently quite poor is extremely unlikely to
suddenly become better in the near future, and it would
only be worthwhile retaining it if one’s planning horizon
were quite long. An alternative explanation, however, might
acknowledge the possibility that people are aware of the
limitations in their planning: that is, a “loss averse” strategy
of retaining more options than one can foresee a use for
might be viewed as a sensible hedge against computational
limitations. If I know that my true planning horizon needs
to be quite long but I am computationally limited, what
should I do? Keeping one’s options open, even if one is
not quite sure why could be a very wise strategy, and
is somewhat reminiscent of boundedly rational models of
wishful thinking (Neuman et al. 2014) and heuristic models
of planning in machine learning (Szita and Lőrincz 2008).
Indeed, to the extent that knowing when to allow an option
to expire has an element of “predicting one’s own future
preferences” to it, it is very likely to be a difficult problem to
solve (Loewenstein and Frederick 1997) and one that might
induce a certain amount of conservatism. Arguably, this is
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not inconsistent with a loss aversion explanation, insofar as
loss aversion might be viewed as a sensible adaptation in
light of these computational limitations.

To the extent that the results do reflect loss aversion, it
is worth thinking about the connection between aversion
to option loss as it is formalised here and in related
papers (Shin and Ariely 2004; Ejova et al. 2009) and how
loss aversion is more typically operationalised in restless
bandit tasks. In Speekenbrink and Konstantinidis (2015), for
instance, a prospect theory approach based on Tversky and
Kahneman (1992) was used as a mechanism for capturing
the aversion to losing some abstracted notion of reward
associated with a choice—points, or monetary rewards—
whereas in vanishing bandit tasks, the losses operate at
the level of entire options. If each option in a task is
perceived as an affordance (mechanism for future actions
in the environment), it seems plausible to think that the
subjective feeling of loss aversion in this task is likely to
be much stronger than in a typical restless bandit task.
Indeed, the experimental design is somewhat reminiscent
of tasks studying the endowment effect (Kahneman et al.
1990). At the beginning of the task, participants are
“given” six labelled options: in one condition (constant
availability), these options are presented as fixed and
enduring characteristics of the world, and under these
circumstances people value them “appropriately”, at least
in the sense of closely mirroring the pattern of behaviour
shown by the Bayesian Kalman filter model. In another
condition (decreasing availability), the options available to
participants can be “taken away” by the experiment(er).
It seems plausible that people feel a stronger sense of
possession or entitlement to the affordances linked to
response options than they do to more any abstract notion
of points or even to modest amounts of money, producing a
rather large and systematic deviation from the Kalman filter
as typically implemented.

Towards a Computational Account

Although the current work is limited in terms of the variety
of modelling approaches we have considered, exploring the
space of possible models is a natural direction to extend
this work in the future. In this respect, our empirical data
provide a number of hints. The (mostly) smooth pattern
of deviation shown in Fig. 9 suggests that the value of
returning to a diminishing option gradually increases with
proximity to the disappearance. The one departure from that
pattern (the spike at 10) is interesting in and of itself, as it
strongly suggests a systematic exploratory strategy during
the early stages of the task (see Acuna and Schrater 2010).
Nevertheless, with the exception of this one systematic
exploratory strategy, it does not seem technically difficult

to capture the pattern of behaviour within the Kalman filter
framework.

The simplest possibility would be to suggest that
different Kalman filter parameter values apply when option
threat is present. For instance, when options can vanish
people might act as though the world is more volatile than
they otherwise would (e.g. increase the parameter σw that
governs beliefs about the rate of change in reward rates).
This would lead to increased exploration of alternatives,
which in turn would ensure that fewer options disappear.
Alternatively, one could capture the effect by modifying
the reward function: the subjectively experienced reward rt
associated with choosing an option might depend not only
on the number of “actual” points received, but also upon the
effect that the choice has on availability. That is, selecting an
option that is about to expire might be inherently rewarding
because of the gain to the availability total.

Looking beyond the Kalman filter, one possibility is to
use dynamic programming to work out the optimal decision
policy for the task under a variety of different assumptions
(e.g. Littman 2009). For example, if people believe that the
reward rates are more volatile than they are (or the horizon
for the task is longer than the 50 trials it really is), a rational
strategy would be to “cling” to more options than are really
needed. This would produce sub-optimal behaviour in the
task purely as a consequence of misconstruing the nature
of the problem. Another alternative is to consider heuristic
models. In option loss problems, after an initial exploratory
sweep through the options, people might alternate between
exploitation phases (always select the best option) and
exploration phases (preserve/try all options). This two-mode
strategy would be relatively simple to implement and could
potentially describe performance in a variety of problems.

Finally, the fact that human performance improves
across games provides an avenue for future modelling.
The approach that we have taken in this paper is to give
people a series of short sequential decision making tasks,
and consistent with our earlier work adopting this approach
(Navarro et al. 2016; Hotaling et al. 2018), there is a
small but consistent effect. In future work, we hope to
investigate a wider range of these transfer effects in order to
develop computational models that describe the higher order
learning that people do within sequential decision tasks.

How is Option Threat Interpreted?

Regardless of what formal account best captures human
behaviour in the task, it seems there is another puzzle: why
does the signal scale in the linear fashion shown in Fig. 9?
In the task as currently operationalised, an option that has
availability level 11 is no more likely to vanish in the short
term than an option with availability level 15. At these
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levels, the “threat” of vanishing is so distant that it ought
not to have any substantial effect on people’s behaviour
even if they are averse to option loss—after all, with a
maximum of 6 options in the task, it would be possible for
the decision maker to revisit every other response option
twice without any risk of losing an option with availability
11. Realistically, it does not seem plausible to think that
this task incorporates any meaningful difference in “threat”
between availability levels 11 and 15. Nevertheless, the data
do suggest that people treat these cases differently in the
vanishing bandit task. Despite the fact that the availability
counter merely expressed the known length of time before
any losses would be incurred, and does not reflect any
probability of immediate loss, people responded to the
counter as if it represented something more akin to an
increased hazard.

The reasons for this are not immediately apparent. In real
life, of course, there are many situations in which proximity
to a threat does imply increased hazard, and so it might be
the case that people are simply overgeneralising from those
situations. Sometimes, proximity to a danger can increase
the magnitude of the associated losses (e.g. being closer
to a heat source increases the amount of burning), and at
other times, it affects probability of incurring a loss (e.g.
the closer to a predator one gets, the greater the likelihood
of an adverse event). While this does sound plausible, it
is also the case that there are other scenarios that do not
work this way. For instance, except at very close distances,
approaching the edge of a cliff does not increase the risk
of falling off. The structure of the vanishing bandit task has
more in common with “falling off a cliff” than it does with
“being eaten by a tiger”, yet people treat it more like the
latter. It is not immediately obvious—to us at least—why
falling off a cliff represents less of an ecologically plausible
risk than being eaten by a tiger, so it is not clear why people
appear to interpret the availability counter as if it reflected a
rising hazard. This seems a worthwhile direction for further
work.
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Appendix

The Kalman filter provides a Bayesian reinforcement
learning model that assumes the utility of options across
time following a Gaussian process, and as such is fairly well
matched to the structure of the task. Our implementation
of the Kalman filter model is taken from Speekenbrink and

Konstantinidis (2015), with one simplification: we assume
that the utility ut of the reward rt received on trial t is simply
ut = rt , and does not fit a subjective prospect curve. The
Kalman filter estimate of the expected utility Ejt of option
j on trial t is calculated via a simple update rule:

Ejt = Ej,t−1 + δjtKjt

(
rt − Ej,t−1

)

where Ej,t−1 is the estimate of the expected utility from the
previous trial, δjt is an indicator function that equals 1 if arm
j was chosen on trial t and 0 otherwise, and Kjt describes
the Kalman gain,

Kjt = Sj,t−1 + σw
2

Sj,t−1 + σn
2 + σw

2

In this expression, σn is the learner’s belief about the
standard deviation of the noise and σw is their belief about
the rate of change in the underlying stochastic process. For
our examples, we fix these at their true (ideal observer)
values, yielding σn = 6 for all conditions, and a value
of σw that depends on the environment volatility: 0 in the
static condition, 6 in the slow condition and 12 in the fast
condition. The value of Sjt is the variance of the posterior
distribution (after trial t) over the mean utility associated
with option j and is given by

Sjt = (1 − δjtKjt )(Sj,t−1 + σw
2)

We set prior means and variances to Ej0 = 50 and Sj0 =
1000 respectively.

The decision rule we used is a variation of the Thompson
sampling rule, also known as probability of maximum utility
(PMU). For option j on trial t , the learner’s posterior belief
about the mean reward associated with that distribution is
Gaussian with mean Ejt and standard deviation Sjt . We
assume a stochastic decision rule where the perceived value
of this option vjt is represented by a single draw from this
posterior (Vul et al. 2014), and the decision maker always
chooses the option with maximum perceived value (i.e.
arg maxj vjt ). In some versions of the Thompson sampling
rule one samples proportional to the (posterior predictive)
probability that the option will yield the highest actual
reward rt on trial t , whereas another variation might sample
proportional to the posterior probability that an option has
the highest expected reward μt on that trial. The latter
version is implemented here.
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