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Abstract
Several numerical models have been utilized in water quality assessments for various purposes. Among all the commonly 
used models, entropy-weighted water quality index (EWQI) has been recognized as the most unbiased model for assessing 
drinking water quality. Therefore, this paper presents a case study of the application of EWQI in assessing the effect of 
effluent-derived heavy metals on the groundwater quality in Ajao industrial estate, Nigeria. Three environmental pollution 
risk assessment tools were integrated to better evaluate the level of heavy metals contamination in the groundwater. Geoac-
cumulation index (Igeo) placed 66% of the samples in uncontaminated to moderately contaminated category. However, 19% 
showed moderate to heavy contamination, whereas 14.29% were heavily contaminated. Similarly, enrichment factor (EF) 
revealed that 52% of the samples have minimal enrichment, 33% are moderately enriched, while 14.29% were extremely 
enriched with heavy metals. Vector modulus of pollution index  (PIvector) showed that the majority of the samples (80.9%) 
have low pollution, 4.76% recorded moderate pollution, while 14.29% had considerable to very high pollution. The EWQI 
showed that the majority (85.71%) of the groundwater samples are excellent drinking water, while 14.29% are unsuitable 
for drinking. However, a dendrogram integrating the results of the Igeo, EF,  PIvector, and EWQI was produced by hierarchical 
cluster analysis to harmonize and demarcate the groundwater quality in this industrial area. Although this study confirms 
the suitability of most samples for drinking, more awareness programs towards the protection of the groundwater should 
be embraced.

Keywords Environment risk assessment · Entropy water quality index (EWQI) · Groundwater · Hierarchical cluster 
analysis (HCA) · Lagos

Introduction

All over the world, underground water has remained the 
most desirable source of freshwater for drinking, domes-
tic, agricultural, and industrial purposes. Pure and high-
quality water is an essential necessity for the sustainability 
of healthy life, food security, the ecosystem, and socioeco-
nomic growth and development. It is, therefore, important 
to always preserve and protect the quality of this natural 
resource. However, studies have shown that the quality of 
groundwater largely depends on land use (Reddy et al. 2018; 
Florea 2019; Sale et al. 2019; Ukah et al. 2019), container 
rocks (Egbueri 2019a, b, c; Egbueri et al. 2019; Mgbenu and 
Egbueri 2019; Raphael et al. 2018; Shakerkhatibi et al. 2019; 
Yetiş et al. 2019), and age (Levitt et al. 2019; Sakakibara 
et al. 2019). Land use is the sum of the anthropogenic fac-
tors that affect groundwater. Several anthropogenic factors 
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such as domestic practices (e.g., open defecation, poor waste 
disposal, and sanitary practices), agriculture, mining, indus-
trialization, and urbanization are mostly responsible for the 
continuous quality deterioration of available groundwater 
sources. Observations of groundwater quality reported from 
several researches have shown that most polluted ground-
water is due to anthropogenic activities (Howladar et al. 
2017; Selck et al. 2018; Egbueri 2018, 2019a; Ukah et al. 
2018, 2019; Coyte et al. 2019; Mgbenu and Egbueri 2019; 
Rivera-Rodríguez et al. 2019). These activities can release 
loads of potentially toxic heavy metals, which can adversely 
affect the health of humans, aquatic lives, and the entire 
ecosystem, even at relatively low concentrations. The con-
tainer rocks and age are rarely able to take water quality over 
from contamination to pollution level (Busico et al. 2018; 
Ismaiel et al. 2018). In other words, the contribution of geo-
genic processes to heavy metals contamination/pollution in 
groundwater is usually negligible.

Heavy metals such as Fe, Cu, Pb, Ni, Cr, and Cd have 
been known to be major contaminants and pollutants in 
water (Ravindra and Mor 2019; Wen et al. 2019; Egbueri 
2020a, b). Notably, in many developing countries, a major 
source of these heavy metals in drinking water is industrial 
effluents (Ukah et al. 2018, 2019; Chinchmalatpure et al. 
2019; Mahmood et al. 2019; Egbueri 2020a). In other words, 
it is safe to reason that most of the heavy metals found in 
groundwater is due to anthropogenic inputs, especially from 
industrial wastes. Understandably, agricultural and domestic 
wastes (though high in anion and cation contaminations) 
have almost negligible contribution to heavy metals pollu-
tion of water systems. The current study is focused on water 
quality data from Ajao industrial zone in Lagos, southwest-
ern Nigeria. This industrial area is known to have some con-
taminated drinking water sources (Ukah et al. 2018). This 
is evident from the distasteful, colored, and mal-odorous 
water often obtained from some hand-dug wells and bore-
holes in some parts of the area. In order to further ascertain 
and reestablish the fitness of the drinking water supplies for 
human consumption, the groundwater quality assessment 
using a unique and unbiased numerical model is therefore 
necessary in the area.

In the southwestern part of Nigeria, different numeri-
cal models, such as water quality index (WQI), have been 
used in several groundwater quality assessments. In the 
Ajao area, Ukah et al. (2018, 2019) recently assessed the 
groundwater quality based on integrated physicochemical 
and microbiological techniques. Their research found that 
the concentrations of some of the analyzed heavy metals 
were above the recommended limits for safe consumption. 
However, no known previous study in this region utilized 
entropy-weighted water quality index (EWQI). Although 
WQI seems to be the most widely used numerical model for 
water quality assessment, the analysis it provides is usually 

dependent on the accuracy of expert judgment, because the 
weighted factor is only determined by expert discretion (Li 
et al. 2010; Amiri et al. 2014). This usually introduces bias 
in water quality analysis. Moreover, other indexical and 
numerical methods employed in water quality assessments 
have the limitation of exclusivity to some selected param-
eters. However, this is not the same case with EWQI. Pres-
ently, the EWQI is a model that is believed to provide the 
most unbiased, justifiable, accurate, and reliable analysis of 
groundwater quality (Li et al. 2010; Wu et al. 2011; Amiri 
et al. 2014; Feng et al. 2019; Singh et al. 2019; Subba Rao 
et al. 2019; Wang et al. 2019). Therefore, in this study, the 
EWQI model is utilized in the investigation of the ground-
water quality in Ajao industrial area, Lagos, Nigeria. Water 
quality data analyzed in March–April 2016 were used for 
this study. The current study is believed to be the first to 
use the EWQI model for groundwater quality assessment in 
the southwestern Nigeria. Specifically, the major aim of this 
study is to assess the effect of heavy metals on the quality 
and suitability of the groundwater in Ajao industrial area 
for drinking purposes using environmental pollution risk 
assessment tools, the EWQI, and hierarchical cluster analy-
sis (HCA). Moreover, this paper seeks to provide an answer 
to the hypothesis that there may be alternative sources (other 
than industrial effluents) of the heavy metal pollutants in the 
groundwater.

Background of the study area

Location and activities

The Ajao area is in Oshodi-Isolo Local Government Area 
(LGA) of Lagos State, Nigeria. It is located within latitudes 
6° 31′ to 6° 33′ N and longitudes 3° 18′ to 3° 20′ E (Fig. 1). 
The area covered in this study is relatively a small indus-
trial estate with huge population (estimated to be around 
500,000 residents), whose major source of water is under-
ground water. In this area, there are several industries and 
factories producing various consumer products. Many of 
these industries and factories produce both solid and fluidal 
wastes, which are often released into flowing streams and 
on bare ground surfaces. Currently, it is not certain how/
whether these factories treat their industrial wastewaters 
before releasing them into the environment. In general, it is 
believed that the high level of industrial activities and wastes 
generated in this area expose the available drinking water 
resources to heavy metals contamination and pollution.

Climate, geology, and hydrogeology

The climate of the study region is humid-tropical. Annu-
ally, the study area experiences two seasons: a rainy season 
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usually lasting from April to October and a dry season 
lasting from around November to March. The estimated 
average annual temperature is in the range of 20–32 °C, 
while the average annual rainfall is about 2000 mm. The 
major surface water bodies found in this area are the Adi-
yan, Ogun, and Osse rivers. These and other lagoons found 
in the area form the major recharge sources. Geologically, 
the Ajao area is underlain by two major lithologic units, 
the coastal plain sand and the alluvial river sand, both 
found within the Dahomey Basin (Omatsola and Adegoke 
1981; Nwajide 2013; Ukah et al. 2018). Considering the 
lithology and texture, medium to poorly sorted coarse-
grained sands and mudrocks intercalated with sands are 
predominant. In this area, the coastal plain sands form 
the main aquifer systems for domestic, commercial, and 
industrial usages (Longe et al. 1987; Ukah et al. 2019). 
This aquifer is usually exploited through hand-dug wells 
and boreholes. However, Longe et al. (1987) identified 
three major aquifer units of the coastal sands. According 
to their research, the first, second, and third aquifers can 
be found around depths of 35 m (6 m thick), 40–55 m (8 m 
thick), and 30–90 m (32 m thick), respectively. Due to 
their deeper depths, the second and third aquifers are the 
most desired sources of drinking, domestic, and industrial 
waters (Longe et al. 1987), as they are better insulated 
from surface processes that would predispose them to con-
tamination or pollution.

Materials and methods

Sampling and measurements

The groundwater samples were collected randomly from 
boreholes located within the Ajao industrial area. System-
atically, data that represent water that has been contami-
nated by industrial wastewater (i.e., those samples that 
were collected from the zone of influence of the waste-
water) as well as some that represent water that are not 
contaminated by industrial wastewater were selected. In 
all, twenty-one (21) samples were used for this study. Prior 
to the field sampling, 1-L sampling plastic bottles were 
prewashed and sterilized. At each sampling location, the 
sampling bottles were rinsed using the source water to be 
sampled. After sample collection, each of the groundwa-
ter samples was carefully labeled, from WS01 to WS21. 
Of these, six (6) represent the samples with heavy met-
als contamination (zone of wastewater influence), while 
seventeen (17) are from zones with no heavy metals con-
tamination (outside zone of wastewater influence). After 
the sample collection, samples were placed carefully in an 
ice-crested cooler to avoid atmospheric reaction prior to 
laboratory analysis.

pH values of the samples were determined using a 
Testr-2 pH meter after normalizing with buffer solution 

Fig. 1  A map showing the location and geology of the study area
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(pH 4.7 and 9.2). The physicochemical analyses of eight 
heavy metals (Fe, Zn, Cu, Mn, Pb, Cd, Cr, and Ni) were 
analyzed for each sample using specific hollow cathode 
lamp at a specific wavelength, and then aspirated into 
the flame of atomic absorption spectrophotometer (AAS, 
PerkinElmer Analyst 200). For total dissolved solids 
(TDS), all the samples were standardized with 342 ppm 
sodium chloride calibration solution and then measured 
with portable combined electrical conductivity/TDS/
temperature meter (HM Digital COM-100). The chloride 
concentrations were measured by argentometric titrimetric 
method, after titrating aliquot portion of water samples 
with a standard solution of silver nitrate solution using 
potassium chromate as an indicator.

All data analyses were computed using the standard limits 
of Standard Organization of Nigeria (SON 2015) and World 
Health Organization (WHO 2017).

Environmental pollution risk assessment

Geoaccumulation index (Igeo)

Although the Igeo model was initially developed for soil qual-
ity studies (Müller 1969), it has also been widely used by 
researchers in the assessment of the level of heavy metals 
pollution in drinking water (Bhutiani et al. 2017). The eight 
heavy metals analyzed in this study were utilized in the Igeo 
analysis. The Igeo model is defined by Eq. 1.

where CHMS is the concentration of heavy metals in soils; 
GBV is the geochemical background value (i.e., the WHO 
standard limits). The constant 1.5 allows to analyze natural 
fluctuations in the content of a given substance in the envi-
ronment (Müller 1969; Bhutiani et al. 2017; Adimalla and 
Wang 2018). Classifications of water quality based on the 
Igeo are as follows: uncontaminated (Igeo  ≤ 0); uncontami-
nated to moderately contaminated (0 < Igeo ≤ 1); moderately 
contaminated (1 < Igeo  ≤ 2); moderately to heavily contami-
nated (2 < Igeo  ≤ 3); heavily contaminated (3 < Igeo  ≤ 4); 
heavily to extremely contaminated (4 < Igeo  ≤ 5); and 
extremely contaminated (Igeo  ≥ 5) (Muller 1969; Bhutiani 
et al. 2017; Adimalla and Wang 2018).

Enrichment factor (EF)

Similar to the geoaccumulation index (Igeo), the enrich-
ment factor (EF) is an environmental pollution risk assess-
ment tool (model) used in investigating the extent of heavy 
metals enrichment in water and sediments. In this study, 
the EF model was employed to further analyze the extent 

(1)Igeo = log2
CHMS

1.5 × GBV
,

of heavy metals contamination and pollution in the drink-
ing water resources of Ajao industrial area. The EF evalu-
ation was carried out using Eq. 2.

where Cs is the concentration of metals in the sample; Cref 
is the concentration of reference metal in the sample; Xb 
is the background metal; Xref is the reference background 
metals. The mean value for each heavy metal was used as 
the background metal. EF results will be classified as fol-
lows: Negligible to minimal enrichment (EF < 2); Moderate 
enrichment (EF = 2–5); Significant enrichment (EF = 5–20); 
Very high enrichment (EF = 20–40); Extremely high enrich-
ment (EF > 40) (Loska et al. 2004; Adimalla et al. 2019).

Vector modulus of pollution index  (PIvector)

Vector modulus of pollution index  (PIvector) was proposed 
by Gong et al. (2008), for the determination of the extent 
of heavy metals pollution. This model has been success-
fully used by several authors (Kowalska et al. 2018). The 
 PIvector was calculated for all the samples using Eq. 3.

where n is the number of determined heavy metals; PI is 
the calculated value for single pollution index as given in 
Eq. 4 (Inhaber 1974; Cai et al. 2015; Kowalska et al. 2018; 
Egbueri 2019c). Classification of samples based on the 
 PIvector is as follows: low pollution  (PIvector < 1); moder-
ate pollution (≤ 1  PIvector < 3); considerable pollution (≤ 3 
 PIvector < 6); and very high pollution  (PIvector ≥ 6) (Cai et al. 
2015).

Entropy water quality index (EWQI)

The enhanced water quality index of both group of sam-
ples was computed to determine the drinking quality of 
water. This index provides an unbiased measure of water 
quality considering all the measured parameters for each 
water sample. A five-step approach was used to compute 
the EWQI as given by Li et al. (2010). Firstly, we deter-
mined the information entropy (ej) as follows:

(2)CF =
Cs

Cref

/
Xb

Xref

,

(3)PIvector =

√√√
√1

n

n∑

i=1

PI2

(4)

PI =
Concentration of heavy metal in sample

Corresponding WHO standard limit of heavy metal
,
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where n is the total number of samples and Pij denotes the 
probability of occurrence of the normalized value of the 
parameter j expressed as

Assuming there are y samples of water (i = 1, 2, 3…z) 
on which x number of parameters (j = 1, 2, 3…n) are to be 
tested to measure the quality of the water, matrix of such 
distribution will be given as

Upon transformation, the Y matrix becomes

Thus, the ratio of index values of j and i in the sample is 
given by

The second step is to calculate the entropy weight of each 
parameter (wj):

The quality rating scale (qj) for each parameter in every 
sample is calculated using the formula

where Cj is the concentration of parameters in each water 
sample in mg/l and Sj is the measured standard of each 
parameter in water samples in mg/l as given by SON (2015) 
except where other standard is quoted.

Finally, the entropy (enhanced/improved) water quality 
index (EWQI) is calculated as

(5)ej = −
1

In
n

z∑

i=1

Pij InPij,

(6)Pij =
Pij

∑
Pij

.

(7)� =

||
|
|
|
|
|
|
|

x11 x12 ⋯ x1n
x21 x22 ⋯ x2n

⋮

xz1 xz2 ⋯ xzn

|
|
|
|
|
|
|
|
|

(8)� =

||||
||||
|

y11 y12 ⋯ y1n
y21 y22 ⋯ y2n

⋮

yz1 yz2 ⋯ yzn

||||
||||
|

(9)Pij =
yij

∑z

i=1
yij

.

(10)wj =
1 − ej

∑n

j=1
(1 − ej)

.

(11)qj =
Cj

Sj
× 100,

(12)EWQI =

n∑

j=1

wj × qj

Categorization of heavy metals for EWQI data analysis

Heavy metals measured in this study include Fe, Zn, Pb, 
Cu, Ni, Cr, Mn, and Cd. These metals were divided into two 
groups. The first group comprises of those that are ubiq-
uitous in all the samples (herein called background heavy 
metals), and the second group are those that are exclusive 
to the water sampled from wastewater zone of influence 
(herein called anomalous heavy metals). The background 
heavy metals include Fe, Zn, and Cu while Pb, Ni, Cr, Mn, 
and Cd belong to the anomalous heavy metals group. Aside 
sparsity used in separating anomalous heavy metals from 
background heavy metals, the authors considered concen-
tration level and health hazard potential in classifying these 
metals. This approach allows us to idealize the extent of 
contamination and the potential degree of health hazard the 
heavy metals enriched by wastewater introduced into the 
water system. Except for Cu, the background heavy met-
als were found within safe concentrations in almost all the 
samples and are metals with no known carcinogenic health 
effects to humans (Ukah et al. 2019). The low concentrations 
of the background heavy metals Fe and Zn suggest that their 
enrichment could possibly be chiefly controlled by geogenic 
processes. However, the anomalous heavy metals are pecu-
liarly attributed to anthropogenic inputs (wastewaters).

The background heavy metals were used in computing the 
EWQI for all the samples. This is because they were found 
to be in all the samples, indicating that they may not have 
been introduced by the wastewater. On the other hand, the 
EWQI of all the samples with anomalous heavy metals was 
computed using both background and anomalous heavy met-
als. This method was designed to clearly alienate and show 
the effect of the anomalous heavy metals on the computed 
EWQI (water quality) by providing an equal and clear cut-
off for heavy metals that are exclusively from wastewaters. 
This is similar to the factor analysis study done by Busico 
et al. (2018).

Results and discussion

Physicochemical characteristics of the groundwater

Results of the physicochemical analysis of all the samples 
are presented in Table 1. pH ranged from 5.1 to 6.9. The 
recommended pH for drinking water is 6.5–8.5. It was 
noticed that about 61% of the analyzed samples are slightly 
more acidic than recommended. This could be reflecting 
the activity of the water in dissolving metals. None of the 
samples was found to be overly enriched in hydroxonium 
ion. Excess acidity is not known to cause any direct health 
hazard aside its reactivity with metals and pipes. Total dis-
solved solids (TDS) is a measure of dissolved materials in 
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the water (Egbueri 2019a). The TDS was found to range 
from 11.5 to 285 mg/l with a mean of 84.26. The TDS of 
all the water samples were below the recommended limit of 
500 to 1000 mg/l. Usually, TDS affect the acidity, turbidity, 
and salinity of water. Water with high TDS is commonly 
known to have undesirable color, taste, and odor. It is the 
major determinant of the appearance of water as well as 
the chemical status of the water. No health effect is directly 
linked to TDS except for the undesirable influence it has on 
other properties of the water.

The acceptable limit for chlorine in drinking water is set 
at 250 mg/l. Excess of Cl impacts on the fresh taste of water. 
The analyzed chlorine ranges from 11 to 44 mg/l with a 
mean value of 20.15 mg/l. About 24% of the total samples 
were found to be above the recommended limit of 0.3 for 
 Fe2+ in drinking water. The range of  Fe2+ was found to be 
0.039–1.74 mg/l, averaging at 0.7185 mg/l. ‘Red hot disease’ 
has been reported to be an adverse consequence of ingesting 
Fe-contaminated water (Ukah et al. 2019; Egbueri 2019c). 
 Zn2+ was found to range from 0.051 to 1.73 mg/l. All the 
samples are much lower than the set limit of 3 mg/l. Health 
effects of  Pb2+ to human include carcinogenic potential, 
interference with mental development, and the central and 
peripheral nervous system (SON 2015; Ukah et al. 2019; 
Egbueri 2020a, b). The adverse health effect of  Pb2+ could 
be so bad that only 0.01 mg/l is allowable.  Pb2+ was not 
detected in about 86% of the samples. Only three samples 
reported high  Pb2+ enrichment. Of the three samples, two 
were above the threshold with a range of 0.00–0.021 mg/l 
and an average of 0.017 mg/l (Table 1).

One of the water samples did not contain Cu. However, 
about 14% of the samples were above the limit of 1 mg/l 
(Table 1). Cu concentrations ranged from 0.00 to 3.142 mg/l 
with an average of 0.55 mg/l. SON (2015) reported that 
excessive Cu in drinking water could lead to gastrointestinal 
problems. Moreover, excess Cu can also lead to liver dam-
age and kidney disease (Ukah et al. 2019; Egbueri 2020a). 
Nickel was detected in only four samples. Three of these four 
samples had concentrations over the recommended limit of 
0.02 mg/l. The range is from 0.00 to 0.73 mg/l and an aver-
age of 0.038 mg/l. Nickel is known to be carcinogenic.  Cr3+ 
was detected in only five of the samples. Allowable limit 
of  Cr3+ is 0.05 mg/l as it is cancerous. Three of the five 
samples were found to be above the limit. The range of Cr 
is 0.00–0.32 mg/l with an average of 0.032 mg/l. Of the four 
samples that reported  Mn2+ enrichment, one was found to be 
above the limit of 0.2 mg/l with a range of 0.00–0.23 mg/l 
and an average of 0.0082 mg/l.  Mn2+ is known to cause 
neurological disorder (SON 2015; WHO 2017; Mgbenu and 
Egbueri 2019).  Cd2+ was detected in only three samples and 
all are at levels at or above the threshold of 0.003 mg/l. Stud-
ies have shown that excess  Cd2+ in drinking water could 
lead to anemia, renal stone formation, bronchitis, and kidney 

problems (SON 2015; WHO 2017; Ukah et al. 2019). With 
an average of 0.005 mg/l, the concentration ranged from 
0.00 to 0.005 mg/l. Pb, Ni, Cr, Mn, and Cd are considered 
as anomalous heavy metals in this study as their enrichment 
is traceable to industrial effluents.

Environmental pollution risk assessment

Geoaccumulation index (Igeo)

For the geoaccumulation index (Igeo), the order of increase 
in contamination rate of the analyzed heavy metals is Zn > 
Cu > Fe > Ni > Cr > Mn > Pb > Cd. Table 2 presents a sum-
mary of the Igeo analysis for the twenty-one (21) groundwa-
ter samples. Based on the classification stated earlier in the 
methodology section, about 66% of the total samples were 
in uncontaminated to moderately contaminated categories. 
This indicates that they have not been heavily loaded with 
the heavy metals. However, about 19% showed moderate 
to heavy contamination, whereas 14.28% (samples WS06, 
WS12, and WS15) are heavily contaminated with heavy 
metals.

Enrichment factor (EF)

This study has revealed that all the analyzed groundwater 
samples are variedly enriched with heavy metals. Table 2 

Table 2  Environmental pollution indices

Sample number Igeo EF PIvector

WS01 1.856255 1.7 8.2E−01
WS02 1.336093 0.9 6.9E−01
WS03 − 0.79475 0.6 3.3E−01
WS04 − 0.78201 0.6 3.3E−01
WS05 − 1.12099 0.7 2.9E−01
WS06 4.213088 60 7.568
WS07 1.560498 1.4 7.4E−01
WS08 2.640415 5.1 1.1691
WS09 − 0.95394 1.0 3.1E−01
WS10 0.619387 2.6 5.4E−01
WS11 − 0.41205 1.5 3.8E−01
WS12 4.491896 42 4.951
WS13 1.31202 2.2 6.8E−01
WS14 − 0.69796 0.8 3.4E−01
WS15 4.712412 34 5.512
WS16 0.924818 2.9 6.0E−01
WS17 0.797613 1.8 5.7E−01
WS18 2.32724 2.5 5.7E−01
WS19 2.226714 2.2 9.4E−01
WS20 2.167429 2.0 9.2E−01
WS21 − 0.32073 1.5 3.9E−01
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shows that 11 samples (52%) have minimal enrichment, 7 
samples (33%) are moderately enriched, while 3 samples 
(WS06, WS12, and WS15) have extremely high enrichment. 
These three sample are believed to be those that received 
higher impacts of the industrial effluents. In other words, 
their very high EF values are indicative of the excessive 
effluents’ imprints.

Vector modulus of pollution index (PIvector)

The results of the  PIvector evaluation are summarized in 
Table  2. It was observed that 17 groundwater samples 
(80.9%) have low pollution. However, one sample (WS08) 
has a  PIvector value greater than 1 but less than 3, indicating 
a moderate pollution. Beside, three samples (WS06, WS12, 
and WS15) have considerable to very high pollution.

Entropy water quality index (EWQI)

Table 3 presents the entropy weight (wj) and information 
entropy (ej) of all the analyzed water quality parameters. 
Meanwhile, Table 4 shows the obtained quality ratings 
of the parameters per the groundwater samples. The final 
EWQI results show that all of the samples collected from 
areas outside the zone of the wastewater influence are of 
excellent water quality (Table 5). The groundwater quality 
in the study area was classified using the EWQI classifica-
tion scheme whereby EWQI < 50 (Rank 1, Excellent water 
quality); 50–100 (Rank 2, Good water quality); 100–150 
(Rank 3, Average water quality); 150–200 (Rank 4, Poor 
water quality); and > 200 (Rank 5, Extremely poor water 
quality) (Li et al. 2010; Wu et al. 2011; Amiri et al. 2014; 
Singh et al. 2019; Feng et al. 2019). Of the six water samples 
collected within the zone of influence of the wastewater, 
two were of extremely poor water quality, one was of poor 
water quality, and three were found to be of excellent water 
quality (Table 5). These three were found to be in the second 
quartile of the EWQI range for that class and constituted the 
upper range of all the measured samples that were found to 
be of excellent water quality. This simply means that the 
quality of the samples may be actively deteriorating. Again, 
it is important to note that these samples were collected 
much farther into the zone of influence of industrial waste-
water and are considerably sparse in heavy metals concen-
tration. WS16 had no detected Pb, Cu, Mn, and Cd. WS19 
had no detected Pb, Ni, Cr, Mn, and Cd, while WS8 had no 
detected Pb, Ni, Cr, and Cd. We consider that the intermit-
tence in the presence of these heavy metals in this set of 
samples is a function of the increasing distance within the 
zone of influence and is the reason for the excellent quality 
of the water as compared to the others where all the heavy 
metals were detected. Ta
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Figure 2 presents a comparison of the EWQI for the six 
samples collected from the zone of influence of the indus-
trial wastewaters. The EWQIs shown in this figure were 
computed from different parametric sizes representing dif-
ferent contamination scenarios. This was done in order to 
answer the question of whether the industrial wastewater was 
responsible for the poor water quality observed in the area or 
to determine the extent of contamination due to the effluent-
derived heavy metals. The capacity of the heavy metals to 
contaminate groundwater can also be seen from this figure. 
In the first EQWI (in blue), we used all the measured param-
eters to calculate the EWQI. This represents the true state of 
the quality of water as at the time of this investigation and 
by this, 50% of the water were at or worse than poor quality. 
The other 50% were of excellent quality but were seen as fast 
deteriorating. The second EWQI (in brown) were computed 
without the contributions of the anomalous heavy metals. 
This was done to be able to idealize what the EQWI would 
be without the contribution of the anomalous heavy metals. 
From this, we found that the quality of WS06 was greatly 
affected by the anomalous heavy metals as the quality of this 
water would be poor (EWQI of 195.8) instead of extremely 
poor (EWQI of 1284.2). Expectedly, this sample was taken 
very closely to the waste water dislodging point. The other 
five samples showed trend against expectation. The quality 
of waters was seen to relatively worsen slightly when the 
contribution of the anomalous heavy metals was removed 
(Fig. 2). We strongly consider this to be due to the uncer-
tainty in processing stochastic data such as this one. Without 
the contributions of the anomalous heavy metals in the com-
putation, the other parameters assumed larger proportion of 
entropy weight (wj) that bulks up the EWQI. However, this 
gives a great picture of how these anomalous heavy metals 
can potentially cause offsets to water quality.

To show the general capacity of heavy metals to affect the 
quality of water in this study area, we compared the EWQI 
(in blue) to the EWQI (in gray). The difference between the 
two is the total effect of the heavy metals to water quality. 
The EWQI (in gray) was computed without all of the heavy 
metals (Both background and anomalous heavy metal). This 
is with the assumption that the water does not contain heavy 
metals. We thus showed what the EWQI would be without 
any of the heavy metals. Our result showed that all the six 
water samples collected from the zone of influence of the 
wastewater would be of excellent quality, except for WS15 
whose quality was measured as good. Summarily, the pres-
ence of the heavy metals moved the water pollution level 
from excellent quality to poor quality.

From this study, it can be seen that heavy metals have 
the potential to cause great offset in the quality of water. A 
similar finding has been reported by Boateng et al. (2019). 
In Ajao area, it has been established that industrial effluents 
contain heavy metals (Ukah et al. 2018) and these heavy Ta
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metals have been traced to be present in groundwater and 
causes different levels of contamination depending on prox-
imity to the point source and environmental conditions. It 
cannot be conclusively said that the heavy metals from the 
industrial effluent is solely responsible for the poor water 
condition in the area. This is because the EWQI computed 
without the anomalous metals compared to the EWQI calcu-
lated from the total parameters do not support that hypoth-
esis. We expect the EWQI computed without the anomalous 
metals to improve considerably against the EWQI computed 
from the total parameters for us to be able to say that the 
heavy metals are responsible for the poor water quality. Only 
one of six samples followed this expectation. This study 
examined wastewater collected from one of the factories 
only and analyzed for chemicals related to the business of 
that factory. It is likely that the other contributors to the poor 
water quality in the area are coming from other industrial 
processes and other anthropogenic sources as well.

Water quality clustering

The results of the three environmental pollution assess-
ment tools (Igeo, EF, and  PIvector) were integrated with the 
EWQI results to obtain a final overview of the water qual-
ity in the Ajao industrial area. HCA was performed on 
these results. The HCA was carried out using SPSS soft-
ware (v. 22). The Ward’s linkage method (with squared 
Euclidean distance and z-score standardization) was uti-
lized to produce a dendrogram (Fig. 3) demarcating the 
quality of the groundwater samples. The standardization 
of the data was to remove bias due to the differences in 
the values of the four models. Result of the HCA (Fig. 3) 

shows that all the samples fall into two major quality 
groups. Although Cluster 1 has two sub-clusters, it is 
mainly comprised of those samples with minimal heavy 
metals contamination and all were identified by the EWQI 
as excellent drinking water. On the other hand, Cluster 2 
is comprised of those three samples (WS12, WS15, and 
WS06) heavily loaded with heavy metals. These samples 
are marked unsuitable for human consumption.

Conclusions

This paper has presented a case study of the application 
of EWQI in assessing the effect of effluent-derived heavy 
metals on the groundwater quality in Ajao industrial estate, 
Nigeria. The Igeo, EF,  PIvector, and the EWQI have proven 
to be efficient in the assessment of pollution status and 
suitability of drinking water. It was found that the major-
ity (85.71%) of the analyzed groundwater samples are in 
excellent condition for drinking, while 14.29% are very 
unsuitable for human consumption. Based on the findings 
of this paper, it is concluded that the heavy metals from 
the effluents of the area sampled contribute significantly to 
the poor quality of underground water in Ajao estate, but it 
is certainly not the only source. There could also be other 
possible sources (contributors) to this problem. Therefore, 
it is necessary to look at other sources of pollutants in the 
area. This study also revealed that heavy metals have great 
capacity to negatively affect groundwater quality and as 
such, efforts must be made to ensure maximum protection 
of the groundwater system in the Ajao industrial area.

Fig. 2  EWQI for six samples 
taken from zone of influence 
of groundwater with the ranks 
shown as numbers on each bar
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