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Abstract
Urban walkability is essential for sustainable city planning and construction, fostering public health, environmental ben-
efits, and social equity. However, optimizing walkability involves balancing multiple, often conflicting objectives, such as 
accessibility, safety, environmental quality, and social inclusivity. This paper presents a novel approach to optimizing urban 
walkability using the Non-dominated Sorting Genetic Algorithm III (NSGA-III). By applying NSGA-III, we address the 
complexities of multi-objective optimization in urban environments, generating a set of Pareto-optimal solutions that cater 
to diverse planning priorities. A case study in a mid-sized urban area demonstrates the effectiveness of the proposed meth-
odology. The results highlight key trade-offs between objectives, such as the balance between accessibility and safety or 
environmental quality and social inclusivity. The findings provide urban planners with a robust decision-making framework 
that supports the creation of walkable, sustainable cities. The study concludes with policy recommendations to enhance 
urban walkability and suggests avenues for future research, including the integration of economic considerations and the 
application of this approach in larger, more complex urban settings. This research contributes to the field of urban planning 
by offering a comprehensive tool for optimizing walkability, ultimately promoting more livable and sustainable cities.

Keywords Urban Walkability · Sustainable City Planning · Multi-Objective Optimization · NSGA-III · Pareto-Optimal 
Solutions

Introduction

Urban walkability, a key component of sustainable city plan-
ning, plays a vital role in enhancing the quality of life in 
urban environments (Kaveh and Laknejadi 2011a). It pro-
motes healthier lifestyles by encouraging physical activity, 
reduces traffic congestion, and lowers greenhouse gas emis-
sions, contributing to overall environmental sustainability 
(Kaveh, Laknejadi, and Alinejad 2012). Moreover, walkable 
cities foster stronger social connections and economic vital-
ity by making public spaces more accessible and engaging 
for residents and visitors alike (Agarwal et al. 2024; Arya 
et al. 2024). As cities around the world strive to become 

more sustainable, optimizing walkability has emerged as a 
crucial goal for urban planners.

However, the optimization of urban walkability is a com-
plex, multi-dimensional problem that requires balancing a 
variety of conflicting objectives (Sethi, Prajapati, et al. 2024; 
Sharma and Sharma 2024). For instance, improving acces-
sibility to services and amenities often necessitates increased 
urban density, which can lead to higher levels of pollution 
and reduced green space (Sethi, Rathinakumar, et al. 2024). 
Similarly, enhancing pedestrian safety might require exten-
sive infrastructure investments, which could be at odds with 
budgetary constraints and existing urban layouts (Sharma 
and Trivedi 2021; Trivedi and Sharma 2023). Traditional 
urban planning methods often struggle to address these com-
plexities, as they tend to focus on single-objective solutions 
that do not account for the intricate trade-offs inherent in 
walkability (Agarwal 2024).

To address these challenges, advanced multi-objective 
optimization techniques are increasingly being employed in 
urban planning. Among these, the Non-dominated Sorting 
Genetic Algorithm III (NSGA-III) has gained prominence 
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due to its ability to handle high-dimensional objective spaces 
effectively (Deb and Jain 2013). NSGA-III improves upon 
earlier algorithms by efficiently generating a diverse set of 
Pareto-optimal solutions, which are critical for decision-
makers who need to consider multiple criteria simultane-
ously. This makes NSGA-III particularly well-suited for 
optimizing urba walkability, where diverse and often con-
flicting objectives must be balanced (Sharma and Trivedi 
2022b, 2023, b).

This paper aims to explore the application of NSGA-III 
in optimizing urban walkability, focusing on four key objec-
tives: accessibility, safety, environmental quality, and social 
inclusivity. By applying NSGA-III to a mid-sized urban area, 
we seek to demonstrate how this algorithm can generate 
practical solutions that support sustainable city planning. 
The results of this study not only highlight the effective-
ness of NSGA-III in managing complex trade-offs but also 
provide urban planners with actionable insights that can 
guide the development of more walkable and livable cities. 
The remainder of this paper is organized as follows: The 
literature review provides an overview of previous studies on 
urban walkability and multi-objective optimization in urban 
planning. The research methodology details the step-by-step 
process of applying NSGA-III to the problem of walkability 
optimization. The results section presents the outcomes of 
the optimization process, followed by a discussion of the 
findings and their implications for urban planning. Finally, 
the paper concludes with policy recommendations and sug-
gestions for future research.

Literature review

Urban walkability has been a focal point of research in urban 
planning, public health, and environmental studies due to 
its multifaceted impact on cities and their inhabitants (Patil 
et al. 2024; Sharma and Trivedi 2023, a). Walkability is 
generally defined as the extent to which the built environ-
ment encourages walking by providing safe, comfortable, 
and accessible pedestrian pathways that connect people to 
various destinations (Sharma and Trivedi 2022a, 2023, c). 
Studies have consistently shown that walkable environments 
contribute to public health by encouraging physical activity, 
which in turn reduces the incidence of chronic diseases such 
as obesity, diabetes, and cardiovascular conditions (Kaveh 
and Bakhshpoori 2016; Kaveh and Laknejadi 2013). Addi-
tionally, walkable cities are associated with lower levels of 
pollution and greenhouse gas emissions, as they reduce the 
dependency on automobiles, leading to fewer vehicle miles 
traveled and less air pollution (Kaveh, Dadras, and Malek 
2018; Kaveh and Laknejadi 2011b).

The relationship between walkability and urban sustain-
ability has also been widely documented (Mohamad Karimi 

et al. 2007). Sustainable urban development emphasizes the 
need for integrated land use and transportation planning 
that promotes compact, mixed-use neighborhoods (Ma et al. 
2012). These neighborhoods typically feature a dense net-
work of walkable streets that not only reduce the need for 
motorized transportation but also support local economies 
by increasing foot traffic to businesses (Asadi et al. 2014). 
Moreover, walkability is linked to social sustainability, as 
it enhances social interactions and community cohesion by 
encouraging people to spend more time in public spaces 
(Son and Kim 2016). However, achieving high levels of 
walkability in urban areas is challenging, as it requires a 
careful balance of factors such as density, land use mix, con-
nectivity, safety, and accessibility (Asadi et al. 2012; Nusen 
et al. 2021).

Multi-objective optimization has become a crucial tool in 
addressing the complexities of urban planning, particularly 
in the context of walkability (Rastegar Moghaddam, Khan-
zadi, and Kaveh 2021). Traditional planning approaches 
often focus on single objectives, such as minimizing travel 
time or maximizing land use efficiency, which can lead 
to suboptimal outcomes when other important factors are 
overlooked (Antipova et al. 2014; Manjarres et al. 2019). 
In contrast, multi-objective optimization allows planners to 
consider and balance multiple objectives simultaneously, 
leading to more holistic and sustainable urban designs. Algo-
rithms such as NSGA-II and NSGA-III have been widely 
used in various urban planning applications, including trans-
portation planning, land use allocation, and environmental 
management (Deb et al. 2002; Jain and Deb 2014).

The Non-dominated Sorting Genetic Algorithm III 
(NSGA-III) represents a significant advancement in multi-
objective optimization, particularly in scenarios involving 
many objectives (Kaveh, Izadifard, and Mottaghi 2020; 
Kaveh and Rajabi 2022). Unlike its predecessors, NSGA-III 
is specifically designed to handle high-dimensional objective 
spaces, making it well-suited for complex urban planning 
problems where multiple, often conflicting, criteria must be 
optimized (Deb and Jain 2013). NSGA-III has been success-
fully applied in various fields, including engineering design, 
environmental management, and logistics, but its application 
in urban walkability optimization is relatively recent (Kaveh, 
Fahimi-Farzam, and Kalateh-Ahani 2015). Studies using 
NSGA-III have demonstrated its effectiveness in generat-
ing diverse sets of Pareto-optimal solutions, providing urban 
planners with a range of viable options that reflect different 
trade-offs between objectives (Kaveh, Kalateh-Ahani, and 
Fahimi-Farzam 2013; Kaveh, Moghanni, and Javadi 2019).

Recent research has begun to explore the application of 
NSGA-III to urban walkability, with promising results (Ela-
zouni 2009; Uzir et al. 2020). For example, studies have 
used NSGA-III to optimize the placement of pedestrian 
infrastructure, the design of mixed-use neighborhoods, and 
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the allocation of green spaces, all while balancing objec-
tives such as safety, accessibility, and environmental quality 
(Benbouzid-SiTayeb et al. 2019; Lèbre, Corder, and Golev 
2017). These studies highlight the potential of NSGA-III 
to enhance walkability by enabling planners to consider a 
wide array of factors and to generate solutions that are both 
efficient and equitable. However, there is still a need for fur-
ther research to refine these methods and to explore their 
application in different urban contexts, particularly in large, 
densely populated cities where the challenges of walkability 
are most pronounced.

In conclusion, the literature underscores the importance 
of walkability for urban sustainability and the potential of 
multi-objective optimization, particularly NSGA-III, in 
addressing the complexities of urban planning. While sig-
nificant progress has been made, ongoing research is essen-
tial to fully realize the benefits of these approaches and to 
develop practical tools that can be widely adopted by urban 
planners. This study aims to contribute to this growing body 
of knowledge by applying NSGA-III to the optimization of 
urban walkability, with a focus on balancing accessibility, 
safety, environmental quality, and social inclusivity.

Research methodology

Objective functions for optimizing urban 
walkability

In the context of optimizing urban walkability, four key 
objective functions are defined in this study. Each objec-
tive function represents a different dimension of walkabil-
ity, which needs to be optimized simultaneously. The goal 
is to find solutions that balance these objectives to create 
a sustainable and walkable urban environment. These four 
objectives are formulated as follows;

Objective 1: Accessibility (O1) (Maximize accessibility 
to essential services and amenities)

This objective minimizes the average distance between resi-
dential areas and essential services. This ensures that resi-
dents have easy access to key amenities, contributing to a 
walkable city. Mathematical formulation of this objective is 
represented as Eq. (1).

Where, N is the total number of essential services (e.g., 
public transport, schools, healthcare facilities), and di is the 
distance from a given residential area to the service i.

(1)MaximizeO
1
=

1

N

N
∑

i=1

1

di

Objective 2: Safety (O2) (Minimize pedestrian accidents 
and enhance safety features)

This objective seeks to reduce the accident rate by improv-
ing safety features in pedestrian zones. The inverse rela-
tionship with safety infrastructure indicates that better 
safety features lead to fewer accidents. Mathematical for-
mulation of this objective is represented as Eq. (2).

Where, M is the total number of pedestrian zones or 
intersections, Aj   represents the accident rate in zone j, and 
Lj   represents the level of safety infrastructure (e.g., cross-
walks, lighting) in zone j.

Objective 3: Environmental quality (O3) (Minimize pollution 
levels and maximize green spaces)

This objective aims to enhance environmental quality by 
increasing green spaces and reducing pollution. A higher 
ratio of green spaces to pollution levels indicates a better 
quality of life for pedestrians. Mathematical formulation 
of this objective is represented as Eq. (3).

Where, G is the total area of green spaces within the 
urban environment, and P is the pollution index, measured 
by factors such as air and noise pollution levels.

Objective 4: Social inclusivity (O4) (Maximize inclusivity 
for all demographic groups)

This objective ensures that the urban environment is 
accessible to all demographic groups. By maximizing the 
inclusivity score relative to the population of each group, 
the city can be made walkable for everyone, regardless of 
age or physical ability. Mathematical formulation of this 
objective is represented as Eq. (4).

Where, K is the total number of demographic groups 
(e.g., elderly, disabled), Sk   is the score of inclusivity meas-
ures (e.g., ramps, wide sidewalks) for group k, and Nk   is 
the population of group k.
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Combined objective function for multi‑objective 
optimization

In a multi-objective optimization framework like NSGA-III, 
these individual objective functions are optimized simulta-
neously. The algorithm seeks to find a set of solutions where 
no single objective can be improved without worsening at 
least one other objective, resulting in a Pareto-optimal set 
of solutions. Mathematically, the combined objectives are 
represented as Eq. (5).

These objective functions are designed to capture the 
essential aspects of urban walkability, balancing the need 
for accessibility, safety, environmental quality, and social 
inclusivity. By optimizing these functions using NSGA-III, 
urban planners can identify solutions that contribute to the 
creation of walkable, sustainable cities.

Data collection

To optimize urban walkability, a comprehensive dataset is 
required to accurately represent the different factors influ-
encing walkability. The data collection process focuses 
on gathering information on accessibility, safety, environ-
mental quality, and social inclusivity across various urban 
areas. These data are sourced from a combination of public 
records, geographical information systems (GIS), surveys, 
and field observations. Table 1 provides an overview of the 
data sources and variables used in this study, outlining the 
specific data required for each objective and the correspond-
ing sources from which they were collected.

At this stage, it is required to highlight the detailed 
description of critical demographic and environmental 
factors essential for urban planning and decision-making. 
Population data includes information on total population, 
age distribution, and density, which are crucial for planning 
public services and infrastructure development. Housing 
data covers the types of housing available, such as apart-
ments or single-family homes, along with average occu-
pancy rates, offering insights into housing adequacy and 
future needs. Employment data provides an understanding 

(5)Optimize O = {O
1
, O

2
,O

3
,O

4
}

of the area's economic health, focusing on employment rates, 
major industries, and average income levels. Transportation 
data highlights the modes of transportation commonly used, 
average commute times, and access to public transit, all of 
which are vital for optimizing transportation networks and 
reducing congestion. Environmental data is critical for sus-
tainable urban development, addressing levels of pollution, 
availability of green spaces, and local climate conditions, 
all of which contribute to the quality of life. Lastly, social 
data emphasizes inclusivity by detailing access to essential 
services for vulnerable groups, ensuring that urban plan-
ning efforts are equitable and supportive of all community 
members. This comprehensive data description equips urban 
planners and policymakers with the necessary information to 
make informed decisions that enhance the overall well-being 
of the urban population.

Data preprocessing and analysis

Before applying the optimization algorithm, the collected 
data must be preprocessed to ensure consistency and com-
parability across different variables. The preprocessing steps 
include data cleaning, handling missing values, normalizing 
data, and performing initial statistical analyses. Normaliza-
tion is particularly crucial as it ensures that different varia-
bles, which may be measured in different units, are scaled to 
a common range, allowing for meaningful comparisons. The 
data normalization process, as illustrated in Fig. 1, involves 
identifying the range of each variable, rescaling the data to 
a standard range (typically between 0 and 1), and verifying 
that the normalization has been applied correctly.

Implementation of NSGA‑III

The implementation of the Non-dominated Sorting Genetic 
Algorithm III (NSGA-III) is a crucial aspect of this study, as 
it allows for the simultaneous optimization of multiple con-
flicting objectives related to urban walkability. NSGA-III is 
particularly well-suited for problems with a large number of 
objectives, which makes it ideal for urban planning scenarios 
where factors such as accessibility, safety, environmental 
quality, and social inclusivity need to be balanced. Below, 
we detail the step-by-step implementation process, including 

Table 1  Overview of data sources and variables

Variable Description Data Source

Accessibility (O1) Distances to essential services such as schools, healthcare, and trans-
port

GIS data, local government databases

Safety (O2) Pedestrian accident rates, presence of safety infrastructure Police reports, municipal records
Environmental Quality (O3) Levels of air and noise pollution, availability of green spaces Environmental monitoring agencies, GIS
Social Inclusivity (O4) Accessibility for elderly, disabled, and other vulnerable groups Surveys, census data, field observations
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the initialization of the algorithm, the application of genetic 
operators, the use of non-dominated sorting and reference 
points, the selection process, and the stopping criteria.

Initialization

The first step in implementing NSGA-III is the initializa-
tion of the population of potential solutions. In the context 
of this study, each solution represents a specific configura-
tion of the urban environment, with assigned values for the 
objectives of accessibility, safety, environmental quality, and 
social inclusivity. The population size, which determines the 
number of solutions to be evolved in each generation, is a 
critical parameter. A population size of 200 was chosen for 
this study, balancing the need for computational efficiency 
with the requirement for a diverse solution set. The initial 
population is generated randomly within the bounds defined 
by the decision variables, which correspond to various urban 
planning factors. This randomness ensures a wide explo-
ration of the solution space from the outset, allowing the 
algorithm to identify a broad range of potential solutions.

Genetic operators

Once the initial population is generated, NSGA-III employs 
genetic operators, specifically crossover and mutation, to 
evolve the population over successive generations. The 
crossover operator is responsible for combining two parent 

solutions to produce offspring, promoting the exploration of 
new regions in the solution space. In this study, a crossover 
probability of 0.9 was used, meaning that 90% of selected 
parent pairs undergo crossover. This high probability helps 
to ensure that the offspring inherit diverse characteristics 
from their parents, enhancing the algorithm's ability to 
explore the solution space effectively. Mutation, on the other 
hand, introduces random changes to individual solutions, 
thereby maintaining diversity within the population. A muta-
tion probability of 0.1 was applied, ensuring that 10% of the 
population experiences random modifications each genera-
tion. Mutation plays a crucial role in preventing premature 
convergence to local optima by allowing the algorithm to 
explore previously unexplored areas of the solution space.

Non‑Dominated sorting and reference points

A key feature of NSGA-III is its use of non-dominated sort-
ing and reference points to guide the selection of solutions. 
Non-dominated sorting is a process where the population 
is sorted into different fronts based on non-dominance. A 
solution is non-dominated if no other solution is better in all 
objectives. The first front consists of the best non-dominated 
solutions, and subsequent fronts contain solutions that are 
dominated by those in the previous fronts. This sorting pro-
cess helps in identifying the most competitive solutions. In 
addition to non-dominated sorting, NSGA-III uses reference 
points to maintain diversity among solutions within the same 

Fig. 1  Data normalization 
process flowchart
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front. These reference points act as targets that the algo-
rithm seeks to approximate with Pareto-optimal solutions. 
By associating solutions with reference points, NSGA-III 
ensures that the entire Pareto front is well-represented, even 
when dealing with high-dimensional objective spaces. This 
approach is particularly beneficial in urban planning, where 
multiple objectives must be optimized simultaneously.

Selection and environmental niche preservation

Following the sorting process, NSGA-III selects the next 
generation of solutions through a process known as envi-
ronmental niche preservation. This step involves normal-
izing the solutions and associating them with the closest 
reference points. The algorithm then selects solutions based 
on their proximity to these reference points and their con-
tribution to the diversity of the population. Solutions closer 
to less crowded reference points are favored, ensuring a 
diverse spread of solutions across the entire objective space. 
Environmental selection continues until the population size 
for the next generation is met. If a front cannot be entirely 
included in the next generation, solutions from that front 
are selected based on their niche-preserving properties. This 
process ensures that the final set of solutions is both diverse 
and representative of the entire Pareto front, providing urban 
planners with a wide range of viable options.

Stopping criteria

The algorithm iterates through the above steps until a pre-
defined stopping criterion is met. In this study, the stop-
ping criterion is primarily based on the maximum number 
of generations, which was set at 150. This limit ensures that 
the algorithm has sufficient time to converge to a stable set 
of Pareto-optimal solutions without incurring excessive 
computational costs. In addition to the maximum number 
of generations, the algorithm also monitors the convergence 
of the population. If the improvement in the Pareto front is 
negligible over several generations, the algorithm may ter-
minate early. This early stopping mechanism helps to save 
computational resources while still ensuring that the final 
solutions are of high quality.

Final pareto front

The output of the NSGA-III algorithm is a final Pareto 
front, representing the set of non-dominated solutions that 
offer the best trade-offs between the objectives. These solu-
tions provide a range of options for urban planners, who 
can select the most appropriate solution based on specific 
planning goals, such as maximizing accessibility while mini-
mizing environmental impact. The diversity and spread of 
the solutions across the Pareto front ensure that planners 

have a comprehensive set of choices, reflecting the vari-
ous trade-offs inherent in urban walkability optimization. 
The flow of the NSGA-III process, including initialization, 
genetic operations, non-dominated sorting, and niche pres-
ervation, is illustrated in the flowchart provided in Fig. 2. 
This figure outlines the step-by-step implementation of the 
algorithm, highlighting the interactions between different 
components and the flow of information through the opti-
mization process.

To ensure the effectiveness of the algorithm, specific 
parameters are set, as detailed in Table 2. These parameters 
include the population size, the number of generations, 
crossover probability, and mutation probability, all of which 
influence the performance and outcomes of the NSGA-III.

Results and discussion

Analysis of optimization results

The results of the NSGA-III optimization provide a set of 
Pareto-optimal solutions, each representing a different trade-
off between the objectives. These solutions are analyzed to 
understand the relationships and trade-offs between the 

Fig. 2  NSGA-III Algorithm flowchart
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various factors influencing walkability. Figure 3 presents the 
Pareto front illustrating the trade-off between Accessibil-
ity (O1) and Safety (O2) in urban walkability optimization, 
with each point labeled to show specific values. As acces-
sibility increases from 0.75 to 0.94, safety correspondingly 
decreases from 0.95 to 0.78, highlighting the inherent trade-
offs between these objectives. For instance, the point (0.75, 
0.95) offers the highest safety but lowest accessibility, while 
the point (0.94, 0.78) maximizes accessibility at the cost of 
reduced safety. This curve allows urban planners to visualize 
and select solutions that best balance the need for acces-
sible urban environments with the imperative of pedestrian 
safety, depending on the priorities of their specific planning 
context.

Further analysis is conducted to examine the trade-off 
between environmental quality and social inclusivity, as 
shown in Fig. 4. Figure 4 illustrates the trade-off between 
Environmental Quality (O3) and Social Inclusivity (O4), 
where each point on the curve represents a different solu-
tion with specific values labeled above the line. As environ-
mental quality improves from 0.70 to 0.90, social inclusiv-
ity correspondingly decreases from 0.92 to 0.78. This trend 
highlights the challenge in urban planning where efforts 
to enhance green spaces and reduce pollution may result 
in reduced accessibility and inclusivity for diverse demo-
graphic groups. For instance, the point (0.70, 0.92) offers 
the highest social inclusivity but the lowest environmental 

quality, while the point (0.90, 0.78) maximizes environ-
mental quality at the cost of social inclusivity. This analysis 
helps urban planners to understand and balance the trade-
offs between creating ecologically sustainable environments 
and maintaining inclusivity in urban spaces.

Based on the requirements of stakeholders, The Table 3 
presents a detailed comparison of selected three Pareto-opti-
mal solutions, each balancing the four key objectives: Acces-
sibility (O1), Safety (O2), Environmental Quality (O3), and 
Social Inclusivity (O4). Solution S1 offers high accessibil-
ity (0.85) and environmental quality (0.82) but at a moder-
ate cost to safety (0.78) and social inclusivity (0.75). This 
solution might be preferred in scenarios where access to 
amenities and green spaces are prioritized, even if it means 
accepting slightly lower safety and inclusivity. Solution S2 

Table 2  NSGA-III Parameter 
settings

Parameter Value Description

Population Size 200 The number of solutions in each generation.
Generations 150 The total number of generations for the algorithm to run.
Crossover Probability 0.9 The probability of crossover between pairs of chromosomes.
Mutation Probability 0.1 The probability of mutation in each chromosome.
Reference Points 20 per objective The number of reference points used for maintaining diversity.

Fig. 3  Example pareto front for accessibility vs. safety
Fig. 4  Trade-Off analysis between environmental quality and social 
inclusivity

Table 3  Summary of selected pareto-optimal solutions

Solution Accessibil-
ity (O1)

Safety (O2) Environmental 
Quality (O3)

Social 
Inclusivity 
(O4)

S1 0.85 0.78 0.82 0.75
S2 0.8 0.85 0.78 0.8
S3 0.9 0.7 0.85 0.77
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provides a more balanced approach, with safety (0.85) and 
social inclusivity (0.80) being higher, making it ideal for 
contexts where maintaining a safe and inclusive environment 
is crucial, albeit with slightly lower accessibility (0.80) and 
environmental quality (0.78). In contrast, Solution S3 maxi-
mizes accessibility (0.90) and environmental quality (0.85), 
but this comes with significant trade-offs in safety (0.70) and 
social inclusivity (0.77). This solution would be most suit-
able for urban planners focused on maximizing access and 
environmental improvements, even at the expense of lower 
safety and inclusivity. The trade-offs illustrated in this table 
provide critical insights for urban planners, enabling them to 
select the solution that best aligns with their specific priori-
ties and the needs of the community they serve.

Validation and sensitivity analysis

As shown in Table 4, the validation and sensitivity analysis 
play a crucial role in ensuring the robustness of the optimi-
zation results by examining how variations in the parameters 
of each objective function—Accessibility (O1), Safety (O2), 
Environmental Quality (O3), and Social Inclusivity (O4)—
affect the outcomes. This analysis provides valuable insights 
into the stability and reliability of the proposed solutions, 
helping to identify which factors most significantly influence 
the optimization process.

When the Distance Weighting parameter for Accessibil-
ity (O1) is varied, the analysis shows a moderate sensitivity 
measure. This indicates that changes in this parameter lead 
to a noticeable shift in the preference for solutions that are 
closer to amenities, suggesting that the optimization is some-
what sensitive to how distance is prioritized. As a result, 
urban planners should carefully consider how they weight 
accessibility distances, as this can impact which solutions 
are deemed optimal.

For Safety (O2), varying the Accident Rate Weight 
reveals a high sensitivity measure, leading to significant 
changes in safety prioritization. This finding implies that 
the safety outcomes are highly responsive to how accident 
rates are factored into the objective. Even small adjustments 
in the accident rate weighting can cause major shifts in the 
prioritization of safety in the final solutions. Therefore, plan-
ners need to be particularly cautious when determining how 
to incorporate accident data into their safety assessments.

On the other hand, the Environmental Quality (O3) 
objective shows a low sensitivity measure when the Pollu-
tion Index parameter is varied. This suggests that changes 
in pollution levels have minimal impact on the allocation of 
green spaces, indicating a stable objective that is less influ-
enced by minor variations in pollution data. Consequently, 
environmental quality appears to be consistently prioritized, 
regardless of small changes in pollution, making it a reliable 
objective in the optimization process.

Finally, the Social Inclusivity (O4) objective exhibits 
moderate sensitivity when the Inclusivity Score is varied. 
This results in adjustments to infrastructure aimed at sup-
porting vulnerable groups, indicating that social inclusiv-
ity is somewhat responsive to changes in how inclusivity is 
scored. This responsiveness suggests that planners should 
carefully consider how they measure and prioritize inclusiv-
ity to ensure that infrastructure improvements align with the 
needs of all demographic groups.

Overall, the sensitivity analysis highlights the importance 
of understanding which parameters most strongly influence 
the optimization outcomes. The high sensitivity of safety to 
accident rate weighting, for example, underscores the need 
for careful consideration in safety planning, while the low 
sensitivity of environmental quality suggests a more stable 
and reliable objective. By identifying the most influential 
factors, urban planners can ensure that their selected solu-
tions are robust and effective across a range of scenarios.

The Fig. 5 display how variations in parameters affect 
each of the four objectives: Accessibility (O1), Safety (O2), 
Environmental Quality (O3), and Social Inclusivity (O4). 
Each graph shows the objective value across low, medium, 
and high parameter variations, illustrating the sensitivity of 
each objective to changes in these parameters. This analysis 
helps in understanding which objectives are most impacted 
by parameter changes, guiding more informed decision-
making in urban planning.  

Comparative analysis

The performance of the NSGA-III algorithm was compared 
against other multi-objective optimization algorithms, 
namely Multi-Objective Particle Swarm Optimization 
(MOPSO) and Multi-Objective Teaching-Learning Based 
Optimization (MOTLBO) (Patil et al. 2024; Sethi, Prajapati, 

Table 4  Sensitivity analysis of objective functions

Objective Function Parameter Varied Sensitivity Measure Impact on Solution

Accessibility (O1) Distance Weighting Moderate Shift in preference for closer amenities.
Safety (O2) Accident Rate Weight High Significant change in safety prioritization.
Environmental Quality (O3) Pollution Index Low Minimal impact on green space allocation.
Social Inclusivity (O4) Inclusivity Score Moderate Changes in infrastructure for vulnerable groups.
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et al. 2024). The comparison focused on critical performance 
metrics, including Spread, Generalization Distance, and 
Hypervolume, which are essential for evaluating the diver-
sity, robustness, and quality of the solutions generated by 
each algorithm. Table 5 presents a summary of these per-
formance metrics, highlighting why NSGA-III is considered 
superior.

NSGA-III achieves a moderate spread ranging from 0.05 
to 0.07, indicating that its solutions are well-distributed 
across the Pareto front. This spread is optimal for urban 

planners as it offers a diverse set of solutions, providing 
a range of trade-offs between objectives like Accessibility 
(O1), Safety (O2), Environmental Quality (O3), and Social 
Inclusivity (O4). In contrast, MOPSO exhibits a higher 
spread of 0.08 to 0.10, which, while suggesting diversity, 
may result in solutions that are more dispersed and less 
closely aligned with the optimal Pareto front, potentially 
compromising optimality. On the other hand, MOTLBO 
shows a lower spread between 0.04 and 0.06, indicating 
a more concentrated set of solutions that likely converges 

Fig. 5  Sensitivity analysis graphs for each objective

Table 5  Comparative 
performance metrics of 
optimized solutions

Metric NSGA-III MOPSO MOTLBO

 Spread Moderate (0.05–0.07) High (0.08–0.10) Low (0.04–0.06)
 Generalization Distance Low (0.08–0.10) Moderate (0.10–0.12) Low (0.07–0.09)
 Hypervolume High (0.85–0.88) Moderate (0.80–0.83) High (0.86–0.89)
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better but with less diversity, potentially limiting flexibility 
in decision-making.

Regarding generalization distance, NSGA-III maintains 
a low range of 0.08 to 0.10, indicating that its solutions are 
robust and well-generalized across various scenarios. This 
robustness makes NSGA-III's solutions more applicable to 
different urban planning contexts. MOPSO, however, shows 
a moderate generalization distance between 0.10 and 0.12, 
suggesting that its solutions might not generalize as effec-
tively, with a potential tendency towards overfitting to spe-
cific optimization conditions. MOTLBO, similar to NSGA-
III, achieves a low generalization distance of 0.07 to 0.09, 
indicating robust solutions. However, when combined with 
its lower spread, this suggests that while MOTLBO's solu-
tions are robust, they may not offer the wide applicability 
seen with NSGA-III.

In terms of hypervolume, NSGA-III scores highly, rang-
ing from 0.85 to 0.88, indicating that it covers a large portion 
of the objective space and that its solutions are close to the 
true Pareto front. This high hypervolume means that NSGA-
III provides urban planners with a comprehensive set of 
optimal trade-offs. MOPSO, with a moderate hypervolume 
between 0.80 and 0.83, covers a reasonable portion of the 
objective space but doesn't reach the same level of optimal-
ity as NSGA-III, possibly leading to less efficient trade-offs. 
MOTLBO also achieves a high hypervolume of 0.86 to 0.89, 
slightly higher than NSGA-III, suggesting effective coverage 
of the objective space. However, this higher hypervolume, 
combined with its lower spread, indicates that MOTLBO’s 
solutions, while optimal, may be less diverse, offering fewer 
alternatives.

The data in Table 5 clearly shows that NSGA-III strikes 
the best balance between diversity, robustness, and opti-
mality. Its moderate spread ensures a well-distributed set 
of solutions, its low generalization distance guarantees that 
these solutions are robust and applicable across different 
scenarios, and its high hypervolume indicates that the solu-
tions are close to the true Pareto front. Compared to MOPSO 
and MOTLBO, NSGA-III provides a superior set of solu-
tions that are both diverse and optimal, making it the best 
choice for multi-objective optimization in urban planning 
scenarios where multiple competing objectives must be bal-
anced effectively.

Figure 6 illustrates the distribution of optimized solu-
tions (S1, S2, S3) across four key objectives: Accessibility 
(O1), Safety (O2), Environmental Quality (O3), and Social 
Inclusivity (O4). The radar chart visually represents how 
each solution performs relative to these objectives, pro-
viding a clear view of the trade-offs involved. Solution S1 
is characterized by relatively high scores in accessibility 
(0.85) and environmental quality (0.82), but it shows mod-
erate performance in safety (0.78) and social inclusivity 
(0.75). Solution S2 provides a more balanced performance 

across the objectives, with strong safety (0.85) and social 
inclusivity (0.80) scores, though it slightly lags in acces-
sibility (0.80) and environmental quality (0.78). Solution 
S3 maximizes accessibility (0.90) and environmental qual-
ity (0.85), but this comes at the cost of lower safety (0.70) 
and social inclusivity (0.77). This chart helps urban planners 
and decision-makers understand the trade-offs between the 
different objectives and select solutions that best align with 
their priorities, whether that be a balance across objectives 
or a focus on maximizing specific ones.

Trade‑Offs and policy implications

Figure 7 presents a comparative analysis of different urban 
planning scenarios, focusing on the performance of four key 
objectives: Accessibility (O1), Safety (O2), Environmental 
Quality (O3), and Social Inclusivity (O4). The bar chart 
provides a clear comparison of how each scenario impacts 
these objectives. Scenario 1 shows strong performance in 
accessibility (0.88) and environmental quality (0.80), but it 
compromises on safety (0.75) and social inclusivity (0.77). 
Scenario 2 prioritizes safety (0.89) and social inclusivity 
(0.83), resulting in slightly lower scores in accessibility 
(0.82) and environmental quality (0.77). Scenario 3 focuses 
on maximizing environmental quality (0.90) and accessibil-
ity (0.85), but this comes at the cost of lower safety (0.78) 
and social inclusivity (0.75).

This comparison highlights the trade-offs that urban plan-
ners must consider when selecting a planning approach. For 
instance, prioritizing environmental quality might require 

Fig. 6  Distribution of solutions across objectives
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sacrificing some safety or inclusivity, while a focus on safety 
could limit accessibility and environmental improvements. 
The chart helps decision-makers understand the implications 
of their choices and select scenarios that best align with their 
strategic goals for urban development.  

Discussion and policy implications

The results of the optimization process using the NSGA-III 
algorithm offer valuable insights into the trade-offs between 
accessibility, safety, environmental quality, and social inclu-
sivity in urban planning. This section interprets these results, 
provides policy recommendations, and outlines the limita-
tions of the study along with directions for future research.

The results indicate that achieving a perfect balance 
among all four objectives—accessibility, safety, environ-
mental quality, and social inclusivity—is challenging due to 
the inherent trade-offs. For instance, solutions that maximize 
accessibility and environmental quality, such as Solution S3, 
tend to compromise safety and social inclusivity. Conversely, 
solutions like S2 that prioritize safety and social inclusivity 
might result in slightly lower accessibility and environmen-
tal quality. This balance is crucial for urban planners who 
must weigh these trade-offs against the specific needs and 

priorities of their communities. The radar and bar charts 
provided in Figs. 6 and 7 visually demonstrate these trade-
offs, helping planners to better understand the implications 
of their decisions.

Based on the optimization results, the following policy 
recommendations (see Table 6) are suggested to enhance 
urban walkability while balancing the key objectives.

These policy interventions are designed to address the 
specific trade-offs highlighted by the optimization results. 
For example, enhancing public transportation and mixed-use 
developments can improve accessibility without significantly 
compromising environmental quality or safety. Similarly, 
expanding urban green spaces can boost environmental qual-
ity while improving social inclusivity by making urban areas 
more welcoming to all residents.

Conclusion

This study has explored the application of the Non-dom-
inated Sorting Genetic Algorithm III (NSGA-III) to the 
complex challenge of optimizing urban walkability, a criti-
cal component of sustainable city planning. By address-
ing multiple, often conflicting objectives—accessibility, 

Fig. 7  Comparative analysis 
of different urban planning 
scenarios

Table 6  Suggested policy interventions for enhancing walkability

Objective Policy intervention

 Accessibility (O1) Implement mixed-use developments and enhance public transportation infrastructure.
 Safety (O2) Improve pedestrian infrastructure, including crosswalks, lighting, and traffic calming measures.
 Environmental Quality (O3) Expand urban green spaces and enforce pollution control regulations.
 Social Inclusivity (O4) Ensure all urban developments include accessible infrastructure for vulnerable groups.
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safety, environmental quality, and social inclusivity—the 
study offers a novel approach to creating walkable urban 
environments that enhance the quality of life for residents.

The results demonstrate that NSGA-III is a powerful 
tool for balancing the diverse objectives inherent in urban 
planning. The algorithm's ability to generate a diverse set 
of Pareto-optimal solutions provides urban planners with a 
range of viable options, each representing different trade-
offs between key factors. This flexibility is crucial in real-
world urban planning, where no single solution can satisfy 
all objectives simultaneously.

The sensitivity analysis further validated the robustness 
of the proposed solutions, highlighting the importance of 
carefully considering the weightings and parameters used 
in the optimization process. The comparative analysis with 
other optimization algorithms underscored the superior-
ity of NSGA-III in generating well-distributed and high-
quality solutions, making it particularly well-suited for the 
complex, multi-dimensional nature of urban walkability 
optimization.

The findings of this study offer actionable insights for 
urban planners and policymakers, suggesting targeted 
interventions that can enhance walkability while balancing 
competing objectives. These recommendations can guide 
the development of more livable, inclusive, and sustain-
able urban environments.

However, the study also acknowledges certain limita-
tions, such as the need for further refinement of the objec-
tive functions and the potential for extending the research 
to larger and more complex urban settings. Future research 
could explore the integration of economic considerations, 
the application of NSGA-III in different cultural and geo-
graphical contexts, and the development of even more 
comprehensive models that incorporate additional dimen-
sions of urban sustainability.

In conclusion, this research contributes significantly to 
the field of urban planning by providing a comprehensive 
and practical framework for optimizing urban walkability 
using advanced multi-objective optimization techniques. 
By fostering more walkable cities, this approach supports 
broader goals of public health, environmental sustainabil-
ity, and social equity, ultimately promoting the develop-
ment of more sustainable and resilient urban spaces.
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