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Introduction

Highway construction projects rely heavily on the efficient 
management and deployment of a wide range of heavy 
machinery. Equipment such as excavators, which are used 
for ground preparation, and dump trucks, which handle 
material transportation, is critical to the successful comple-
tion of various construction phases (Kim, Kim et al., 2018b; 
Nath & Behzadan, 2020). Traditionally, equipment classifi-
cation and identification were based on manual inspection 
by trained personnel (Akhavian & Behzadan, 2015; Cheng 
et al., 2010). Although this method can achieve a certain 
level of accuracy, it has several limitations. The manual 
classification is inherently time-consuming and resource-
intensive. Furthermore, the potential for human error can 
cause inconsistencies and inaccuracies, particularly in large-
scale projects involving a variety of equipment types (Sher-
afat et al., 2020).

Deep Learning (DL) methods, including Convolutional 
Neural Networks (CNNs) and Recurrent Neural Networks 
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Abstract
Effective classification and detection of equipment on construction sites is critical for efficient equipment management. 
Despite substantial research efforts in this field, most previous studies have focused on classifying a limited number of 
equipment categories. Furthermore, there is a scarcity of research dedicated to heavy construction equipment. Hence, this 
study develops a robust Convolutional Neural Network (CNN) model to classify heavy construction machinery into 12 
different types. The study utilizes a comprehensive dataset of equipment images, which was divided into three distinct 
subsets: 60% for training the model, 30% for validating its performance, and 10% for testing its accuracy. The model’s 
robustness was ensured by monitoring accuracy and loss measures during the training and validation phases. The CNN 
model achieved approximately 85% training accuracy with a minimum loss of 0.40. The testing phase revealed a high 
overall precision of 80%. The CNN model accurately classifies concrete mixer machines and telescopic handlers with 
an Area Under the Curve (AUC) of 0.92, however pile driving machines have a lower accuracy with an AUC of 0.83. 
These findings demonstrate the model’s high ability to distinguish between several types of heavy construction equip-
ment. This paper contributes to the relatively unexplored area of classifying heavy construction equipment by providing 
a practical tool for automating equipment classification, leading to enhanced efficiency, safety, and maintenance protocols 
in construction management.
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(RNNs), have emerged as powerful tools in a variety of 
fields, including construction management (Elghaish et 
al., 2022; Ji et al., 2023; Park et al., 2023; Soltani et al., 
2016; Yabuki et al., 2018). Unlike artificial neural networks 
(ANNs), the capability of CNN models to autonomously 
identify complex patterns and representations from raw data 
offers promising opportunities for optimizing construction 
workflows and improving equipment management. Never-
theless, there is a research gap in the literature regarding 
the use of DL techniques - especially CNNs - to classify 
heavy machinery employed in highway construction proj-
ects (Akinosho et al., 2020).

Prior research has predominantly concentrated on apply-
ing DL to predict equipment failures, optimize maintenance 
schedules, and monitor construction progress. These studies 
highlight the potential of DL to transform multiple facets 
of construction management (Bunrit et al., 2019; Jung et 
al., 2022). However, there has been limited exploration into 
the specific challenges of classifying heavy equipment, par-
ticularly in highway construction projects (Akinosho et al., 
2020). Additionally, existing research focuses on classifying 
a limited number of equipment categories, lacking compre-
hensive coverage of the diverse array of heavy machinery 
used in these projects. To bridge these research gaps, this 
paper aims at achieving the following research objectives:

1.	 Conduct a review of existing literature to identify previ-
ous studies on the classification of heavy construction 
equipment in highway construction projects to establish 
the novelty and significance of the study.

2.	 Evaluate previous studies on classifying construc-
tion equipment to understand existing approaches and 
limitations.

3.	 Develop a CNN model to classify a wide range of heavy 
construction equipment in highway projects, addressing 
limitations in previous studies focusing on fewer equip-
ment classes.

4.	 Rigorously test the CNN model to demonstrate its accu-
rate classification of heavy construction equipment, 
validating its potential for real-world applications.

Literature review

Precise classification and detection of construction equip-
ment is crucial for enhancing project efficiency, ensur-
ing safety, and optimizing resource allocation (Kim et al., 
2018a). This allows for more efficient resource allocation, 
minimizing maintenance expenses and project delays (Post 
et al., 2018; Slaton et al., 2020a). By effectively monitor-
ing equipment on construction sites, construction managers 

can improve productivity, reduce downtime, and mitigate 
risks (Mohy et al., 2024; Xu et al., 2023; Yan et al., 2017). 
Ultimately, real-time equipment monitoring contributes to 
keeping projects on track and within budget.

Traditional classification techniques like ANNs, Support 
Vector Machines (SVMs), and k-Nearest Neighbors (kNN) 
have been used in various classification tasks (Anirudh et 
al., 2023; Elshaboury et al., 2024; Kaveh, 2024a, b; Kaveh 
& Khavaninzadeh, 2023; Obianyo et al., 2023; Yamany, 
2020; Zihan et al., 2023). These algorithms depend largely 
on manually extracted features that are created and fed into 
the algorithm. However, these classification models are 
limited by their learning capabilities and heavy reliance on 
expert domain knowledge to define features (Akinosho et 
al., 2020; Fang et al., 2016; Li et al., 2023). In contrast, the 
advent of DL, particularly CNNs, has transformed the field. 
CNNs have the capability to automatically learn relevant 
features directly from raw image data, eliminating the need 
for manual feature extraction (Xiao & Kang, 2021; Zhao et 
al., 2020). Groundbreaking research has been conducted on 
the use of CNNs in equipment classification, demonstrat-
ing that even shallow CNN architectures can be effective 
in tasks such as monitoring excavators. For example, one 
study found that CNNs could classify seven different exca-
vator activities with 90.7% accuracy using data from inertial 
measurement unit signals (Slaton et al., 2020a). This suc-
cess is attributed to CNN’s capability to efficiently extract 
spatial features from sensor data using parallel convolution 
operations.

Over the last decade, the use of DL for detecting con-
struction equipment has expanded substantially. Table  1 
provides a comprehensive comparison of various DL-based 
recognition techniques, serving as a valuable source for 
understanding the current landscape of DL applications in 
construction. This table outlines research efforts across dif-
ferent sub-fields of the broader construction domain, high-
lighting the versatility and growing importance of DL in 
addressing the challenges associated with the detection of 
construction equipment.

There has been little emphasis in the literature on the 
classification and detection of heavy equipment used in 
highway construction projects. For example, Arabi et al. 
(2020) developed a practical DL approach for detecting 
six types of construction equipment used in highway con-
struction. This approach achieved a mean average precision 
of over 90%, making it suitable for real-time construction 
applications such as safety monitoring and productivity 
assessment. In addition to classification and detection of 
construction equipment, other studies have investigated 
various aspects of equipment usage, including productiv-
ity for modular construction safety, which used R-CNN and 
achieved a precision of 0.890 (Zheng et al., 2020). Wang et 
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al. (2022) developed a DeepLabV3 + model for monitoring 
construction sites with an accuracy of 0.926, whereas Braun 
et al. (2020) created a CNN model for monitoring construc-
tion tasks with a recall of 0.914 and an F1 score of 0.927. 
Moreover, Xiao and Kang (2020) focused on productivity-
related tasks, illustrating the potential of DL techniques to 
optimize equipment utilization and operational efficiency. 
Furthermore, Shen et al. (2024) applied a Temporal Convo-
lutional Network (TCN) model for monitoring equipment 
activities, achieving precision and recall scores of 0.945 and 
0.944, respectively.

Most DL models developed for classifying and detect-
ing construction equipment address a limited number of 
classes. Studies such as Ding et al. (2018); Hernandez et al. 
(2019a) focused on fewer than ten equipment classes. Ding 
et al. (2018) achieved a high accuracy of 0.970 in detecting 
unsafe behaviour using a CNN model, while Hernandez et 

al. (2019a) obtained an accuracy of 0.771 for general moni-
toring of equipment activity tasks using an LSTM model. 
In contrast, few studies have developed models for more 
than ten classes. For instance, Shen et al. (2024) and Nath 
et al. (2020) explored classification tasks involving a higher 
number of equipment categories, highlighting the need for 
further research in this area to develop more robust mod-
els capable of handling a broader range of equipment types. 
Accoridng to the literature review conducted in this study, 
most prior studies have concentrated on detecting and classi-
fying construction equipment into ten or fewer classes. This 
underscores the necessity for advancements in DL models 
to handle more comprehensive classifications, particularly 
in complex and dynamic construction environments.

Table 1  Summary of studies used DL for object classification and detection on construction sites
No. Reference Application DL Task No. 

Classes
DL Method Accuracy Precision Recall F1 

Score
1 (Rashid & Louis, 

2019)
Excavator equip-
ment monitoring and 
classification

Classification 10 LSTM 0.979 0.962 0.990 0.976

2 (Guo et al., 2020) Safety Detection 6 CNN N/A 0.988 N/A N/A
3 (Slaton et al., 

2020b)
Monitoring activities 
of heavy construction 
equipment

Tracking com-
pactor activity

6 CNN 0.744 0.750 0.730 0.720
4 LSTM 0.752 0.780 0.760 0.750

5 (Shi et al., 2020) Safety Classification 4 LSTM High N/A N/A N/A
6 (Akhavian & 

Behzadan, 2015)
Monitoring equipment 
activity

Monitoring 5 ANN, KNN, DT 0.985 N/A N/A N/A

7 (Xiao et al., 2021) Monitoring construction 
machines at night-time

Tracking 10 Gladnet 0.951 0.759 0.963 N/A

8 (Xiao & Kang, 
2021)

Monitoring activities 
from a safety perspective

Detection 10 Inception-SSD N/A 0.830 N/A N/A
9 R-FCN-ResNet101 0.888
10 (Lu et al., 2021) Productivity Detection 11 RESNET with faster 

R-CNN
0.952 0.926 N/A N/A

11 (Jung et al., 2022) Safety and productivity Detection 13 CNN N/A 0.821 0.831 0.826
12 (Jung et al., 2023) Monitoring Detection 19 CNN 0.885 0.869 0.840 0.854
13 (Wang et al., 2023) Safety Detection 6 GhostNet N/A 0.921 0.903 N/A
14 (Sharma & Sen, 

2020)
Monitoring Detection 12 CNN 0.726–

0.990
 N/A N/A N/A

15 (Zheng et al., 
2020)

Module detection for 
modular construction 
safety

Detection 13 R-CNN N/A 0.890 0.830 N/A

16 (Wang et al., 2022) Monitoring construction 
sites for safety purposes

Detection 12 DeepLabV3+ 0.926 N/A N/A N/A

17 (Braun et al., 
2020)

Monitoring Detection 11 CNN N/A 0.914 0.927 0.920

18 (Shen et al., 2024) Monitoring equipment 
activities

Detection 8 TCN 0.945 0.944 0.945 0.944

19 (Ding et al., 2018) Detecting unsafe behav-
iour for safety purposes

Detection 8 CNN, LSTM 0.970 N/A N/A N/A

20 (Hernandez et al., 
2019b)

Monitoring Detection 6 CNN, LSTM 0.771 N/A N/A N/A

21 (Arabi et al., 2020) Safety monitoring, pro-
ductivity assessments

Detection 6 CNN 0.900 N/A N/A N/A

1 3



Asian Journal of Civil Engineering

corresponds to the value found at position (i + m, j + n) 
within the input image; and Bias is a trainable value that 
adjusts the output of the filter.

	● Pooling Layers: Situated between convolutional layers, 
pooling layers down sample feature maps while retain-
ing essential features extracted by preceding layers. A 
common pooling operation is max pooling, which se-
lects the maximum value within each pooling window.

	● Activation Functions: Non-linear activation functions 
like ReLU introduce non-linearity into the network, en-
hancing its ability to learn complex relationships. The 
ReLU function is expressed as.

ReLU(x) =max(0, x)� (2)

	● Fully Connected Layers: At the final stages, fully con-
nected layers process flattened outputs from convolu-
tional layers to compute class probabilities using the 
SoftMax activation function for classification.

Research methodology

Figure 2 illustrates the systematic methodology employed 
for heavy construction equipment image classification using 
a CNN model.

Construction equipment image data collection

A comprehensive dataset of heavy construction equip-
ment images was meticulously constructed for training 
and evaluating the CNN model. This dataset encompasses 

Overview of CNN model

Object classification and detection technology has evolved 
significantly, transitioning from methods that relied on 
hand-crafted features like Scale-Invariant Feature Trans-
form (SIFT) and Speeded Up Robust Features (SURF) to 
deep learning approaches, particularly CNN (Nath et al., 
2020). In contrast to traditional ANNs, which use image 
pixels directly for classification, CNN models simplify this 
process by consolidating weights into smaller kernel filters, 
which enhances learning efficiency and robustness. CNN 
represents a powerful type of deep neural network capable 
of directly learning complex patterns from data, leading to 
substantial advancements in object detection, image classi-
fication, speech recognition, and feature extraction (Fang et 
al., 2018; Huang et al., 2018; Zhang, 2022). CNN networks 
are structured with foundational components that enable 
sophisticated image processing, which are as follows:

	● Convolutional Layers: These layers apply convolu-
tion operations to input images, producing feature maps 
emphasizing specific visual patterns. During training, 
the network identifies and prioritizes important features 
necessary for accurate image scanning and categoriza-
tion, as depicted in Fig.  1. The convolution operation 
can be mathematically represented as

Output[i, j] =
∑

(Filter[m, n]× Input[i + m, j + n])

+ BiasOutput[i, j]
� (1)

Where Output[i, j] represents the value located at position 
(i, j) within the feature map; Filter[m, n] denotes the value 
positioned at (m, n) within the filter; Input [i + m, j + n] 

Fig. 1  Convolution operation in CNN model (Albelwi & Mahmood, 2017)
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labels, the model’s predictions can be easily matched with 
the respective equipment types, improving the clarity and 
understanding of the results for subsequent data analy-
sis, comparisons, and decision-making processes. Table  2 
provides the labels and descriptions for the 12 equipment 
classes.

CNN model architecture development

To handle the complexities of construction equipment 
images, we designed a deep CNN architecture inspired 
by established models like VGG and ResNet (Simonyan 
& Zisserman, 2015). This architecture leverages multiple 
convolutional layers for feature extraction. Each convolu-
tional layer uses rectified linear unit (ReLU) activations to 
introduce non-linearity and improve model performance. 
Max-pooling layers are strategically inserted between con-
volutional layers to reduce image dimensionality while pre-
serving key features. The model’s depth is carefully chosen 
to capture intricate visual details crucial for distinguishing 
between various construction equipment types. As illus-
trated in Fig. 3, the network follows a sequential structure:

10,846 images categorized into 12 distinct classes, ensuring 
a diverse representation of various equipment types (e.g., 
excavators and loaders). The dataset was divided into three 
subsets:

1.	 Training Dataset (60%, 6,595 images): This subset was 
used to train the CNN model, allowing it to learn the 
complex relationships between image features and their 
respective equipment classes.

2.	 Validation Dataset (30%, 3,291 images): This subset 
helped monitor the model’s performance throughout 
training to mitigate the risk of overfitting. High perfor-
mance on the validation set indicates the model’s ability 
to generalize to new, unseen data.

3.	 Testing Dataset (10%, 960 images): This subset was 
used for the final evaluation after the training phase, 
providing an unbiased measure of the model’s accuracy 
in real-world classification tasks.

To maintain consistency and facilitate interpretation, each 
image was assigned a unique numeric identifier ranging 
from 0 to 11, corresponding to its specific equipment class. 
This labeling system simplifies the referencing and analy-
sis of classification results. By using sequentially organized 

Fig. 2  Research methodology
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on the extracted features. Finally, a second fully con-
nected layer with a number of neurons equal to the 
equipment categories is employed. This layer utilizes 
the SoftMax activation function to generate prob-
abilities for each equipment class, enabling multi-class 
classification.

CNN model training and validation

The CNN model was trained using the training dataset, 
while the validation set was used to evaluate the model’s 
performance throughout the training process. An appropri-
ate optimizer (Adam) and a categorical cross-entropy loss 
function were utilized to reduce the classification error (Liu 
et al., 2023). During the training process, accuracy and loss 
metrics were continuously monitored for both the train-
ing and validation datasets. These metrics guided iterative 
adjustments to the model. Successful training is shown by 
high performance on the validation dataset; if not, the model 
architecture was refined. Refinements could include adding 
batch normalization, dropout layers, or other architectural 
changes. To prevent overfitting, techniques such as early 
stopping were employed to halt training when validation 
accuracy stopped improving or started declining. Addition-
ally, data augmentation was used to artificially increase the 
size of the training dataset, providing the model with a wider 
range of examples for each class and thus mitigating overfit-
ting. In instances of underfitting, where the model failed to 
capture the complexity of the data, the model’s capacity was 
increased, typically by adding more convolutional layers or 
neurons. Ultimately, the training process was conducted 
using a Jupyter Notebook, optimized for performance on a 
system equipped with an Intel (R) Core (TM) i7-10510U 
CPU @ 1.80 GHz, boosting up to 2.30 GHz.

CNN model testing and evaluation metrics

After successfully completing the training and validation 
processes, the final CNN model underwent rigorous testing 
using a separate testing dataset that had not been seen dur-
ing training or validation. This test dataset was utilized to 
evaluate the model’s performance in accurately classifying 
heavy construction equipment images. The effectiveness 
of the CNN model in real-world scenarios was thoroughly 
assessed by analyzing performance metrics, including pre-
cision, recall, and F1-score.

Precision=
True Positives

True Positives +False Positives
� (3)

1.	 Convolutional Layers: The process starts with a con-
volutional layer containing 16 filters of size 3 × 3. This 
layer extracts low-level features from the input image. 
Subsequent convolutional layers, with increasing num-
bers of filters (e.g., 32), progressively extract more 
complex features.

2.	 Max-Pooling Layers: Interspersed between convo-
lutional layers are max-pooling layers. These layers 
reduce the image size while retaining the most rel-
evant features extracted by the preceding convolutional 
layers.

3.	 Fully Connected Layers: After feature extraction, the 
process transitions to fully connected layers. The flat-
tened output from the final max-pooling layer is fed into 
a fully connected layer with 256 neurons and ReLU acti-
vation. This layer performs non-linear transformations 

Table 2  Equipment code, label, and description
Code Label Description
0 Asphalt roller A heavy machine used to compact and 

smooth asphalt pavement after it is laid.
1 Boom lift A mobile platform with an extendable 

and articulated arm that can elevate work-
ers and materials to various heights for 
construction, maintenance, or other tasks.

2 Concrete 
mixer machine

A machine used to combine cement, sand, 
gravel, and water to produce concrete.

3 Concrete 
mixer truck

A truck equipped with a rotating drum 
that mixes concrete ingredients while 
transporting them to the construction site.

4 Dump truck A large, open-bed truck used to haul 
loose materials such as dirt, gravel, sand, 
or demolition debris.

5 Excavator A tracked or wheeled machine with a 
long arm and bucket used for digging, 
trenching, loading, and demolition.

6 Forklift A powered industrial vehicle with a two-
pronged fork at the front for lifting and 
transporting pallets and other materials.

7 Loader A wheeled machine with a large bucket 
at the front for loading, scooping, and 
transporting loose materials.

8 Motor grader A machine with a long, adjustable blade 
used for grading, leveling, and shaping 
surfaces such as roads, driveways, and 
building sites.

9 Pile driving 
machine

A specialized machine used to drive piles 
(long, strong poles) into the ground to 
provide support for foundations, bridges, 
and other structures.

10 Scissor lift A mobile platform that rises vertically on 
scissor-like mechanisms, providing tem-
porary access for workers and materials 
at various heights.

11 Telescopic 
Handler

A machine with a telescopic boom that 
can be extended and retracted horizon-
tally. It can be equipped with various 
attachments for lifting, placing, and 
transporting materials.

1 3



Asian Journal of Civil Engineering

successful adaptation to reduce errors. The validation loss 
curve similarly decreases, suggesting the model’s capability 
to generalize and make accurate predictions on the validation 
data. The minimal variation in loss during training, along 
with its steady convergence to a low value (0.4), implies 
that the optimizer effectively finds the global minimum of 
the loss function. Overall, the training and validation curves 
reveal that the model has effectively learned the complex 
features of heavy construction equipment, achieving com-
mendable accuracy and low loss metrics on both datasets. 
These results highlight the model’s potential to accurately 
classify and identify different types of construction equip-
ment, contributing to enhanced operational efficiency, main-
tenance, and safety in the construction industry.

Performance evaluation of CNN model during 
testing stage

The classification results presented in Table  3 offer a 
detailed assessment of the model’s effectiveness in cat-
egorizing heavy construction equipment into 12 distinct 
classes during the testing phase. The precision scores aver-
age around 0.80, with a range from 0.71 to 0.87. Notably, 
the model shows high precision in categories like con-
crete mixer trucks (0.87), boom lifts (0.86), and telescopic 

Recall =
True Positives

True Positives +False Negatives
� (4)

F1= 2
Precision× Recall

Precision + Recall
� (5)

Results and discussion

Various CNN architectures with different configurations and 
hyperparameters were explored during the training phase, 
and this section discusses the results of the training, valida-
tion and testing of the optimal design.

Performance evaluation of CNN model during 
training stage

Figure 4 shows the accuracy and loss curves of training and 
validation. The training accuracy curve shows a steady and 
continuous increase, reflecting effective learning and clas-
sification of the training data. The validation accuracy curve 
also progresses positively, indicating that the model gener-
alizes well to new images. Additionally, the training loss 
curve, which consistently declines, indicates the model’s 

Fig. 3  Detailed architecture of the CNN model
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equipment types or challenges in correctly identifying all 
instances.

Furthermore, the F1-score, which balances precision and 
recall, ranges from 0.75 to 0.86. Class 1 (boom lift) attained 
the highest F1-score of 0.86, while Class 7 (loader) had the 
lowest F1-score of 0.75. The lower score for Class 7 sug-
gests an imbalance between precision and recall, possibly 
due to challenges in accurately distinguishing this class 
based on visual features alone. Furthermore, the support 
values, indicating the number of instances per class, range 
from 66 to 92. Classes with higher support generally have 
more training data, which may contribute to better classifi-
cation performance.

Overall, these metrics indicate that the model performs 
competitively in classifying heavy construction equipment. 
However, certain challenges persist, particularly in classes 
with lower precision and recall. Addressing these issues 
may require refining the model’s feature extraction capabili-
ties and enhancing the training process to improve accuracy 
and generalization across all equipment categories.

To comprehensively assess the performance of the CNN 
model, the Receiver Operating Characteristic (ROC) curve, 
a metric for assessing classification model performance, was 
created and investigated. Figure 5 displays the ROC curves 
for the 12 distinct types of construction equipment. The 
model exhibits impressive performance, as evidenced by its 
high Area Under the Curve (AUC) values for all classes. 
Notably, the model achieves an AUC score of 0.92 for both 
the concrete mixer machine and telescopic handler (classes 

handlers (0.84), indicating its high accuracy in identifying 
these specific equipment types. The variation in precision 
scores might be due to differences in visual complexity and 
distinctiveness among the classes, with equipment having 
more easily identifiable features achieving higher precision. 
Moreover, the recall scores, which reflect the model’s abil-
ity to correctly identify all relevant instances within a class, 
range from 0.73 to 0.86. The highest recall score of 0.86 was 
observed for Class 1 (boom lift), demonstrating the model’s 
high capability to detect true positives in this category. Con-
versely, the lower recall rate of 0.73 for Class 9 (pile driv-
ing machine) could be due to visual similarities with other 

Table 3  Classification report of testing phase
Class 
Code

Class Name Precision Recall F1-score Sup-
port

0 Asphalt roller 0.79 0.81 0.80 79
1 Boom lift 0.86 0.86 0.86 80
2 Concrete mixer 

machine
0.80 0.77 0.78 82

3 Concrete mixer 
truck

0.87 0.83 0.85 72

4 Dump truck 0.81 0.76 0.78 82
5 Excavator 0.78 0.80 0.79 66
6 Forklift 0.78 0.78 0.78 92
7 Loader 0.71 0.79 0.75 68
8 Motor grader 0.77 0.84 0.80 83
9 Pile driving 

machine
0.81 0.73 0.77 83

10 Scissor lift 0.79 0.79 0.79 85
11 Telescopic handler 0.84 0.83 0.83 88

Fig. 4  Training accuracy and loss vs. validation accuracy and loss
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in distinguishing between equipment types based on the 
testing results. Besides, the precision-recall curves in Fig. 6 
support these findings, showing that classes 6 and 8 achieve 
the best results, with average precision (AP) values of 0.73 
and 0.74, respectively. In contrast, class 9 records the low-
est precision-recall performance, with an AP score of 0.52.

In a separate effort, a confusion matrix was constructed 
during the testing phase to evaluate the CNN model’s per-
formance in classifying construction equipment (Fig.  7). 

2 and 11), indicating highly accurate classification. More-
over, both the forklift (class 6) and motor grader (class 8) 
demonstrate high performance, with an AUC value of 0.91.

However, the pile driving machine (class 9) exhibits a 
lower AUC value of 0.83, indicating difficulties in accu-
rately classifying this particular equipment type. The graphi-
cal representation in Fig. 5 provides a visual overview of the 
AUC metrics across different construction equipment cat-
egories, offering insights into the classifier’s effectiveness 

Fig. 6  Precision-recall curves 
of equipment classification for 
testing stage

 

Fig. 5  ROC curves of equipment 
classification for testing stage
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across various equipment classes. These findings highlight 
the model’s effectiveness in accurately distinguishing differ-
ent types of construction machinery.

The real-world implications of adopting this CNN model 
are substantial. The model contributes to optimizing opera-
tional efficiency and logistics in construction projects by 
automating the identification and categorization of equip-
ment on construction site. This results in enhanced resource 
allocation and more efficient equipment tracking, which 
leads to improved project execution. Furthermore, the CNN 
model enhances safety protocols on construction sites by 
providing a robust system for detailed equipment monitor-
ing. This facilitates improved recognition of potential haz-
ard and focused actions for risk mitigation, fostering a safer 
working environment for construction personnel. Addi-
tionally, the model’s streamlined operations and improved 
maintenance practices contribute to cost reductions.

It is crucial to acknowledge that the developed CNN 
model has some limitations. The model classifies a specific 
set of equipment on construction site. Moreover, there exists 
a potential imbalance in the training dataset due to data limi-
tations. However, we can unlock the model’s full potential by 
addressing these limitations through future research efforts. 
Promising avenues for future exploration include integrat-
ing real-time data streams for continuous monitoring and 

The matrix shows that the model achieved high accuracy 
in classifying concrete mixer machines, scissor lifts, con-
crete mixer trucks, and forklifts (classes 2, 10, 3, and 6, 
respectively). However, there is a room for improvement in 
accurately classifying asphalt rollers, telescopic handlers, 
excavators, and boom lifts (classes 0, 11, 5, and 1, respec-
tively). To enhance the model’s performance, applying 
data augmentation techniques and fine-tuning the model’s 
hyperparameters could be beneficial. Additionally, a more 
in-depth analysis of the misclassified images, especially 
those with lower accuracy, may provide valuable insights 
for improving the model’s ability to distinguish between 
specific types of equipment.

Conclusions

This paper introduces a CNN model developed specifi-
cally to tackle the challenge of accurately classifying heavy 
construction equipment on construction sites. This model 
represents a significant advancement in the identification 
and categorization of various heavy equipment in the con-
struction industry. The developed CNN model demonstrates 
remarkable accuracy, with precision scores ranging from 
0.71 to 0.87 and recall values ranging from 0.73 to 0.86 

Fig. 7  Confusion matrix of equip-
ment classification for testing 
stage
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adaptation, utilizing transfer learning techniques to expand 
applicability to a broader range of equipment categories, 
and investigating advanced image augmentation techniques 
to mitigate potential dataset biases and improve the model’s 
overall robustness.
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