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Abstract
The advent and progress of machine learning (ML) have profoundly influenced civil engineering, especially in forecasting 
concrete's mechanical properties. This research focuses on predicting the fly ash (FA) concrete compressive strength (CS) 
using six different ML models: linear regression (LR), decision tree (DT), random forest (RF), extreme Ggradient boosting 
(XGB), support vector regression (SVR), and artificial neural network (ANN). A dataset comprising 1089 records, each with 
12 input features, including the chemical compositions of FA, was used to train these models. The models' performance was 
assessed and compared using mean square error (MSE), mean absolute error (MAE), and the coefficient of determination (R2), 
with validation achieved through the K-fold cross-validation method. Among all the models evaluated, XGB was the most 
accurate, attaining an R2 value of 0.95. To interpret and understand the ML model predictions, Shapley Additive Explana-
tions (SHAP) analysis was employed. It revealed that curing days, water-binder ratio, cement content, and superplasticizer 
are the most critical factors in predicting the FA concrete CS. These results indicate the potential of ML models, especially 
extreme gradient boosting, in accurately predicting concrete strength, promoting more efficient and effective use of FA in 
construction. Additionally, a graphical user interface (GUI) was created to enhance user interaction with the prediction 
models, improving the utility and accessibility of ML applications.
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Introduction

Carbon dioxide (CO2) emission is identified as a primary 
environmental concern, with cement production contribut-
ing approximately 8 to 10 percent of the total CO2 emissions 
(Suhendro, 2014). This process plays a substantial role in 
greenhouse gas emissions and global warming (Bildirici, 
2019). Currently, tackling climate change is of paramount 
importance worldwide. Concrete is highly valued in con-
struction due to its mechanical strength and cost-effective-
ness (Andrew, 2019). However, the construction indus-
try, including its factories, has the largest environmental 

footprint among human activities. Integrating supplemen-
tary cementitious materials (SCMs) into concrete is a viable 
method for reducing CO2 emissions (Scrivener et al., 2018). 
Hence, utilizing SCMs in concrete is an effective and envi-
ronmentally responsible approach. Among these SCMs, 
FA is considered the predominant substitute for replacing 
cement in concrete mixtures (Li et al., 2022).

FA is a pozzolanic material abundant in silica and alu-
mina, recognized for its fine powder consistency, even finer 
than cement. FA is a by-product which comes from the coal 
combustion process. According to ASTM C618 standards, 
FA is categorized into Class F and Class C based on its 
chemical composition. In the past, various researchers have 
extensively investigated the effect of FA on concrete per-
formance, considering factors such as its type, chemical 
composition, quantity, and the extent of its replacement 
(Tkaczewska, 2021). Beyond its role in reducing carbon 
emissions, FA concrete offers several benefits. It enhances 
concrete's flow, binding, and water retention properties, 
improving its workability and performance during applica-
tion (Nayak et al., 2022). FA inclusion also helps mitigate 
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heat release during concrete hydration, reducing the risk of 
temperature-related cracks. Furthermore, through secondary 
hydration effects, FA increases compactness and improves 
the interface structure in concrete, resulting in enhanced 
impermeability and resistance against sulfate corrosion. 
Additionally, the prolonged reaction of volcanic ash in FA 
concrete improves its durability compared to conventional 
cement concrete.

Achieving the desired CS of FA concrete usually requires 
numerous adjustments to the concrete mix ratio using con-
ventional methods. This involves casting laboratory concrete 
specimens and performing compression tests to evaluate CS. 
If the measured strength does not meet the desired standard, 
new specimens must be prepared, which is time-consuming 
and increases labor expenses. Therefore, developing an 
effective alternative approach that could predict the CS from 
a particular mix before performing compression tests would 
be highly beneficial. This could provide valuable insights 
in advance, enabling more efficient adjustments to the mix 
ratio and reducing the need for repeated specimen creation 
and testing.

The emergence and development of ML have significantly 
impacted civil engineering (Kaveh, 2024; Manzoor et al., 
2021). Various ML models have been successfully applied to 
predict the compressive strength of concrete, yielding prom-
ising results (Al-Gburi & Yusuf, 2022; Sathiparan, 2024; 
Sathiparan et al., 2023). These techniques rely on extensive 
datasets to build precise models. The accuracy of their pre-
dictions primarily depends on the quality and completeness 
of the data samples collected from experimental procedures 
during specimen casting or from literature studies. Research-
ers utilize these algorithms to predict the mechanical prop-
erties of concrete with improved reliability and efficiency.

Kaveh et al. (1999) developed a hybrid method integrat-
ing graph theory with neural networks for domain decom-
position, enhancing accuracy and efficiency in structured 
finite element meshes. Iranmanesh and Kaveh (1999) 
introduced a neurocomputing strategy combining neural 
networks with structural optimization techniques. Singh 
et al. (2023) used ML models with 14 input parameters 
on a dataset of 400 points to predict the CS of red mud 
(RM)-based concrete. DT and extra tree regressor (ET) 
models provided the best fit. Microstructural analysis and 
leaching tests confirmed the safety and compliance of RM 
concrete, making it suitable for eco-friendly construction, 
especially for low-traffic or rural roads. Albostami et al. 
(2023) applied data-driven approaches to predict the CS 
of self-compacting concrete (SCC) with recycled plastic 
aggregates (RPA). Using 400 experimental datasets, they 
employed multi-objective genetic algorithm evolutionary 
polynomial regression (MOGA-EPR) and gene expression 
programming (GEP). These models outperformed the tradi-
tional LR model. Kaveh et al. (2021) applied ML to relate 

fiber angle and buckling capacity under bending-induced 
loads. Their deep learning model, trained on a dataset of 
11,000 cases, outperformed RF, DT, and LR models, dem-
onstrating superior accuracy and generalization. Kaveh et al. 
(2023) developed metaheuristic-trained ANNs to predict the 
ultimate buckling load of high-strength steel columns. Using 
particle swarm optimization and genetic algorithms to opti-
mize ANN weights and biases, their models achieved up to 
99.8% accuracy.

In the context of FA-based concrete, Ahmad et al. (2021) 
conducted a study on the utilisation of ML techniques to pre-
dict the CS of concrete incorporating SCMs. They employed 
bagging, DT, adaptive boosting, and GEP models. Among 
these, the bagging regressor provided the best prediction 
results. In their study, coarse aggregate, fine aggregate, and 
cement contributed 24.6%, 18.4%, and 16.3%, respectively 
to the prediction outcomes. Jiang et al. (2022) used ML algo-
rithms to predict the CS of concrete made with FA. They 
employed four ML models: RF, extreme learning machine, 
SVR, and support vector regression with grid search (SVR-
GS). The SVR-GS model produced the most accurate pre-
dictions, with age and water-cement ratio being the most 
influential features affecting CS. Mahajan and Bhagat (2022) 
investigated ANN, DT, GEP, and bagging regressor to pre-
dict the CS of concrete with FA admixture. Their predic-
tion model used seven input elements (cement content, fine 
aggregate, coarse aggregate, fly ash, superplasticizer, water 
content, and curing days) to predict the output parameter. 
The bagging algorithm outperformed ANN, DT, and GEP, 
achieving an R2 value of 0.97, compared to 0.81, 0.78, and 
0.82, respectively. Chopra et al. (2016) utilized genetic pro-
gramming and ANN to forecast the concrete CS, both with 
and without FA. They collected the relevant data from con-
trolled laboratory experiments at various curing periods. The 
prediction results indicated that the ANN model, using the 
Levenberg–Marquardt (LM) training function, was the most 
effective tool for predicting concrete CS.

Research significance

Several experimental studies have investigated the impact 
of adding FA on concrete CS. However, only a few have 
focused on predicting FA concrete CS using ML models. 
Moreover, many of these studies have relied on a limited 
number of data-set points and input parameters. Notably, the 
use of chemical composition (silica content, lime content, 
iron oxide content, aluminum oxide content, and loss on 
ignition) of FA as input parameters for predicting concrete 
CS has rarely been reported in the literature. This inclu-
sion of chemical composition addresses the variability in FA 
properties, which significantly influence concrete’s mechani-
cal properties.
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Addressing these gaps, the current research aims to 
employ six distinct ML models with 1,089 dataset points 
and 12 input parameters to predict the FA concrete CS. The 
research objectives are:

•	 To develop ML models that can accurately predict the FA 
concrete CS.

•	 To compare the performance of the models using met-
rices: MSE, MAE, and R2.

•	 To examine the relative significance and impact of each 
input feature on the CS.

•	 To develop a comprehensive graphical user interface 
(GUI) to facilitate user interaction with the prediction 
models.

Methodology

The flowchart for the methodology used in the current study 
is shown in Fig. 1.

Data collection

A total of 1,089 dataset points based on the use of FA in con-
crete were collected from existing literature (Alaka & Oye-
dele, 2016; Balakrishnan & Awal, 2014; Barbhuiya et al., 
2009; Chen et al., 2019; Chindaprasirt et al., 2007; Atis, 
2003; Durán-Herrera et al., 2011; Felekoglu, 2006; Hashmi 
et al., 2020; Golewski, 2018; Hansen, 1990; Huang et al., 
2013; Kumar et al., 2007; Kumar et al., 2021; McCarthy & 
Dhir, 2005; Mehta & Gjorv, 1982; Mukherjee et al., 2013; 
Nochaiya et al., 2010; Oner et al., 2005; Reiner & Rens, 
2006; Saha, 2018; Shaikh & Supit, 2015; Siddique, 2004; 
Siddique & Khatib, 2010; Sun et al., 2019; Woyciechowski 
et al., 2019; Yazici et al., 2012) in terms of twelve input 
parameters: water-binder (w/b) ratio, cement content (kg/

m3), coarse aggregate (kg/m3), fine aggregate (kg/m3), silica 
dioxide (%), calcium oxide (%), ferric oxide (%), aluminum 
oxide (%), loss on ignition (%), superplasticizer (kg/m3), 
curing days, and replacement percentage, and one out-
put parameter: compressive strength (Mpa). The dataset 
included 35 different types of fly ashe, each characterized 
by diverse chemical and physical properties. The database 
incorporated data from concrete specimens of varying 
shapes and sizes, with four distinct configurations utilized. 
Relevant shape factors were employed in analyzing these 
specimens. Out of the 1,089 datapoints, 872 (80%) were 
allocated for training the models, while 217 (20%) were des-
ignated for testing the models. The various input parameters 
are depicted in Fig. 2.

Pre‑ processing

In the pre-processing phase, the dataset was subjected to 
standard scaling to ensure all numeric features were on a 
comparable scale. This involved centering the data around 
zero and rescaling it to unit variance using Python's standard 
scaling functionality. By standardizing the features in this 
manner, potential issues stemming from varying scales were 
mitigated, ensuring that each feature contributed equally to 
the model's learning process.

Statistical analysis

Descriptive statistical analysis of the input and output vari-
able (CS) is summarized in Table 1, where ‘mean’ repre-
sents average value, ‘std’ represents standard deviation, 
‘min’ and ‘max’ signify minimum and maximum values, 
‘25%’, ‘50%’, and ‘75%’ represent first, second, and third 
quartile, and ‘skew’ and ‘kurt’ signify skewness and kurto-
sis, respectively.

Data Collection Model Evaluation/ Performance Metrices

Data Analysis Employed Models

1089 data points 

collected from past 

literature

Descriptive statistics

Marginal plot

Correlation heatmap

Linear Regression Decision Tree

Random Forest Extreme Gradient Boosting

Support Vector Regression Artificial Neural Network

Scatter plot for actual vs predicted values Mean square error (MSE)

K-fold cross-validation Mean absolute error (MAE)

REC curve Coefficient of determination (R2)

SHAP analysis

Partial dependence plot

GUI

Fig. 1   Flowchart of the methodology adopted in the currrent study



	 Asian Journal of Civil Engineering

Machine learning models employed

Linear regression (LR)

LR is a foundational statistical technique used to model 
the relationship between an outcome variable and one 
or more predictor variables. This is achieved by fitting 
a linear equation to the observed data to capture under-
lying patterns and trends (Su et al., 2012). The model 

determines the coefficients for each input feature by mini-
mizing the sum of squared errors between the predicted 
and actual values. The predicted value is calculated as a 
linear combination of the input features, where each fea-
ture is multiplied by its respective coefficient and summed 
together. For this study, an LR model was initialized and 
trained using the LinearRegression class from the scikit-
learn library in Python. The mathematical equation for the 
trained LR model is represented in Eq. (1) below.

Decision tree (DT)

DT is a supervised learning algorithm employed for pre-
dictive modeling. The model functions by recursively 
dividing the feature space into regions (Myles et  al., 
2004). Each internal node represents a decision based on 
a particular attribute, while each leaf node represents a 
predicted value. This approach allows the model to cap-
ture nonlinear relationships between input features and 
the target variable. In this study, a DT model was ini-
tialized using the DecisionTreeRegressor class from the 

(1)

y = 104.295 + (−76.280 ∗ W∕b ratio)
+ (−0.004 ∗ Cement Content)
+ (0.011 ∗ Fine Aggregate)
+ (0.001 ∗ Coarse Aggregate)
+ (−0.478 ∗ SiO2) + (−0.512 ∗ CaO)
+ (0.005 ∗ Fe2O3) + (−0.116 ∗ Al2O3
+ (−0.233 ∗ Loss on ignition)
+ (0.397 ∗ Superplastisizer)
+ (0.109 ∗ Curing Days)
+ (−0.483 ∗ Replacement Percentage)

INPUT 
PARAMETERS 

MIX PROPORTION

WATER-BINDER 
RATIO

CEMENT 
CONTENT

FINE AGGREGATE 

COARSE 
AGGREGATE

SUPERPLASTISIZE
R

REPLACEMENT 
PERCENTAGE 

FLY ASH 
CHEMICAL 

COMPOSITION

SiO2

CaO

Fe2O3

Al2O3

LOSS ON 
IGNITION

CURING DAYS 

Fig. 2   Input parameters used in the current study

Table 1   Descriptive statistical 
analysis of variables

Parameter Mean Std Min Max 25% 50% 75% Skew Kurt

W/b ratio 0.47 0.13 0.22 0.94 0.36 0.45 0.55 0.61 0.14
Cement content 224.88 89.24 83 486 140 205 290 0.52 − 0.57
Fine aggregate 757.14 210.81 0 1293 684 783.20 895 − 1.19 3.11
Coarse aggregate 1047.59 219.87 436 1970 975 1062 1180 0.30 3.33
Silica oxide (SiO2) 53.39 8 33.14 76.34 49.70 50.90 60 0.58 0.52
Calcium oxide (CaO) 6.93 6.90 0.59 35.18 2.35 4.40 6 1.93 3.67
Ferric oxide (Fe2O3) 8.60 6.17 3.30 26.87 5.27 6.98 8 2.31 4.16
Aluminum oxide (A12O3) 22.71 7.24 4.27 36.60 21.63 23.55 28 − 1.32 1.33
Loss on ignition 2.49 2 0.05 7.80 1 1.66 3.60 1.16 0.82
Superplastisizer 2.89 3.69 0 18.20 0 1.70 4.25 1.63 2.30
Curing days 67.88 91.15 1 365 7 28 90 2.10 3.90
Replacement percentage 41.58 18.70 5 80 30 40 60 0.16 − 0.70
Compressive strength 33.42 18.85 0 95.58 18.52 30.98 47.02 0.46 − 0.44
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scikit-learn library in Python. Unlike ensemble methods 
such as random forests, decision tree regression involves 
constructing a single decision tree trained on the entire 
dataset. The hyperparameters chosen for the model are 
shown in Table 2. These hyperparameters were carefully 
selected to balance the model’s complexity and predictive 
accuracy. Decision tree up to the depth of three is shown 
in Fig. 3.

Random forest (RF)

RF is an ensemble learning technique that builds multi-
ple decision trees during training and averages their pre-
dictions to produce a final output (Biau & Scornet, 2016). 
This method enhances predictive performance and reduces 
overfitting by training each tree on a random subset of fea-
tures and data samples. In this research, an RF model was 
initialized using the RandomForestRegressor class from the 
scikit-learn library in Python. To determine the best hyper-
parameters, a grid search was conducted, wherein the mean 
square error was computed for different leaf sizes and plotted 
against the number of estimators, allowing us to visualize 
the relationship between the number of estimators and model 
performance. By analyzing the graph, hyperparameters were 
tuned to minimize MSE and improve model accuracy. The 
chosen hyperparameters and the aforementioned graph are 
shown in Table 3 and Fig. 4, respectively.

Extreme gradient boosting (XGB)

XGB is a highly optimized and scalable implementation of 
gradient-boosting machines. It is renowned for its excep-
tional performance in various ML tasks, particularly in 
regression and classification problems. XGB operates by 
iteratively incorporating decision trees into an ensemble, 
wherein each tree is trained to rectify the errors made by 
the preceding ones (Chen & Guestrin, 2016). This boosting 
process focuses on minimizing a loss function by optimiz-
ing the predictions of the ensemble. An XGB model was 

Table 2   Hyperparameters for the DT model

Hyperparameter Value

Maximum tree depth 15
Maximum features per split ‘sqrt’’
Minimum samples per leaf 1
Minimum samples per split 2

Fig. 3   DT regressor up to tree depth three

Table 3   Hyperparameters for the RF model

Hyperparameter Value

Maximum tree depth 15
Maximum features per split ‘sqrt’
Minimum samples per leaf 1
Minimum samples per split 2
Number of estimators 100

Fig. 4   RF MSE vs. number of estimators for different leaf sizes
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initialized and trained using the XGBRegressor class from 
the xgboost library in Python. To determine the optimal 
hyperparameters, a grid search was conducted, wherein the 
mean square error was computed for different learning rates 
and plotted against the number of estimators. This allowed 
us to visualize the relationship between the number of esti-
mators and model performance, aiding in the decision about 
hyperparameters. The chosen hyperparameters and the rel-
evant graph are shown in Table 4 and Fig. 5, respectively.

Support vector regression (SVR)

SVR leverages the principles of support vector machines for 
regression analysis, offering a robust technique. Its objec-
tive is to identify the optimal hyperplane that maximizes the 
margin while minimizing the error between the predicted 
and observed values (Pisner & Schnyer, 2019). In this study, 
an SVR model was trained using the SVR class from the 
scikit-learn library in Python. Prior to training, the features 
were standardized with the StandardScaler from the same 
library to ensure consistent scaling across different features, 
thereby enhancing model performance. To fine-tune the 
hyperparameters and find the best combination of C and 
Gamma, a (r-squared) value heatmap was plotted for various 
combinations. The selected hyperparameters and the accu-
racy heatmap are shown in Table 5 and Fig. 6, respectively.

Artificial neural network (ANN)

ANNs are computational models consisting of intercon-
nected nodes arranged in layers: an input layer, one or more 
hidden layers, and an output layer. Each node performs a 
transformation on its input and forwards the outcome to the 
nodes in the subsequent layer. Through a process termed 
training, ANNs adjust the weights of connections between 
nodes to minimize a loss function and enhance predictive 
accuracy (Khan, 2018). In the current research, the model 
architecture was defined using the Keras library, with a 
sequential model featuring an input layer, a dense hidden 
layer with a variable number of neurons, and an output layer. 
The hidden layer utilized the rectified linear activation func-
tion (ReLU), while the output layer used a linear activation 
function, suitable for regression tasks. To determine the 
optimal number of neurons in the hidden layer, a graph was 
plotted showing the mean squared error versus the number 
of neurons. This visualization helped select the model com-
plexity that best balanced underfitting and overfitting. The 
chosen hyperparameters and the above-mentioned graph are 
shown in Table 6 and Fig. 7, respectively.

Table 4   Hyperparameters for 
the XGB model

Hyperparameter Value

Maximum depth 3
Learning rate 0.2
Number of estimators 200

Fig. 5   XGB MSE vs. number of estimators for different learning rates

Table 5   Hyperparameters for 
the SVR model

Hyperparameter Value

Kernel ‘rbf’
C 400
Epsilon 1
Gamma 0.1

Fig. 6   Accuracy heatmap for SVR model for different combinations 
of C and Gamma
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Results and discussion

Data visualization plots

Marginal plot

A marginal plot combines a scatter plot of input variables 
against the output variable with histograms or density 
plots of each variable along the axes. This plot allows for a 
simultaneous examination of the relationship between pre-
dictor variables and the output variable, while also visual-
izing the distribution of each variable. It facilitates under-
standing of how the input variables collectively affect the 
output variable and provides insights into their individual 
distributions. The marginal plot for all input variables with 
respect to the output variable is shown in Fig. 8.

Correlation heatmap

A correlation heatmap visually represents a correlation 
matrix, using colors to indicate the magnitude and direc-
tion of correlations between variables. Typically, warmer 
colors denote positive correlations, cooler colors repre-
sent negative correlations, and neutral colors signify no 

correlation. These heatmaps illustrate linear correlations 
between all possible combinations of variables in a data-
set, offering insights into relationships and patterns that 
may exist among them. The heatmap for the employed 
dataset is presented in Fig. 9.

Curing days (0.56) and cement content (0.34) exhibit the 
highest positive correlation with the output CS, while the 
water-binder ratio (-0.39) and replacement percentage 
(-0.29) show the highest negative correlation coefficients. 
Furthermore, since no features are uncorrelated, all twelve 
input parameters can be utilized for predicting the CS.

Performance metrices

The comparison of the six regression models revealed 
distinct performance differences, highlighted through 
three key metrices: MSE, MAE, and R2. These metrices 
are essential for understanding how well our models pre-
dict outcomes. MSE acts as a ruler, emphasizing larger 
errors by squaring the differences between forecasted 
and observed values (Allen, 1971). MAE focuses on the 
average size of errors without considering their direction 
(Willmott & Matsuura, 2005). R2 indicates how effectively 
the model explains the variability of the dependent vari-
able using the independent variables. Higher R2 values 
suggest that the model better captures the patterns and 
relationships in the data.

The mathematical expressions for MSE, MAE, and R2 
are given in Eqs. (2), (3) and (4) (Chicco et al., 2021).

where ‘n’ represents the number of samples, ‘yi’ denotes 
the actual value, ‘ ̂y i’ denotes the predicted value, ‘SSres’ 
represents the sum of squared residuals (errors), and ‘SStot’ 
stands for the total sum of squares.

The MSE, MAE, and R² values for the employed mod-
els are presented in Table 7.

Ensemble models, namely XGB and RF outperform 
other models exhibiting low MSE and high R2 values on 
both training and testing datasets. DT also performs well 
on the training data but shows moderate generalization 
to the testing data. While SVR and ANN show moderate 
performance on both training and testing datasets.

(2)MSE = (1∕n) ∗ Σ(yi − ŷi)2

(3)MAE = (1∕n) ∗ Σ|yi − ŷi|

(4)R2 = 1 − (SSres ∕ SStot)

Table 6   Hyperparameters for 
the ANN model

Hyperparameter Value

Hidden layer neurons 50
Activation function ‘relu’
Output layer activation ‘linear’
Optimizer ‘adam’
Loss function MSE
Epochs 1000
Batch size 10

Fig. 7   ANN MSE vs. number of neurons
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Fig. 8   Marginal plot between FA concrete CS and a water-binder ratio, b cement content, c fine aggregate, d coarse aggregate, e SiO2, f CaO, g 
Fe2O3, h Al2O3, i loss on ignition, j superplastisizer, k curing days, and l replacement percentage
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Fig. 8   (continued)
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Prediction plot

A scatter plot of actual versus predicted values visu-
ally assesses how well the model predictions align with 
the true values. Each point on the plot represents a data 
instance, where the x-coordinate denotes the actual value, 
and the y-coordinate represents the predicted value. Ide-
ally, all points would lie on the diagonal line (the identity 
line), indicating perfect alignment between forecasted and 
actual values. Figure 10 displays the scatter plot of actual 
vs. predicted values for the FA concrete CS for all the 
models used in this study.

Residual plot and distribution of residuals

In regression analysis, residual plots and the distribution of 
residuals play pivotal roles in assessing the adequacy and 

validity of the regression model (Suleiman et al., 2015). 
A residual plot visually depicts the differences between 
observed and predicted values, typically plotted against the 
independent variable(s) or the predicted values themselves. 
This graphical representation enables researchers to scruti-
nize key aspects of the model's performance: linearity and 
homoscedasticity. Specifically, a horizontal pattern in the 
residual plot suggests a linear relationship between the inde-
pendent and dependent variables, while a consistent spread 
of residuals across all levels of the independent variable(s) 
or predicted values indicates homoscedasticity.

The distribution of residuals provides insights into nor-
mality, skewness, and kurtosis, aiding in the assessment of 
the assumptions underlying the regression model. Deviations 
from normality or symmetry in the residual distribution may 
signal issues with the model's validity and highlight areas 
for refinement or further investigation. The percentage of 

Fig. 9   Correlation matrix heat-
map for the employed data-set

Table 7   Performance metrices 
for employed models for 
training and testing data-sets set

Training Testing

MSE MAE R2 MSE MAE R2

Linear regression 122.19 8.59 0.66 95.42 7.65 0.7
Decision tree 8.12 0.93 0.97 63.96 5.93 0.80
Random forest 4.19 1.47 0.98 22.37 3.57 0.93
Extreme gradient boosting 4.59 1.59 0.98 14.17 2.67 0.95
Support vector regression 16.5 2.48 0.95 28.71 3.69 0.91
Artificial neural network 15.47 2.78 0.95 23.48 3.65 0.92
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Fig. 10   Scatter plot of actual vs. predicted values of FA concrete CS for a LR, b DT, c RF, d XGB, e SVR, and f ANN model for training and 
testing data-sets
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Fig. 10   (continued)
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predictions within ± 5 for the employed models is shown 
in Table 8.

In examining all six models, the consistent presence of 
random scatter in the residual plots indicates that our mod-
eling techniques effectively capture the diverse relation-
ships within the data, without exhibiting systematic patterns. 
Furthermore, the residuals' normal distribution, centered 
around zero for most models, reinforces the reliability and 
robustness of our approach. In summary, the collective anal-
ysis of these models provides strong evidence supporting the 
validity of our statistical modeling framework in comprehen-
sively explaining the inherent variability within the dataset.

The residual plot and distribution of residuals for 
employed models are shown in Fig. 11.

K‑fold cross validation

K-fold cross-validation is a method employed to evaluate the 
performance of ML models accurately. In this method, the 
dataset is randomly divided into k equally sized subsets. One 
subset is set aside for validation, while the remaining k-1 
subsets are utilized for training. This procedure is repeated k 
times, with each subset serving as the validation set exactly 
once. By averaging the results of these iterations, a more 
reliable assessment of the model's performance is achieved, 
reducing potential biases. In the described study, a 10-fold 
cross-validation approach was utilized. The outcomes were 
evaluated using MSE, MAE, and R2, as shown in Fig. 12.

Across the folds, RF and XGB consistently demonstrate 
the lowest MSE and highest R2 values, indicating robust 
performance and strong predictive accuracy. SVR also main-
tained competitive performance with moderate MSE and 
high R2 values. Conversely, DT exhibits higher variability 
and generally higher MSE, while LR consistently displays 
the highest MSE and lowest R2 values, suggesting less reli-
able predictive capability.

Regression error characteristics (REC)

The regression error characteristic (REC) curve is a graphi-
cal tool for evaluating regression models. It plots absolute 

error values on the x-axis and cumulative distribution func-
tion (CDF) values on the y-axis (Bennett et al., 2003). This 
curve illustrates how prediction error varies across different 
levels of accuracy. The CDF, representing the cumulative 
proportion of data points with absolute errors less than or 
equal to a certain threshold, provides valuable information 
about the distribution of errors in the predictions made by 
the regression model. REC curves are instrumental for com-
paring models and understanding how the dataset size affects 
prediction accuracy. The REC curve for the employed mod-
els is depicted in Fig. 13.

XGB, RF, ANN, and SVR show strong performance, as 
evidenced by their close alignment with the x-axis, indicat-
ing lower error rates across various thresholds. In contrast, 
LR and DT perform poorly and moderately, respectively.

Shapley additive explanation (SHAP) analysis

SHAP, or Shapley Additive Explanations, is a mathematical 
method used to interpret the predictions of ML models. A 
SHAP summary plot provides a comprehensive overview 
of feature imnportance and their influence on model predic-
tions. It displays features along the y-axis, ranked by their 
importance, while the x-axis represents the average magni-
tude of SHAP values, indicating the direction and magnitude 
of each feature's impact on predictions across all data points. 
For this study, SHAP analysis was performed using the XGB 
model due to its superior performance, as shown in Fig. 14.

Curing days, water-binder ratio, cement content, and 
replacement percentage are the most impactful parameters 
in the prediction of FA concrete CS for the given data set.

Partial dependence plot

Partial dependence plots (PDPs) are visual tools that show 
the relationship between a subset of input features and the 
predicted outcome of a model. PDPs display how changes 
in specific features affect the predicted response while 
averaging out the effects of all other features. This helps in 
understanding the influence of each feature on the model's 
predictions, providing insights into the model's behavior 
and feature importance. PDPs can also serve as a valida-
tion tool, ensuring that the model's predictions are consistent 
with domain knowledge or expectations. In this study, PDPs 
were constructed for the most influential parameters— cur-
ing days, water-binder ratio, and cement content— using 
the XGB model while keeping the values of other features 
constant (at their mean), as shown in Fig. 15.

Graphical user interface (GUI)

The development of a graphical user interface (GUI) for the 
prediction models marks a major step forward in enhancing 

Table 8   Percentage predictions 
within ± 5 for employed models

Model Percentage 
predictions 
within ± 5

LR 40.83
DT 50.46
RF 73.39
XGB 87.16
SVR 75.23
ANN 75.69
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Fig. 11   Residual plot and distribution of residuals for a LR, b DT, c RF, d XGB, e SVR, and f ANN model
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Fig. 11   (continued)
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the practicality and availability of ML applications. A GUI 
was built using the Flask framework and subsequently 
deployed on Render. The interface features a dedicated space 
for users to input values for all relevant features, ensuring 
comprehensive data entry. Additionally, a drop-down menu 
is incorporated, allowing users to select the type of model 
they wish to employ for predictions, thus providing flex-
ibility and adaptability to varying model architectures and 
algorithms. This interface enables users to trigger predic-
tions with a single click and receive immediate feedback 
on the predicted outcomes. The GUI and related code files 
are available at https://​fa-​cs-​pred-​ekc0.​onren​der.​com/, and 
https://​github.​com/​abhin​avkap​il/​FA_​CS_​PRED, respec-
tively. The interface of the developed GUI is shown in 
Fig. 16.

Conclusions

This study employed six distinct ML models comprising 
1089 data-set points extracted from the use of FA in con-
crete in terms of twelve input parameters to predict the FA 
concrete CS. The following key findings emerged from this 
study:

1.	 The wide range of input variables and the output varia-
ble, as evidenced by the statistical analysis and marginal 
plots, served to validate the reliability of the collected 
dataset.

2.	 Correlation analysis revealed that no features were 
uncorrelated, so all the input features were utilized to 
increase the accuracy of the developed models.
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Fig. 12   K-fold cross validation results using a MAE, b MSE, and c 
R2 for employed models

Fig. 13   REC analysis of employed models

Fig. 14   SHAP analysis values for the XGB model

https://fa-cs-pred-ekc0.onrender.com/
https://github.com/abhinavkapil/FA_CS_PRED
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3.	 The ensemble ML models (RF and XGB) showed better 
performance, as indicated by higher values of R2 and 
lower statistical errors (MSE and MAE), with XGB 
being the most accurate (r-squared value of 0.95). SVR 
and ANN performed moderately on both training and 
testing datasets, meanwhile, DT and LR were the least 
effective in predicting the results, with R2 values of 0.80 
and 0.70, respectively.

4.	 K-fold cross-validation, which was utilized to confirm 
the accuracy of developed models revealed similar 
results with the XGB regressor showing superior per-
formance across all folds.

5.	 Based on REC analysis, XGB, RF, SVR, and ANN 
showed strong performance, with low error rates across 
various thresholds, while DT and LR performed mod-
erately and poorly, respectively.

6.	 Based on SHAP analysis, curing days, water-binder 
ratio, cement content, and replacement percentage were 
the most critical parameters in FA concrete CS predic-
tion for the given data set.

7.	 The partial dependence plots for curing days, water-
binder ratio, and cement content were consistent with 
the general trend.

8.	 A graphical user interface (GUI) was successfully devel-
oped, which will enable users to predict the FA concrete 
CS based on their own set of input values.

Fig. 15   Partial dependence plot for a curing days, b water-binder 
ratio, and c cement content using the XGB model

Fig. 16   The interface of the prepared GUI to predict the FA concrete 
CS
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