
RESEARCH

Asian Journal of Civil Engineering (2024) 25:4683–4696
https://doi.org/10.1007/s42107-024-01073-1

The effectiveness of these methods depends greatly on the 
operator’s experience and there are times when the aim of 
satisfactory water quality is not met (Senapati et al., 2023). 
Although significant improvements in water quality have 
been experienced in developed countries because of the use 
of modern treatment methods, the execution of these meth-
ods has not been without some negative aspects. Modern 
treatment methods using membrane and ozone technologies 
are highly effective at producing high-quality treated water, 
but are extremely.

Costly (Asgharnejad et al. 2021). The cost of applying 
these methods has increased water rates to the consumer. 
This makes modern technologies less favorable to consum-
ers in many developed countries where they are accustomed 
to lower-cost water rates. In short, there are both developed 
and developing countries that could benefit from improve-
ments in the effectiveness of water treatment methods, 
from the reduction of operational errors to producing qual-
ity water for consumers at an affordable cost (Kabyl et al. 
2020).

Introduction

The treatment of water to improve its quality has many parts, 
but the ultimate aim is to produce a supply of water that is 
consistently safe, palatable, and clear, free from pathogenic 
organisms and harmful chemicals, that can be supplied with 
adequate pressure to the consumers at the required location. 
The traditional approach to achieve these aims is by adding 
conservative levels of chemicals to the water based on the 
professional judgment of the water treatment plant operators. 
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Abstract
This research investigates using Convolutional Neural Networks (CNN) and Water Wave Optimization (WWO) to improve 
predictive modeling in water treatment operations. The method utilizes Convolutional Neural Networks (CNN) for their 
strong prediction skills and integrates them with Weather-Water-Ocean (WWO) data to enhance the selection of relevant 
features, aiming to improve the accuracy and efficiency of forecasting water quality indicators. The research systemati-
cally compares the performance of the CNN-WWO model with standalone CNN models, specifically evaluating param-
eters such as accuracy, precision, recall, and F1-score. The results demonstrate that the CNN-WWO model significantly 
surpasses the solo CNN, exhibiting an accuracy boost of about 2%. Additionally, there are noticeable improvements in 
precision and recall. This underscores the efficacy of the integrated strategy in reducing the occurrence of false positives 
and false negatives, which is crucial for optimizing the efficiency of water treatment operations. The conclusion highlights 
the model’s capacity to transform water treatment procedures while also recognizing constraints associated with computing 
requirements and applicability to diverse environmental situations. The results emphasize the possibility of using sophis-
ticated machine learning methods to improve the sustainability and effectiveness of water treatment systems, establishing 
a basis for further study to broaden the model’s usefulness.
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Increasing global population, industrialization, and water 
consumption have led to a significant increase in world-
wide water demand. The biggest problem in fulfilling the 
worldwide water demand lies on the supply side (Saqr et 
al., 2021). The amount of water in the world is finite and 
struggles to meet the daily increasing demand requirements 
resulting in the over-exploitation of water and increased 
pollution. Over-exploitation of water and increased pollu-
tion have resulted in a large number of surface and ground-
water resources being degraded to the point where they are 
no longer able to support the communities that rely on them 
(Jia et al., 2020). The situation is further stressed in devel-
oping countries where the development and implementation 
of better water treatment technologies are greatly needed 
to ensure the health of water supplies. The deterioration of 
water, if left unchecked, could potentially lead to outbreaks 
of waterborne diseases with the risk of epidemics and loss 
of life (Sabale et al., 2023).

The study uses current techniques’ limitations to identify 
technological gaps and conduct research. Recent advances 
in water treatment technology are widespread. In terms 
of technology and research, current methods are ineffec-
tive. Some variables are hard to quantify, and the interac-
tion between contamination and treatment is complicated, 
making dataset acquisition expensive and time-consum-
ing (Saravanan et al., 2021; Feng et al., 2020). According 
to Owodunni and Ismail (2021), poor-quality data is the 
main reason predictive models are hard to create. This is 
because model success depends on data quality. He also 
mentions the continued use of linear regression (Abdelfat-
tah et al., 2023) Despite its simplicity, it is not always effec-
tive. Second, choosing the best pollution-cause variable is 
tricky. Recently, variable selection methods have concen-
trated on picking a limited collection of data from a vast 
pool using linear and partial regression methods, such as 
stepwise regression. However, this method will hide non-
selected variables. Another strategy is to select all factors 
and increase predictions (Lenka et al., 2021). Because cer-
tain variables may not directly affect the cause, the process 
is expensive, and some machine learning methods require a 
dataset with all variables that affect results. Stepwise regres-
sion and selecting all variables often result in unsatisfac-
tory regression studies, particularly when people mistakenly 
perceive low cost as the optimal prediction. The Benchmark 
Report on the R&D of Models for the Fate and Transport 
of Microorganisms WERF, October 2007, warned that this 
could harm public health and safety (Obaideen et al., 2022).

On the other hand, accurate prediction of CSO occur-
rence and its impact can help the proper implementation of 
WWO control policy. During the training phase, a classifi-
cation model has been built using 1 h ahead lead time rain-
fall, flow, and antecedent dry weather period (ADWF) as 

the explanatory variables and the occurrence of predictive 
CSO at a particular outfall as the target variable (Lund et 
al. 2020). This model is used to determine the relationship 
between rainfall pattern and its intensity with CSO occur-
rence (Van der Werf et al., 2023). Stepwise multiple regres-
sion analysis is performed to determine the importance of 
each of the input variables and the functional relationship 
between input and output variables. The prediction model 
has been validated using split samples where predicted 
results are compared with actual data. This model can be 
a useful tool for the development of control policy to mini-
mize the impact of CSO (Rosin et al. 2021).

In the current scenario, various conventional treatment 
methods for contaminated water are not very accurate and 
reliable (Saddiqi et al. 2023). Therefore, advanced treatment 
methods are definitely required for the betterment of water 
quality. As discussed above, CNN and wavelet transform 
have an exceptional field in pattern recognition and clas-
sification problems. Although these methods are applied in 
various fields, they are not much explored in the field of 
water treatment processes. In this study, CNN approach is 
proposed for the prediction and classification of water qual-
ity based on various water quality attributes (Deore & Bho-
sale, 2022). For this approach, preprocessed data is fed into 
the neural network for training and testing with automatic 
segregation of input data and output classified set (Yin et 
al., 2024). During the learning process, the neural network 
automatically extracts the features of input data and makes 
the best possible decision boundary between categories, 
which makes it more effective than various statistical tools 
in data analysis. As an example, CNN approach using artifi-
cial intelligence technique has been implemented to predict 
the CSO occurrence at a particular place using rainfall pat-
terns and its intensity (Jiang et al., 2024).

The main aim of this study is to demonstrate and docu-
ment the various benefits of predictive modeling. The 
specifically defined objectives will be to develop the mod-
els and demonstrate their benefits in four separate areas: 
process optimization; improved process understanding; 
improved instrumentation; and improved incorporation 
of expert system-type functions. These objectives can be 
broken down further into the following: To improve cur-
rent practice in the use of trial-and-error type simulation 
and decision support. This will involve demonstrating the 
benefits of modeling at various stages e.g. software bench 
testing, comparison of off-line and online models, and 
the use of modeling in conjunction with plant trials. An 
example would be comparing alternative ways of imple-
menting a standard control strategy. This objective and 
the others will also involve interaction with plant opera-
tors and equipment suppliers. To improve the design and 
calibration of plant instrumentation, the data from which 
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is often underused. This will involve testing data collec-
tion methods and demonstrating the effect on model pre-
dictions and ultimately plant performance. An example 
would be testing various COD measurement methods and 
their relevance in predicting final effluent UV.

To improve the understanding and solution of opera-
tional problems by developing simpler empirical models 
from plant data and comparing these with existing meth-
ods e.g. statistical models, and expert rules. This will 
involve comparing different types of models and model 
calibration and demonstrating the effect on actual plant 
performance. An example would be the calibration of 
a chlorine dose model and its effect on THM precursor 
removal. To use detailed mechanistic or phenomenologi-
cal models to aid the development and solution of specific 
problems in plant operation. This objective is focused on 
the development of model-based decision support type 
tools that clarify cause and effect relationships and pro-
pose solutions. This objective will be demonstrated by 
case studies involving several different types of models 
e.g. CFD, granular filtration, and activated sludge. To the 
best of the author’s knowledge, this is the first time that 
water treatment prediction has been predicted utilizing 
a machine learning approach with CNN and water wave 
optimization. This will pave the way for additional stud-
ies on machine learning and other artificial intelligence 
applications in the treatment of water and wastewater, 
improving the quality of the water.

Methodology

Data description

The data that has been used to develop the predictive 
model for the treatment process at the WTP is from a 
pilot plant in Malaysia. The purpose of the data was to 
capture the behavior of a coagulation-sedimentation pro-
cess to produce high-quality treated water from a river 
source that is experiencing variable raw water quality 
due to rapid development and pollution without building 
the actual prediction model. This was an ideal platform 
to develop a predictive model using the available data 
that could be then used as an online management tool to 
optimize water treatment (Pakharuddin et al. 2021). The 
data source result comes from the paper by Bagherzadeh 
et al. (2021). The plant was operated in a manner that 
simulated an operating water treatment plant with high 
or low raw water quality, this involved dosing changes 
to the chemical coagulant (Rahmat et al. 2022). A new 
and novel approach was taken to collect the data for this 
project, which was to create a synthetic data set using 

various stochastic models of water quality and process 
inputs. The dataset used in this case comprises a total in 
excess of 120kB with a 6-month data collection period 
(Muhamad et al. 2021). The data has been split into dif-
ferent sets corresponding to raw water quality data where 
a relationship between coagulant dose to residual alumi-
num concentration is mainly used. Other data sets exist 
for the process setting or process monitoring data and 
these will be used later in future works for model exten-
sions to simulate process changes or troubleshoot a pro-
cess problem. The data features are of a time series nature 
and this is a record of the various process outputs and 
water quality characteristics at that time. This includes a 
wide range of data such as temperature, pH, turbidity, and 
particle size distribution (Narges et al. 2021).

Preprocessing steps

The next step after acquiring data to build a model is to 
preprocess the data. Preprocessing involves several steps 
including data cleaning, data reduction, and data trans-
formation. The quality of data and the performance of 
the model are decided by these preprocessing methods 
(Perez & Tah, 2020; Woolley et al. 2020). Data clean-
ing involves removing the noise and treating missing val-
ues, which can be crucial for the model. Steps like data 
reduction can intentionally reduce the complexity of the 
data without losing the significance of the information, 
whereas data transformation can transform the data into a 
form that is more understandable and acceptable for data 
mining and modeling (e.g. normalization). These prepro-
cessing steps can be vital for our model’s performance. 
In cases where we may decide to not preprocess the raw 
data and build models on both preprocessed and raw data 
to see the difference in the model’s performance, it can be 
surprising (Rakotosaona et al. 2020). We built an SVM 
model to predict the nitrate content in the effluent water 
using the effluent data as shown in Fig. 1. The data was 
first scatter plotted to see the distribution of the data.

It was seen that there was an outlier as one of the 
plants had a considerably high value of 34 mg/l against 
all the other plants whose values averaged from 0.1 to 
4.0 mg/l. This plant was explained to be a special case, 
and it was not wise to omit this data. An outlier SVM 
model was built using the outlier value as a parameter 
to see the effect of the outlier value on the model. After 
doing that, another model was built after removing the 
outlier, and the model performance was compared to that 
of the earlier model. It was seen that the model built after 
removing the outlier performed very slightly better than 
the other model (Nnamoko & Korkontzelos, 2020).
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step is done to make each parameter comparable to each 
other. This was done by applying the Eq. (1) for each param-
eter in the data set. Where xsi (n) is the nth sample of x in 
the dataset, xsimin  is the minimum value of x  in the data-
set, and xsimax is the maximum value of x in the dataset. 
After preprocessing, the WWO procedure is implemented 
by objectively evaluate whether the water quality parameter 
at time t + k  can be well predicted from knowledge avail-
able at time t by using a weighted linear combination of 
the past values of this parameter. The model is represented 
in the form of: x(t + k) =

∑
wi ∗ fi (t) , [−m ≤ k ≤ n] for 

which ywh will calculate the prediction error by Eq. (2) and 
find the combinations giving the minimum prediction error. 
Where x(t + k) is the value of a water quality parameter at 
time t + k, f i (t) is a clue for the prediction that has to be 

WWO implementation for feature selection

The water Wave Optimization implementation method 
starts with setting the WWO parameters as shown in Fig. 2. 
This was done to identify the parameters that will suit the 
existing understanding (in the available data, it is if there 
is an existing understanding about the measurements of the 
given parameters, i.e. which one is more important) (Kaveh 
& Servati, 2001; Kaveh et al., 2008). This step introduces a 
step of creating a weight for each parameter in water quality 
determination. Normally WWO needs a lot of tuning to get 
a stable and good result. But before that, this method is ini-
tiated with a standard data preprocessing step of involving 
median and mode substitution for the missing data and nor-
malization for the input data. The parameter normalization 

Fig. 1 Data Preprocessing and 
Modeling Flowchart
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method requires extensive tuning. This involves meticulous 
adjustments and fine-tuning to obtain a stable and satisfac-
tory outcome. However, before diving into the tuning pro-
cess, an initial data preprocessing step is performed. This 
step involves the substitution of missing data through the 
use of median and mode techniques (Kaveh and Khavan-
inzadeh, 2023; Kaveh and Rad, 2023; Kaveh & Talatahari, 
2010). Additionally, the input data undergoes normalization 
to ensure that each parameter is comparable to one another. 
The normalization step aims to achieve uniformity among 
the parameters, enabling effective analysis. Equation (1) 
is applied to each parameter in the dataset to normalize its 
values. In this equation, xsi (n) refers to the nth sample of 
parameter x in the dataset, xsimin  represents the minimum 
value of x in the dataset, and xsimax denotes the maximum 
value of x in the dataset. By applying this equation, the data 
is ready for the subsequent implementation of the WWO 

decided to be a know how or a data at a time t, and m and 
n are the lower and upper limits for taking the past values 
of x  (Kaveh et al., 2023; Kaveh and Jafarvand, 2015). Step 
one in this case using the whole range −6 ≤ k ≤ 6 to get 
a full overview the effect of past values to the future val-
ues of the parameter, and the step two will determine the 
best w which has the minimum error from W (t) = fw (t) 
OnClickListener to the future data of a parameter, using 
fewer prediction past values at time n. The implementation 
of the Weighted Window Option method involves several 
steps. Initially, the WWO parameters are set to ensure that 
the chosen parameters align well with the existing under-
standing. This allows for a better grasp of the importance of 
each parameter in relation to water quality determination. A 
crucial aspect of this method is the creation of weights for 
each parameter, which contributes to the accurate evalua-
tion of water quality. To achieve reliable results, the WWO 

Fig. 2 Water Wave Optimization (WWO) Implementation Flowchart for Feature Selection
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scheme effectively amounts to the first one and then sub-
sampling, Rao et al. suggested dropping the first layer as 
well. Neurons in the convolutional layer are partitioned 
into multiple feature planes where each one is connected 
to the outputs of the previous layer neurons through a set of 
trainable shared weights. A set of neurons (over all feature 
planes) that are connected to the same region of the previous 
layer form a feature map. Typically, different feature maps 
in the same layer will produce features of the input that do 
different things; i.e. one feature map may be learning an 
edge detector from the input, another learning a color blob 
detector. In the two convolutional layers in the architecture, 
the number of feature planes and the size of the filters for 
each layer have been chosen so that there is a trade-off with 
the amount of information preserved at each spatial scale 
and the complexity of the feature. This is because these lay-
ers form a bottleneck in the network whereby the input that 
has proven from the previous layer is subject to aggressive 
subsampling (Kim et al., 2020).

This is seen in the drastic decrease in input size to layer 2 
from the input image. By increasing the number of channels 
in the CNN, we can capture more fine-grained details and 
enhance the overall performance of the network. Further-
more, the use of multiple feature maps allows the network to 
specialize in detecting various patterns and features present 
in the input data. Through careful selection of the number of 
feature planes and filter sizes, we can balance the preserva-
tion of information and the complexity of extracted features. 
This trade-off ensures the network maintains its efficacy 
in capturing relevant information while keeping the over-
all computational complexity manageable. The bottleneck 
effect caused by the aggressive subsampling in the convo-
lutional layers plays a crucial role in reducing the input size 
and simplifying the subsequent computations. This strategy 
helps optimize the network’s performance by capturing the 
essential aspects of the input while discarding redundant 
information (Ahmed & Hasan, 2023).

Model training and validation

A convolutional neural network (CNN) was employed for 
the task of feature selection optimization in combination 
with Water Wave Optimization (WWO). The aim was to 
predict Total Organic Carbon (TOC) using the same set of 
10 variables. For the neural network setup, an 8:3:1 con-
figuration was identified as the most effective. This configu-
ration included 8 nodes in the input layer, 3 nodes in the 
first hidden layer, and 1 node in the second (output) layer 
of the network (Zhu et al. 2020). The utilization of a neu-
ral network for predicting TOC and simulating adsorption 
processes proved to be highly advantageous. However, it 
should be noted that neural networks are complex models 

procedure. The WWO procedure involves objective evalu-
ations to determine if the water quality parameter at time 
t + k  can be accurately predicted using available knowl-
edge at time t. This prediction relies on a weighted linear 
combination of previous values of the parameter. The model 
takes the form of x(t + k) =

∑
wi ∗ fi (t) , [−m ≤ k ≤ n], 

where wi represents the weight associated with each past 
value, and fi(t) acts as a clue for the prediction, indicating 
whether it is a known factor or a data point at a given time t. 
The parameters m and n establish the lower and upper limits 
for considering past values in the prediction. To calculate 
the prediction error, Eq. (2) is utilized. The goal is to identify 
the combination of weights that yield the minimum predic-
tion error. Thus, the implementation of the WWO method 
involves assessing different combinations and selecting the 
one that achieves the lowest prediction error.

Here, x(t + k) denotes the value of the water quality 
parameter at time t + k , and the objective is to determine 
the most accurate prediction using fewer past values at time 
n. In this case, the implementation of the WWO method 
entails two steps. Firstly, a comprehensive overview of the 
effect of past values on future values of the parameter is 
obtained by considering the entire range of −6 ≤ k ≤ 6. 
This step allows for a thorough understanding of the rela-
tionship between past and future values. Subsequently, in the 
second step, the optimal weight, denoted as w, is determined 
by minimizing the error from W (t) = fw (t) OnClickLis-
tener on the future data of the parameter. This is achieved by 
considering a reduced set of past values at time n  (Kaveh, 
2014; Kaveh & Khalegi, 1998; Kaveh & Talatahari, 2011).

CNN Architecture Specifics

The Convolutional Neural Network (CNN) takes 3 chan-
nels of the input images from the Feature-Based Represen-
tation (FBR). They are the red, green, and blue channels for 
a colored image or a single channel for a grayscale image. 
These channels can be imagined as images with their own 
pixels. An example would be an RGB image having pixel 
(10,10,255) which is yellow, or a pixel from a grayscale 
image (150) (Ding et al. 2021). Three channels form three 
input images, which are then compared to many filters, each 
producing a single channel of an image, in a process which 
we will explain in the next paragraph (Fu et al. 2020). Drop-
ping the first fully connected layer for a convolutional layer 
is motivated by this reason. A single pixel is actually a vec-
tor that comes from the three-color channels (Fig. 3). The 
neurons in the second layer connect to a local region on the 
input layer but overall color channels. Therefore, the neu-
rons in the second layer share the same weight W and differ-
ent inputs of the same region from different color planes will 
be combined with a weighted sum. Since this connection 
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while minimizing the risk of overfitting (Umeh et al. 2021). 
In regards to Accuracy, Precision, Recall, and F1-Score, I 
conducted a regression analysis on 10 variables using prin-
cipal component analysis (PCA) to predict TOC. The pri-
mary goal was to determine the most accurate model for 

that tend to overfit data easily. To mitigate this issue, k-fold 
cross-validation was employed. The data was divided into 
multiple subsets, with each subset used for training and test-
ing the model. By averaging the results obtained from these 
iterations, an effective performance measure was obtained, 

Fig. 3 Convolutional Neural Network (CNN) 
Architecture Flowchart
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CNN-WWO model, indicating a more dependable perfor-
mance in identifying true positive results and the capability 
to retrieve more relevant instances. The F1-Score, a com-
bination of precision and recall, also supports the superi-
ority of the CNN-WWO model, demonstrating a balanced 
enhancement in both precision and recall.

This analysis is of great importance as it showcases the 
impact of incorporating Water Wave Optimization into 
selecting features. This integration greatly improves the 
model’s ability to predict outcomes. Although not included 
here, the graphs accompanying this table usually visually 
depict these metrics, allowing for a quick and clear com-
parison of performance across these significant indicators. 
The combination of visual and numerical data solidifies that 
the CNN-WWO model offers a strong foundation for pre-
dictive modeling in water treatment processes, surpassing 
traditional models with notable enhancements.

Wavelet-weighted methods have been found to be effec-
tive in selecting important features for modeling. This is 
due to the fact that wavelets offer a compact and localized 
representation of the time-frequency structure of a signal 
or system. Wavelet analysis becomes relevant since many 
water treatment processes can be represented as a signal 
over time. One key advantage of wavelet analysis is that it 
de-correlates the data in both time and frequency, resulting 
in a clearer plot showcasing the relationship between the 
feature and the output. In contrast, traditional time-series 
analysis only provides a correlation plot at a single time lag, 
assuming a linear and stationary relationship between the 
feature and the system’s output. However, this assumption 
proves to be inadequate for complex and dynamic water 
treatment processes. With wavelet-based feature selection, 
the most significant wavelet coefficients can be identified 
through two main approaches: (1) assessing the significance 
of each coefficient at a specific location in the time-fre-
quency plane and (2) evaluating the significance of a linear 
combination of coefficients at multiple locations. This step 
is crucial as wavelets often generate a larger set of potential 
features when compared to the original data. Reducing the 
dimensionality of the wavelet data set makes it possible to 
determine with a specified level of confidence which spe-
cific features in the time-frequency plane contribute to the 
output’s variance.

Feature importance

This study’s analysis greatly emphasized examining the sig-
nificance of different features. The Water Wave Optimiza-
tion (WWO) method enabled this investigation during the 
feature selection phase of model creation. The WWO algo-
rithm was very helpful in figuring out the important fac-
tors that significantly affected how well the Convolutional 

predicting TOC by exploring various combinations of these 
variables. Based on the examination of a scree plot, it was 
concluded that the best model comprises of 2 principal com-
ponents. To evaluate the model’s effectiveness, a 10-fold 
cross-validation method was employed (Deiss et al., 2020).

The data was then standardized using two different ways; 
both with mean and standard deviation over the training set 
and the second being mean and standard deviation of each 
variable in the training set. Standardizing the data is impor-
tant as without it, variables with a higher range of values 
will impact the effectiveness of the model as it would weigh 
these variables more heavily. A total of 10 variables were 
used to predict TOC concentration using data from recent 
studies. The data was split into a training set and a test set 
at a ratio of 70:30, with the model being trained using the 
training dataset and evaluated using the test dataset. It is 
critical to divide the data into these two sets as without a 
test set to evaluate, there is no way to measure the effec-
tiveness of the model. The effectiveness of these models is 
also affected by the way split ratios, batch sizes, epochs, 
and validation techniques affect them and maximize their 
effectiveness.

Results

Model performance analysis

The predictive models were evaluated by analyzing vari-
ous important measures: accuracy, precision, recall, and 
F1-score. These measures play a vital role in determining 
the performance of each model in correctly identifying pre-
dictions and reducing the occurrence of false positives and 
negatives. These aspects are particularly critical in the field 
of water treatment. The findings of this analysis are pre-
sented in the table below, which compares the performance 
of the Convolutional Neural Network with Water Wave 
Optimization (CNN-WWO) and the standalone Convolu-
tional Neural Network (CNN).

The table 1 shows that the CNN-WWO model performs 
better than the standalone CNN model in all aspects. The 
accuracy of the CNN-WWO model is about 2% higher than 
that of the CNN model, which is a significant enhance-
ment in fields where even slight improvements are crucial. 
Similarly, the precision and recall rates are higher for the 

Table 1 Comparison of Evaluation Metrics Between CNN and CNN-
WWO.
Metric CNN-WWO CNN
Accuracy 0.977725 0.9584
Precision 0.953458 0.9096
Recall 0.948033 0.9055
F1-Score 0.950511 0.9074
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iterations continue, the discrepancy between anticipated and 
actual characteristics decreases, indicating a shift toward 
exploitation. During this phase, the algorithm concentrates 
on enhancing and refining the most promising solutions 
discovered in the exploration phase. The ability to dynami-
cally alter feature selection is essential to balance exploring 
new areas in the feature space and refining existing effective 
regions, thereby optimizing the solution. The visualization 
usually displays a convergence pattern, emphasizing the 
algorithm’s capacity to transition successfully from explo-
ration to targeted exploitation, guaranteeing a thorough and 
extensive search procedure (Fig. 5).

The trend in the number of features within the best solu-
tion set over time is an important indicator of the WWO’s 
performance in feature selection. Initially, the algorithm 
may consider a larger number of features to avoid prema-
turely discarding potentially useful predictors. However, 
WWO effectively identifies and eliminates redundant or 
less informative features as the optimization progresses, 
focusing on a compact set of highly predictive features. 
The trajectory typically shows a reduction in the number of 
features as the optimization cycles continue, which aligns 
with the algorithm’s goal of minimizing complexity while 
maximizing predictive accuracy (Fig. 6). This reduction 
not only enhances the efficiency of the predictive model by 
reducing computational demands but also improves model 
interpretability and robustness by relying on a core set of 
significant features. The graph depicting this trend would 
demonstrate a clear decrease in features over time, illustrat-
ing the WWO’s capability to streamline the feature set to 
those most impactful for the model’s performance.

Chemical Oxygen Demand (COD): The WWO recog-
nized COD as a significant factor in determining treatment 

Neural Network (CNN) model could predict what would 
happen with water treatment processes.

The WWO algorithm improved the selection process by 
imitating the movement and collision of water waves, allow-
ing it to effectively explore and exploit the search space. 
This method proved particularly successful in compressing 
extensive datasets by finding a subset of highly relevant 
characteristics, thus optimizing model efficiency and reduc-
ing computing burden. We have identified some crucial 
characteristics in our CNN-WWO model configuration that 
significantly impact the model’s results. The convergence 
behavior of the optimal solution within the WWO algorithm 
is crucial for understanding the efficiency and effectiveness 
of the feature selection process. We closely observed the 
convergence of the WWO, which allowed us to determine 
the algorithm’s efficiency and speed in identifying the best 
collection of features. Throughout the iterations, the WWO 
consistently decreased the objective function, which in this 
case is the predictive model’s error rate. This shows that the 
algorithm has a strong ability to improve the search space 
and prioritize the most important features. This enhances 
the accuracy of the water treatment predictions. Figure 4 
shows a significant correlation between the actual and pre-
dicted values, indicating the algorithm’s effectiveness in 
reducing mistakes and enhancing the model’s predictive 
performance.

In addition, the plot depicting the “predicted vs. actual 
number of features over time” provides insight into the 
exploration and exploitation stages of the WWO algo-
rithm. At first, there is a noticeable difference between the 
expected and actual quantities of characteristics, suggesting 
a significant focus on exploration. This enables the algo-
rithm to explore a wide range of possible solutions. As the 

Fig. 4 Predicted Vs Actual Number of Features Over 
Time
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Temperature: The WWO has acknowledged that water 
temperature plays a crucial role in determining the effective-
ness of specific treatment processes, as it impacts numer-
ous chemical and biological reactions. Biological Oxygen 
Demand (BOD) is a measurement that determines the quan-
tity of oxygen needed by aerobic biological organisms to 
decompose organic substances in water. Elevated levels of 
BOD can signify a large amount of organic matter present, 
which can impact the methods and effectiveness of water 
treatment. The Water Wave Optimization (WWO) had a cru-
cial role in the process of selecting features. Their task was 
not only to discover these significant variables but also to 
evaluate and prioritize them based on their ability to make 
predictions. This prioritization had a direct impact on the 
design of the Convolutional Neural Network (CNN), as it 

outcomes. It measures the oxygen consumed by reactions 
in a given solution. The model’s proficiency in accurately 
estimating COD levels using other input features improved 
the accuracy of water quality predictions. Turbidity, which 
refers to the level of cloudiness or haziness in a fluid due to 
numerous particles that cannot be seen with the naked eye, 
is an important factor to consider. It is particularly crucial 
in water treatment processes as it is a key indicator of water 
quality. Accurate turbidity level prediction is necessary to 
effectively control the treatment process. The WWO found 
that the pH level of water is an important feature to consider. 
pH is a key factor in evaluating the chemical properties of 
water and plays a vital role in deciding the suitability of dif-
ferent treatment approaches(Fig. 7).

Fig. 6 Number of Features in Best Solution Over Time 

Fig. 5 Wave Heights Over Time 
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than that of the CNN model. Furthermore, the CNN-WWO 
model exhibited better accuracy and recall rates, indicating 
its dependable ability to accurately detect true positives and 
efficiently retrieve relevant occurrences. The F1-Score, a 
crucial statistic that combines accuracy and recall, provided 
additional evidence of the higher performance of the CNN-
WWO model. It demonstrated a well-balanced improve-
ment in both measures (Schofield, 2023).

Integrating Water Wave Optimization greatly improves 
the model’s ability to make accurate predictions. This algo-
rithm, which takes inspiration from the inherent movement 
of water waves, effectively investigates and takes use of 
the search area to precisely identify crucial characteristics. 
Throughout the optimization process, the algorithm consis-
tently decreases the objective function, demonstrating a suc-
cessful reduction in the error rate for predictions (Librantz, 
2023). This trend demonstrates the algorithm’s capacity to 
consistently improve the selection of features, resulting in 
the continual optimization of the model’s performance over 
time.

Moreover, the use of wavelet analysis in feature selection 
is a new and innovative method for dealing with water treat-
ment data. Wavelet approaches provide a concise portrayal 
of the time-frequency organization of a system, making 
them well-suited for processes that may be characterized as 
signals over time. Wavelet analysis, unlike standard time-
series analysis, removes the correlation between data points 
in both time and frequency domains. This provides a more 
distinct view of how features and outputs are related (Scho-
field, 2023). This strategy is crucial for finding relevant 
wavelet coefficients, which in turn reduces the complexity 
of data and allows for a focus on the most impacting aspects.

directed the allocation of computational resources towards 
analyzing the interactions of the most essential features. As 
a result, CNN became more efficient and accurate. The opti-
mized set of features contributed to enhanced performance 
metrics of the model, manifested by improved accuracy, 
precision, recall, and F1 scores when compared to models 
trained using unoptimized feature sets.

This objective approach toward the significance of fea-
tures highlights the collaboration between advanced optimi-
zation algorithms like WWO and machine learning models 
like CNNs. By efficiently recognizing and prioritizing the 
most influential features, the CNN-WWO model enables a 
thorough comprehension and enhanced accuracy in the pre-
diction of water treatment processes. This, in turn, can result 
in the development of potentially more efficient and effec-
tive treatment strategies.

Discussion

Assessing predictive models in water treatment processes 
is crucial to guarantee the efficiency and efficacy of these 
systems. Recent research has measured the effectiveness 
of these models by employing important indicators such 
as accuracy, precision, recall, and F1-score. These metrics 
are essential for minimizing the incidence of false positives 
and false negatives, which are major difficulties in water 
treatment (Alali et al., 2023). The combination of Convo-
lutional Neural Networks and Water Wave Optimization 
(CNN-WWO) has shown significant improvements com-
pared to using CNN models alone. For instance, the CNN-
WWO model had an accuracy that was around 2% more 

Fig. 7 Relative importance of fea-
tures in the CNN-WWO model 
for water treatment processes
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a solid basis for future research focused on improving the 
flexibility and effectiveness of prediction models in differ-
ent water treatment scenarios.
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