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Introduction

The gradual evolution of project management stems from 
the imperative to control and optimize construction project 
objectives (Sharma & Trivedi, 2021). This encompasses 
planning, scheduling, and controlling stages, where project 
stakeholders play a pivotal role in establishing objectives 
(Patil et al., 2024). The fundamental approach for project 
planning and management depends largely on these stated 
objectives. Among these objectives, time (duration) and 
cost stand out as primary focuses of construction project 
planning and success (Afshar et al., 2007; Kaveh & Ilchi 
Ghazaan, 2020). However, project time and costs fluctu-
ate with the different consumption of resource (Sharma & 
Trivedi, 2023b).  The use of cost-effective resources using 
advanced technology reduces the project time, but increases 
cost of project (Afshar et al., 2007; Kaveh & Bakhshpoori, 
2016; Kaveh & Massoudi, 2014). Therefore, the time, cost 
and resources of a project are contradictory and conflict-
ing objectives. Striking a balance between time, costs and 
resources is thus more essential to effectively execute the 
project.
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Abstract
Balancing discrete time, cost, and resource allocation poses a significant challenge in construction projects due to their 
inherent conflicts. The competitive nature of the construction market underscores the importance of optimizing trade-offs 
among these objectives for successful project completion. To address the complexities and limitations of existing models, 
this paper presents a discrete time-cost-resources trade-off (DTCRT) optimization framework utilizing the opposition-
based non-dominated sorting genetic algorithm (OBNSGA III), in which opposition-based learning (OBL) is used for 
generating the initial population. The proposed model accommodates multi-mode project activities with varying resource 
requirements. A case study application demonstrates the efficacy of proposed approach in generating the Pareto-optimal 
solutions. Comparative analysis against existing techniques validates the effectiveness of proposed method. Additionally, 
trade-off plots and an a priori decision-making tool are provided to facilitate selection among the generated solutions by 
project stakeholders.
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In recent decades it has been increasingly common for 
practitioners to resolve trade-off issues. In this context, 
Feng et al. (1997), Tiwari and Johari (2015), Kaveh and 
Laknejadi (2013) and others addressed the time-cost trade-
off (TCT) issues of projects. TCT is expanded to time-cost-
resources trade-off (TCRT) due to increasing association 
and need of project stakeholders (Sharma & Trivedi, 2022; 
Azim Eirgash et al., 2023; Aminbakhsh & Sonmez, 2016). 
This article also proposes a novel model for optimizing dis-
crete time-cost-resource (DTCRT) in order to relieve the 
complexity and constraints of existing models.

Construction projects consist of multiple activities that 
are interlinked or reliant on each other (Sharma & Trivedi, 
2020). Each activity can be executed through various avail-
able modes, with each mode being associated with different 
time, cost, and resource requirements (Kaveh et al., 2013; 
Kaveh, Fahimi-Farzam et al., 2015; Kaveh, Khanzadi, 
Kaveh et al., 2015b). Consequently, there exist numerous 
ways to complete project based on permutations of these 
execution modes. Additionally, as the number of execution 
modes and activities increases in a construction project, the 
computation complexity of finding Pareto-optimal solutions 
for project completion also escalates (Azim Eirgash et al., 
2023; Eirgash et al., 2019). In response to this challenge, 
this paper presents an OBNSGA-III-based scheduling 
method to determine the optimal approach for completing 
the project. The OBNSGA III algorithm is chosen for its 
effectiveness in handling multi-objective optimization prob-
lems, particularly in construction project scheduling. This 
algorithm efficiently explores the solution space, identifies 
Pareto-optimal solutions, and maintains solution diversity, 
making it suitable for our DTCRT model’s objectives. The 
applicability of OBNSGA-III is demonstrated by solv-
ing the DTCRT problem of a real case study. Comparison 
against existing literature methods highlights the superiority 
of the proposed OBNSGA-III approach.

After providing a detailed introduction, the paper pro-
ceeds to explore several critical sections. It begins with a 
comprehensive literature review, offering insights into exist-
ing methodologies and challenges regarding the optimiza-
tion of time, cost, and resource trade-offs in construction 
projects. Subsequently, the problem formulation section 
articulates the specific challenges of DTCRT in construc-
tion projects, delineating objectives, constraints, and vari-
ables. The research methodology section then elucidates the 
development process of the OBNSGA-III-based DTCRT 
model, highlighting the rationale behind employing OBL 
and detailing the model’s construction. The paper further 
presents the results of applying the proposed model to a 
real-world case study, discussing obtained optimizations, 
trade-offs, and performance metrics. Comparative analysis 
against existing methods follows, evaluating the efficiency 

and efficacy of the proposed model through quantitative 
measures. Finally, the paper concludes by summarizing key 
findings, implications, and avenues for future research, pro-
viding valuable insights for construction project manage-
ment practitioners.

Review of literature

Literature review of paper provides a comprehensive exam-
ination of existing methodologies and challenges pertaining 
to the optimization of time, cost, and resource trade-offs in 
construction projects.

Project scheduling methods can be categorized into three 
main types: deterministic, heuristic, and meta-heuristic 
(Sharma & Trivedi, 2021). Deterministic techniques, such 
as the Critical Path Method (CPM) originated by Kelley and 
Walker (1959), have been widely used for planning project 
activities. These techniques provide exact solutions but may 
not adequately address the complexities and uncertainties 
inherent in construction projects (Eirgash & Toğan, 2023). 
Heuristic techniques, on the other hand, rely on past prob-
lem-solving practices and practical rules of thumb (Zhou et 
al., 2013). Examples include Fondahl’s Approach (Fondahl, 
1962) and approximation methods like Siemens (Siemens 
1971). While heuristic methods offer simplicity and flex-
ibility, they may lack the ability to find globally optimal 
solutions.

In recent years, meta-heuristic techniques have gained 
traction for their ability to discover relatively good solutions 
in large multi-objective optimization problems. However, 
they do not guarantee globally optimal solutions (Banihash-
emi et al., 2021). Meta-heuristic methods such as Genetic 
Algorithms (GA), Particle Swarm Optimization (PSO), and 
Simulated Annealing (SA) have been applied to address the 
TCT problems in construction projects (Kosztyán & Szalkai, 
2018; Sharma & Trivedi, 2023b; Tiwari et al., 2022).

Furthermore, studies have extended the traditional TCT 
problem to consider additional objectives such as resources 
and quality (Shahsavari Pour et al., 2010). Recently, the 
NSGA-II (Deb & Jain, 2014) and modified evolutionary 
algorithms (Tran et al., 2018) have been proposed to tackle 
discrete time-cost trade-off issues in resource-constrained 
environments. Additionally, approaches like PSO have been 
adapted to simultaneously optimize time, costs, resources, 
and cash flow in construction project scheduling (Elbeltagi 
et al., 2016). However, challenges remain in achieving con-
vergence to optimal solutions, especially as the number of 
competing objectives increases (Köppen & Yoshida, 2007).

One significant advancement in multi-objective optimi-
zation is the development of NSGA-III, which addresses 
challenges such as population diversity and convergence 
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(Deb & Jain, 2014). NSGA-III has been applied to vari-
ous practical issues and has demonstrated the ability to find 
well-converged and diverse solutions (Deb & Jain, 2014). 
However, the literature review points out that the benefits of 
population initialization and generation hopping in NSGA-
III have not been fully utilized in studies related to construc-
tion project scheduling (Panwar & Jha, 2019).

To address this gap, the paper proposes the use of Oppo-
sition-based Learning (OBL) in conjunction with NSGA-III 
for population initialization and generation hopping. OBL, 
introduced by Tizhoosh (2005), has been shown to provide 
diverse and fit initial populations, accelerating convergence 
while maintaining solution diversity (Aminbakhsh & Son-
mez, 2016b; Lotfi et al., 2022). By incorporating OBL into 
NSGA-III, the proposed model aims to improve the effi-
ciency of multi-objective optimization for DTCRT prob-
lems in construction projects.

In summary, the literature review provides a comprehen-
sive overview of existing methodologies for addressing time-
cost-resource trade-offs in construction projects. It identifies 
gaps in current approaches and highlights the potential of 
integrating OBL with NSGA-III to enhance solution qual-
ity and convergence. These insights lay the groundwork for 
the development of the proposed Discrete Opposition-based 
NSGA-III framework. In next sections of the paper, DTCRT 
problem formulation, proposed OBNSGA-III based DTCRT 
model, case study and discussion, and conclusions of the 
study are comprehensively provided.

DTCRT problem formulation

In the realm of construction projects, achieving optimal bal-
ance among time, cost, and resources stands as pivotal for 
ensuring successful project completion. Within this section, 
a thorough delineation of the input parameters, objectives, 
and constraints intrinsic to the DTCRT problem is provided.

Activity execution modes

Each activity Ai  in the construction project can be exe-
cuted using one of multiple execution modes EMij , where 
j = 1,2,…,Mi . These modes represent different approaches 
to completing the activity, each with its unique time and cost 
implications due to variations in resource utilization.

Input parameters

The optimization problem considers the following input 
parameters:

Activity completion time  This parameter denotes the time 
required to complete each activity.

Activity completion cost  This parameter represents the cost 
associated with completing each activity.

Activity resource moment  This parameter reflects the vari-
ability in resource requirements and duration of resource 
utilization for each activity.

Objective functions

The DTCRT optimization aims to achieve the following 
objectives:

Minimization of project completion time (PCT)

This objective seeks to minimize the total duration nec-
essary for completing the entire project, considering the 
sequence of activities and their respective completion times. 
It is represented mathematically as:

PCT =
∑

A∈CP

ACTA � (1)

Minimization of project completion cost (PCC)

This objective aims to minimize overall cost of project com-
pletion, inclusive of both direct and indirect costs. Direct 
costs are associated with specific activities, while indirect 
costs are incurred over time. The objective function is for-
mulated as:

PCC =
∑

A
ACC + Daily_Indirect_Costs

×PCTindays
� (2)

Minimization of project resource moment (PRM)

This objective seeks to minimize the variation in resource 
requirements and duration of resource utilization through-
out the project. It considers labour (LR), material (MR), 
and equipment (ER) resource moments for each activity. 
In this paper, minimum moment algorithm (a heuristic 
method) is employed to calculate fluctuation in resources. 
According to this algorithm, fluctuation in resources is 
equal to moment of resource histogram about the x-axis 
(Mx). While, resource utilization period is calculated by tak-
ing the moment of resource histogram about y-axis (My) as 
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number of objectives increases in an optimization problem, 
the population within non-dominated fronts grows exponen-
tially, posing challenges in selecting population members 
for the next generation. To address this issue, Deb and Jain 
(2014) proposed a reference point-based non-dominated 
sorting approach, inspired by the work of Das and Dennis 
(1998). By placing predefined or undefined reference points 
on a normalized hyper-plane, this approach aids in distrib-
uting the population across higher-dimensional non-dom-
inated fronts. Apart from the selection mechanism within 
non-dominated fronts, the remaining aspects of NSGA-III 
remain consistent with NSGA-II.

As delineated in the problem formulation, each activ-
ity in a construction project presents multiple alternative 
execution options. Consequently, for each activity, a spe-
cific alternative must be designated as a decision variable. 
The combination of decision variables for project activities 
constitutes a potential solution to the trade-off problems. In 
NSGA-III, each solution to the optimization problem is rep-
resented as a chromosome, with each gene corresponding to 
a decision variable or activity in construction project. There-
fore, each gene of a chromosome holds the value (allele) of 
the decision variable representing the chosen alternative for 
executing that activity. To illustrate, consider a construction 
project with nine activities, each offering three available 
alternative options. A chromosome solution, as depicted in 
Fig. 1, represents a potential solution for completing activi-
ties 1–9 with alternative options 3, 1, 2, 3, 2, 1, 2, 3, and 
1, respectively. Adhering to permutation rules, there exist a 
total of 39 potential project delivery solutions.

The detailed procedure for solving the OBNSGA III-
based DTCRT optimization is elaborated as follows;

Step-1) The OBNSGA-III algorithm begins by gener-
ating a population of size N using the OBL technique and 
placing a set of widely distributed M-dimensional reference 
points H on a normalized hyper-plane. This step ensures a 
diverse initial population and reference points for objective 
optimization.

Step-2) Next, the algorithm proceeds with solving 
the Many-Objective Scheduling Problem (MOSP) using 
NSGA-III. The first step involves generating and ranking an 
initial population (Pt) of size N. For each chromosome in the 
population, the fitness value of each objective is computed, 
accounting for every possible solution.

Step-3) Following the computation of fitness values, non-
dominated sorting is performed to create non-dominated 
fronts. Within each front, solutions are ranked based on their 
crowding distance, which measures the density of solutions 
around a particular solution. This process results in a ranked 

suggested by Hegazy (2002). PRM is equal to the summa-
tion of Mx and My, which is called as double moment, and 
can be given as follows;

PRM =
∑

A

(Mx + My)LR +
∑

A

(Mx + My)MR +

∑

A

(Mx + My)ER
� (3)

Where,

Mx =
∑

A

(
Rt

k

)2
� (4)

My =
∑

A

Rt
k ∗ t � (5)

Where, Rt
k  denotes the usage of resource k over a time 

period t.

Limitations

Several following constraints guide the optimization 
process:

Sequential completion  Activities must be completed 
sequentially for successful project execution.

Single execution mode  Each activity is completed using 
only one selected execution mode.

Decision variables  Execution modes for activities are 
decision variables, constrained to positive integers within 
defined bounds.

Preservation of priority connections  Priority connections 
between activities are maintained throughout the optimiza-
tion process.

Proposed OBNSGA-III based DTCRT model

Over the past two to three decades, researchers have devel-
oped various Evolutionary Multi-Objective Algorithms 
(EMOAs) to tackle optimization problems with two or more 
objectives (Zhang et al., 2014). In this context, Deb and Jain 
(2014) introduced NSGA-III, which builds upon the foun-
dation of NSGA-II, with its primary distinction lying in the 
selection mechanism within non-dominated fronts. As the 

Fig. 1  Chromosome structure
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Case study and discussion

The developed DTCRT optimization methodology was 
put into practice through a case study centered in Gwalior, 
India. This case study involved a project consisting of 13 
distinct activities. Table 2 presents a comprehensive break-
down of each activity, encompassing its name, the succeed-
ing activity (if applicable), the number of possible execution 
modes (EMs), and the associated objectives including time, 
cost, and required resources. With the project comprising 13 
activities, the total number of potential approaches to deliv-
ering the project amounted to an impressive 55,296. These 
numerous approaches were derived from the various avail-
able execution modes for each activity. To discern the most 
effective strategies for completing the project, the proposed 
OBNSGA III-based DTCRT model was employed. This 
model identifies Pareto optimal solutions, which represent 
the optimal combinations of activity execution modes con-
ducive to project success.

MATLAB R2022a was used to implement the recom-
mended OBNSGA III based DTCRT model for the above 
case study project. Several experiments with different val-
ues of OBNSGA III parameters were conducted in order to 
finalise the values of these parameters.

There was a total of 24 distinct Pareto optimum solu-
tions found, i.e. 24 unique optimal combinations of activity 
execution modes that matched the project’s objectives. PCT, 
PCC, and PRM were calculated for each of the project’s 24 
delivery options. The PCT ranges from 169 to 228 days, the 
PCC from 489289.00 to 784189.70, and the PRM ranges 
from 143,840 to 170,624. Table 3 lists all 24 Pareto-optimal 
solutions that were found. Figures  3 and 4, and 5 depict 
trade-off plots between time-cost, time-resources, and time-
cost-resources, respectively.

Comparison based on performance metrics

In evaluating the performance of optimization algorithms, 
it is imperative to assess their ability to efficiently navigate 
and explore the Pareto-optimal fronts (Sharma & Trivedi, 
2023a; Trivedi & Sharma, 2023). Convergence and diversity 
serve as fundamental criteria for gauging the effectiveness 
of such algorithms in multi-objective optimization contexts. 
Convergence and diversity serve as fundamental criteria for 
assessing the efficacy of such algorithms in multi-objective 
optimization contexts. As depicted through bold values in 
Table 4, the performance of the proposed DTCRT optimiza-
tion method was comprehensively assessed using various 
metrics, as detailed below:

initial population, where solutions in higher fronts are gen-
erally more desirable.

Step-4) After ranking, tournament selection is employed 
to create a mating pool from the ranked population. In this 
stage, pairs of solutions are randomly selected, and tourna-
ments are conducted to determine the winners based on their 
ranks. The selected solutions from the tournaments form the 
mating pool.

Step-5) The mating pool undergoes crossover and muta-
tion operations to generate offspring solutions. Crossover 
involves exchanging genetic information between pairs of 
parent solutions, while mutation introduces small random 
changes to the offspring. These operations contribute to 
the exploration of the solution space and the generation of 
diverse offspring.

Step-6) Subsequently, the offspring solutions are com-
bined with the parent population (Pt) to form a combined 
population (Rt). This combined population undergoes non-
dominated sorting to identify non-dominated solutions and 
create non-dominated fronts.

Step-7) From these non-dominated fronts, a new popu-
lation is generated for the next generation. Solutions are 
selected based on their ranks and crowding distances to 
ensure diversity and maintain high-quality solutions. This 
process continues iteratively until a stopping criterion is 
met, such as reaching a maximum number of generations or 
achieving convergence of solutions.

Figure 2 illustrates the iterative movement of the algo-
rithm from one generation to the next, highlighting its itera-
tive nature and the criteria for termination. Through this 
iterative process, OBNSGA-III efficiently searches for opti-
mal solutions to the MOSP, balancing multiple objectives 
and constraints.

Validation of the model

In the pursuit of enhancing multi-objective optimization 
methodologies, a novel approach termed OBNSGA III 
based DTCRT is proposed in this paper and rigorously vali-
dated against the established Opposition Multi-Objective 
Differential Evolution (OMODE) algorithm, as detailed by 
Luong et al. (2018). A comparative analysis was conducted 
between the outcomes generated by the proposed model 
and those produced by the OMODE algorithm, utilizing 
identical algorithm parameters. The results, as presented in 
Table  1, revealed that the proposed model’s performance 
is either comparable to or superior to that of Luong et al. 
(2018). Notably, the proposed model consistently demon-
strated high percentages of project time (PT), project cost 
(PC), and project quality (PQ), affirming its capability to 
concurrently optimize time, cost, and quality objectives.
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Fig. 2  Flow chart for OBNSGA III
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Spacing metric (SM)

The SM quantifies the standard difference between con-
secutive Pareto-optimal solutions. The proposed model 
exhibited a lower SM value, indicating better convergence 
towards the optimal Pareto front.

Unique number of pareto-optimal solutions (UNPS)

The proposed OBNSGA III based DTCRT model demon-
strated a higher number of unique Pareto-Optimal solutions 
compared to the OMODE algorithm, indicating its efficacy 
in identifying optimal solutions.

Table 1  Comparison of results for time-cost-quality optimization
Study Luong et al. (2018) Proposed Model
Optimization Algorithm Opposition Multi-Objective Differential Evolution (OMODE) Opposition Based NSGA III
Solutions PT PC PQ PT PC PQ
1 104 164,715 96.17% 104 164,715 96.17%
2 109 167,695 97.06% 109 167,695 97.06%
3 115 159,231 74.12% 115 152,231 77.56%
4 120 105,570 72.69% 120 105,570 72.69%
5 159 99,870 65.24% 159 99,870 65.24%
Note PQ denotes project quality in percentage

Table 2  Case study project (Gwalior, India)
Sr. No. Activity Name Successors EMS Time (days) Cost (US $) Resources (units)
1 Ground-works 2 1 8 10,039.42 8

2 8 9,849.86 11
2 Excavation 3 1 6 1082.13 12

2 6 891.05 12
3 Footing 4 1 12 155,45.67 38

10 170,39.34 56
4 Formwork 5 1 5 562.13 11

2 4 590.32 10
5 Retaining wall 6 1 26 158,34.49 46

2 16 172,74.94 52
6 Basement 7 1 32 74,124.65 27

2 29 76,345.78 32
3 23 84,312.34 23

7 Slab 8 1 22 32,646.05 32
2 11 29,759.59 35

8 Exterior wall 9 1 18 65,959.52 38
2 29 1,05,296.94 44
3 11 1,57,433.42 49

9 Interior wall 13 1 37 58,570.35 12
2 21 59,999.39 22
3 32 57,668.29 21
4 17 63,321.11 31

10 Flooring – 1 34 38,411.50 15
2 17 65,326.48 12
3 12 50,214.22 12

11 Exterior finish – 1 9 12,216.23 18
2 12 3,846.23 20

12 Interior finish – 1 41 90,219.78 17
2 31 2,33,034.50 13

13 Roof 10,11,12 1 23 1,27,641.84 13
2 24 81,323.17 9
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Quality metrics (QM)

QM assesses the quality comparison between Pareto-opti-
mal solutions generated by different multi-objective optimi-
zation algorithms. The proposed model exhibited superior 
QM values, reflecting its ability to produce high-quality 
solutions.

Diversification metrics (DM)

DM evaluates the diversification metrics by assessing the 
extension of Pareto-optimal frontal solutions. The proposed 
model showcased a higher DM value, indicating increased 
exploration along the Pareto front.

Non-uniformity of pareto-optimal front (NPF)

NPF measures the non-compliance in the distribution of the 
Pareto curve. The proposed model demonstrated improved 
NPF compared to the OMODE algorithm, suggesting better 
uniformity along the Pareto front.

Hypervolume (HV)

HV quantifies the volume covered by Pareto-optimal solu-
tions while meeting all objectives. The proposed model 
achieved a higher HV value, indicating a larger volume 
covered by Pareto-optimal solutions.

Spread (sp)

Sp measures the variety among Pareto-optimal solutions. 
The proposed model showcased a slightly higher spread, 
suggesting increased solution variety and exploration capa-
bility along the Pareto front.

Fig. 5  TCRT plot 

Fig. 4  TRT Plot

 

Fig. 3  TCT Plot
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successfully identifies a range of Pareto-optimal solutions, 
providing project stakeholders with valuable insights for 
decision-making. The ability to explore a multitude of 
potential delivery options empowers project teams to make 
informed decisions that balance time, cost, and resource 
considerations for successful project completion.

The comparison based on performance metrics further 
emphasizes the superiority of the proposed model in terms 
of solution quality, diversity exploration, and computational 
efficiency. Despite incurring a slightly longer computational 
time compared to the OMODE algorithm, the OBNSGA-
III based DTCRT model offers significant improvements in 
solution quality and convergence towards the Pareto front. 
This performance advantage underscores the practical rel-
evance of the proposed model in addressing the complex 
optimization challenges faced by construction project man-
agement practitioners.

In conclusion, the proposed OBNSGA-III based DTCRT 
model represents a significant advancement in the field of 
construction project management, offering a robust frame-
work for optimizing trade-offs between time, cost, and 
resource allocation. By leveraging state-of-the-art optimiza-
tion techniques and incorporating practical considerations, 
the model provides a valuable tool for project stakehold-
ers to navigate the complexities of construction projects 
and make informed decisions that drive project success. As 
such, the proposed model holds promise for enhancing the 
efficiency, effectiveness, and sustainability of construction 
project management practices in the face of evolving chal-
lenges and constraints.

Conclusion

As the number of activities in construction projects rise, the 
need to balance multiple objectives becomes increasingly 
critical. This study addresses this challenge by leveraging 
the OBNSGA III algorithm to develop a comprehensive 
framework for optimizing the time-cost-resources trade-off 
in construction project scheduling. With the proliferation of 
project objectives and stakeholder demands, identifying the 
optimal combinations of execution modes for project activi-
ties becomes increasingly daunting. OBNSGA III offers a 
solution to this complexity by simultaneously optimizing 
PCT, PCC, and PRM, even as the number of non-dominated 
solutions increases, presenting challenges in convergence, 

Epsilon (E)

E quantifies the distance of the solutions from the true 
Pareto front. The proposed model exhibited a lower E value, 
suggesting a closer approximation to the true Pareto front.

Computational time (CT)

Despite achieving superior performance across various 
metrics, the OBNSGA III method incurred a slightly longer 
computational time compared to the OMODE algorithm. 
However, this marginal increase in computational time is 
justified by the significant improvements in solution quality 
and diversity exploration.

Discussion over findings

The proposed OBNSGA-III based DTCRT model offers a 
comprehensive framework for tackling the intricate chal-
lenges inherent in optimizing time, cost, and resource allo-
cation in construction projects. By integrating NSGA-III 
with opposition-based learning, the model harnesses the 
strengths of both techniques to efficiently explore the solu-
tion space and identify Pareto-optimal solutions. This inte-
gration ensures a diverse initial population and facilitates 
effective generation hopping, enhancing the model’s ability 
to converge towards high-quality solutions while maintain-
ing solution diversity. Through a systematic approach, the 
model provides project stakeholders with a robust optimi-
zation tool to navigate the complex trade-offs inherent in 
construction project management.

The validation of the model against the established 
OMODE algorithm demonstrates its efficacy in concur-
rently optimizing multiple objectives, including project 
completion time, cost compliance, and project quality. The 
comparison of results indicates that the proposed model 
consistently outperforms or matches the performance of the 
OMODE algorithm across various performance metrics. 
This validation underscores the reliability and effectiveness 
of the proposed model in generating Pareto-optimal solu-
tions that meet the diverse objectives and constraints of con-
struction projects.

Moreover, the application of the OBNSGA-III based 
DTCRT model to a real-world case study project in 
Gwalior, India, highlights its practical utility in identifying 
optimal combinations of activity execution modes. Through 
rigorous experimentation and parameter tuning, the model 

Table 4  Performance comparison
Algorithm UNPS SM Sp QM DM NPF HV E CT
OMODE (Luong et al., 2018) 22 0.74 723,043 0.88 1,426,342 0.19 0.79 1.91 120 s
Proposed OBNSGA III DTCRT model 24 0.59 747,005 0.93 1,542,342 0.12 0.87 1.65 123 s
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151. https://doi.org/10.12989/sem.2019.71.2.139.

Elbeltagi, E., Ammar, M., Sanad, H., & Kassab, M. (2016). Overall 
multiobjective optimization of construction projects scheduling 
using particle swarm. Engineering Construction and Architectural 
Management. https://doi.org/10.1108/ECAM-11-2014-0135.

Feng, C. W., Liu, L., & Burns, S. A. (1997). Using genetic algo-
rithms to solve construction time-cost trade-off problems. Jour-
nal of Computing in Civil Engineering. https://doi.org/10.1061/
(ASCE)0887-3801(1997)11:3(184).

Fondahl, J. W. (1962). A Non-Computer Approach to The Critical Path 
Meghod for the Construction Industry. Technical Report No. 9, 
Stanford University, 1–163.

Hegazy, T. (2002). Computer-Based Construction Project Manage-
ment. In CIV E 596– CONSTRUCTION MANAGEMENT. https://
doi.org/10.1016/B978-0-12-408090-4.00008-6.

Kaveh, A., & Bakhshpoori, T. (2016). An efficient multi-objective 
cuckoo search algorithm for design optimization. Advances in 
Computational Design, 1(1), 87–103. https://doi.org/10.12989/
acd.2016.1.1.087.

Kaveh, A., & Ilchi Ghazaan, M. (2020). A new VPS-based algo-
rithm for multi-objective optimization problems. Engineering 
with Computers, 36(3), 1029–1040. https://doi.org/10.1007/
s00366-019-00747-8.

Kaveh, A., & Laknejadi, K. (2013). A hybrid evolutionary graph-based 
multi-objective algorithm for layout optimization of truss struc-
tures. Acta Mechanica, 224(2), 343–364. https://doi.org/10.1007/
s00707-012-0754-5.

Kaveh, A., & Massoudi, M. S. (2014). Multi-objective optimization of 
structures using Charged System Search. Scientia Iranica, 21(6), 
1845–1860.

Kaveh, A., Kalateh-Ahani, M., & Fahimi-Farzam, M. (2013). Con-
structability optimal design of reinforced concrete retaining walls 
using a multi-objective genetic algorithm. Structural Engineer-
ing and Mechanics, 47(2), 227–245. https://doi.org/10.12989/
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diversity assessment, and visualization of higher-dimen-
sional objectives.

The proposed DTCRT model is validated through a com-
parative analysis with an existing case study, demonstrat-
ing its effectiveness in discovering Pareto-optimal activity 
execution mode combinations. The findings underscore 
several key advantages of the DTCRT paradigm. Firstly, it 
establishes connections between all three project objectives, 
expanding the traditional scope of project control mecha-
nisms. Secondly, OBNSGA III proves to be well-suited 
for handling multi-objective optimization challenges in 
construction project scheduling. Finally, performance met-
rics reveal that the proposed OBNSGA III-based DTCRT 
model outperforms the OMODE algorithm, providing 
project teams and practitioners with superior solutions for 
decision-making.

The implementation of the suggested DTCRT model not 
only aids project teams in selecting optimal solutions from 
the Pareto-optimal front but also benefits stakeholders by 
maximizing profits. Moreover, this research contributes to 
enhancing scheduling decisions for project teams and orga-
nizations alike.

However, while the proposed DTCRT model demon-
strates effectiveness in identifying Pareto-optimal solutions, 
its applicability and relevance in large-scale and multi-con-
struction projects remain to be tested. Further research is 
warranted to address uncertainties related to project dura-
tion, cost, and other objectives, ensuring the model’s robust-
ness and applicability across diverse project scenarios.
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