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Abstract
Balancing cost and time present a critical yet conflicting challenge in scheduling of construction projects. In today;s highly 
competitive construction market, achieving a subtle balance in optimizing objectives (time and cost) is vital for success 
of projects, requiring project participants to make essential trade-offs. With multi-objective particle swarm optimization 
(MOPSO), this study presents a time–cost trade-off (TCT) optimization model to overcome the challenges and constraints 
associated with existing TCT models. The focus is on multi-mode construction project activities, where each mode represents 
a different option for a construction activity requiring varying amounts of resources, time, and cost. The paper aims to select 
the best alternatives for project activities. For demonstrating the effectiveness of the developed MOPSO method in generating 
a set of Pareto-optimal solutions, it is applied to a real case study project. The working of proposed method in simultaneously 
optimizing two objectives is evaluated against existing trade-off optimization methods. The project team is provided with 
trade-off plots and an a priori approach to select one of the generated Pareto-optimal solutions. Additionally, this research will 
benefit the project;s stakeholders by maximizing profits, and the findings of this study can assist organizations and project 
teams in improving their scheduling choices.

Keywords TCT  · MOPSO · Construction projects · Multi-mode activities · Pareto-optimal solutions

Introduction

Construction projects are the oldest infrastructure projects. 
Construction projects are very important projects for the all-
round development of any nation (Trivedi & Sharma, 2023). 
The continuous evolution of project management arises from 
the necessity to monitor and optimize construction project 
objectives (Shi et al., 2010). Construction project manage-
ment consists of planning, scheduling and controlling stages 

(Kaveh & Ilchi Ghazaan, 2020; Kaveh & Laknejadi, 2013a). 
During the planning phase, certain projects; objectives must 
be established from the project stakeholders; viewpoint 
(Kaveh, 2016; Rastegar Moghaddam et al., 2021). The fun-
damental approach for project planning and management 
depends largely on these stated objectives. When it comes 
to planning and completion of construction projects, the 
two most important considerations are time (or duration) 
and cost (Toğan & Eirgash, 2019). However, project time 
and costs fluctuate with the different consumption amount 
of resources (Luong et al., 2018). The use of cost-effective 
resources using advanced technology reduces project time, 
but increases cost of the project (Kaveh & Laknejadi, 2011; 
Kaveh et al., 2013). Furthermore, low-cost resources reduce 
cost, while project time might be delayed by available low-
cost resources and conventional methods (Kaveh, 2014; 
Kaveh et al., 2013, 2020). Thus, time and cost are contra-
dictory and conflicting objectives, and establishing an equi-
librium between time and cost is more essential to effectively 
execute the project.

In recent decades it has been increasingly common for 
practitioners to resolve trade-off issues. In this context, Feng 
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et al. (1997), Zhang and Li (2010), Eirgash et al. (2019) 
and others put effort to address the TCT issues. TCT is also 
expanded to time–cost-resources trade-off due in course 
of increasing association and need of project stakeholders 
(Habibi et al., 2017; Zahraie & Tavakolan, 2009). This arti-
cle also proposes a novel model for optimising TCT issues 
in order to relieve the complexity and constraints of current 
models.

A construction project comprises a sequence of 
interlinked activities (Eirgash & Toğan, 2023). Each activity 
may be completed by using one of the different alternatives 
(Kaveh & Laknejadi, 2013a, 2013b). Various time frames, 
costs, and resources are connected with each activity;s; 
alternative type (Afshar et al., 2009; Kaveh & Massoudi, 
2014). Therefore, this paper provides the optimal technique 
or way to successfully deliver a project, as a project can 
be executed in different ways depending on the possible 
combinations of execution modes available.

Following introductory overview, the paper thoroughly 
examines the existing literature and identifies research 
gaps following the formulation of the TCT problem. 
Subsequently, the developed MOPSO model is detailed 
with implementation using MATLAB software. The efficacy 
and practicality of proposed model is demonstrated through 
comparative analysis of the results as well as its application 
in a case study project. The final section of this article 
showcases the findings, draws conclusions, and outlines 
avenues for future research.

Past researches

As per the literature review, there are three types of project 
scheduling methods: deterministic, heuristic, and meta-
heuristic methods (Panwar et al., 2019). Initially, Kelley 
and Walker (1959) suggested CPM method for planning 
of project tasks. Following that, CPM was used to create 
various deterministic methods-based scheduling models.

Heuristic techniques, rooted in past problem-solving 
practices, are integral in various domains such as planning 
and scheduling (Zhou et  al., 2013). Notable heuristic 
planning approaches like Fondhahl (Fondahl, 1962), 
approximation Siemens (Siemens, 1971), and structural 
stiffness (Moselhi, 1993). In addition, Zhang et al. (2006), 
Elazouni (2009) and Di et al. (2013) have strived to build 
heuristic scheduling techniques.

Meta-heuristic techniques have shown worth in the 
discovery of relatively good answers instead of precise 
solutions in large multi objective optimization problems, 
but certainly they do not guarantee the global optimum 
solutions (Sharma & Trivedi, 2022, 2023a). Feng et al. 
(1997) has devised a genetic algorithm and a Pareto-
front method for solving the issue of TCT problems. 

MOPSO based TCT models were presented in the study 
of Yang et al. (2001) and Zhang and Li (2010), taking 
into account both direct and indirect operations costs. The 
simulated annealing method in the solution of TCT issues 
was assessed by the experiments of Anagnostopoulos 
and Kotsikas (2010). The multiple-objective ant colony 
optimization method to the TCT issues was also given 
by Xiong and Kuang (2008). For the determination of 
the Pareto-optimal front in TCT optimisation, Fallah-
Mehdipour et al. (2012) found the NSGA II as efficient 
algorithm. Activity duration and costs are different owing 
to changes in resource use (Senouci & Eldin, 2004). 
Limited time, money and available resources encourage 
the creation of TCT models for resources. The resource 
constrained scheduling problems (RCSPs) were classified 
by Habibi et  al. (2018) in four types depending on 
resource type, trade-off factors, goal function type, and 
the information available.

In the present research, the concept of the mode of 
activities execution is used. Sharma and Trivedi (2020) 
used this concept at first and demonstrated that there are 
many methods of execution for carrying out an activity. 
The time and resource usage of each mode vary in 
performances (Hartmann & Briskorn, 2010). There are 
also two kinds of resources, non-renewable and renewable. 
Human and machinery resources should be divided into 
renewable resources since they are fully accessible for 
companies (Carlier & Moukrim, 2015). Raw material is 
classified as non-renewable resources since it is accessible 
in definite and determined quantities (Kyriakidis et al., 
2012).

The multi-skilled personnel algorithms were developed 
by Santos and Tereso (2011) to demonstrate that each 
implementation method is distinct in time and cost, 
according to the human resources skill level. However, 
changes in the scheduling scheme are required if the 
primary scheduling schedule is made impossible by 
disruptions in length or resources. Deblaere et al. (2011) 
have proposed a variety of planning methods to fix 
disruptions in the schedule for the primary scheduling. 
Beşikci et al. (2015), without sharing resources across 
projects, have addressed a multi-mode planning issue in 
a multi-project context. A technique was developed by 
Delgoshaei et al. (2016) for modifying the allocation of 
excessive resources by discontinuing the activities. There 
may be many methodologies for performing an activity, 
but activity must be carried out using the same way once 
one method is started. Recent research (Elbeltagi et al., 
2016) presented a PSO model scheduling with time, 
costs, resources and cash flow concurrently optimisation. 
However, for assured convergence to an optimal local level 
the original PSO still needs significant modification (Van 
Den Bergh & Engelbrecht, 2010). Therefore, there are 



4531Asian Journal of Civil Engineering (2024) 25:4529–4539 

few studies in the literature for optimising more than one 
objective in construction project scheduling, this paper 
prompts practitioners to make an effort to research more 
than one objective optimization in construction project 
scheduling.

Problem formulation

At first, it is required to formulate the TCT problems in 
effective manner. This section of paper clearly formulates 
the TCT problem before presenting the developed research 
methodology. To complete a building project, a lot of activities 
must be completed. One of the execution modes for an activity 
(A) should be used. Due to variations in resource utilization 
impacting completion time and cost, it is essential to allocate 
the suitable alternative to each activity within a construction 
project.

In this study, the input parameters include Activity 
Time (AT) and Activity Cost (AC). Consider a building 
project comprising activities A-1, A-2,…,A-n, each with 
corresponding alternatives Alt-1, Alt-2,… Alt-m. The 
completion of these activities is influenced by different 
execution modes (LR, MR, ER), each associated with specific 
quantities of labor, material, and equipment resources. 
Consequently, numerical values for AT and AC are computed 
based on activities and their alternatives. The primary objective 
of this article is to simultaneously minimize Project Time (PT) 
and Project Cost (PC), which are functions of AT and AC, 
respectively. The study operates under the assumptions that (i) 
all activities must be executed promptly (Sharma & Trivedi, 
2023b) and (ii) there exist priority connections between 
activities, which can be visually represented as a network 
(Sharma & Trivedi, 2021).

As a result, this simultaneous optimization problem with 
two objectives can be formulated as follows;

Objective 1: Minimize PT

In the current research, the calculation of Project Time (PT) 
employs the Precedence Diagramming (PD) method. The 
foundation of the PD method is the Critical Path (CP) of an 
AON method. Equation (1) illustrates that the duration of all 
activities along the critical path serves as the basis for deriving 
the Project Time (PT) for a building project.

(1)PT =
∑

A∈CP

ATA

Here,  ATA represents the overall duration of the critical path 
(A).

Objective 2: Minimize PC

The cost of completing a project is the sum of individual 
project activities costs (AC). The AC is, however, the total 
of direct costs and indirect activity costs, direct costs (D.C) 
primarily comprise of costs for work, materials and equipment, 
while Indirect costs (I.C) includes extra expenses during 
project.

where, 
∑

A D.C is the sum of direct costs of project 
activities, whereas indirect costs can be calculated by simply 
multiplying PT and daily indirect costs.

Proposed research methodology

PSO is widely recognized as a popular meta-heuristic tech-
nique for solving optimization problems. In this study, a 
Multi-Objective PSO (MOPSO) model was developed by 
integrating the non-dominant sorting (NDS) process into the 
PSO framework. The NDS process is employed to identify 
solutions by creating non-dominated fronts (NDF), each of 
which offers solutions without domination by others (Sharma 
& Trivedi, 2023c; Tiwari et al., 2020). In the MOPSO model, 
each particle represents a solution to the optimization problem, 
similar to the chromosomes in the project schedule. The fixed 
number of cells (genes) on each chromosome corresponds to 
all activities in construction (Tiwari et al., 2022). Thus, each 
gene on the chromosome holds a value (allele) for a different 
decision, representing the approach to accomplishing that task. 
Every possible chromosome in a Time–Cost Trade-off (TCT) 
problem offers its unique solution. To illustrate the chromo-
somal solution in the TCTP problem, consider a project with 
nine activities, each having five modes of completion. Figure 1 
depicts a conceivable chromosomal solution for this TCTP. 
The activities range from 1 to 9, and the associated execution 
modes are 4, 4, 5, 3, 5, 4, 5, 4, 3. This results in  59 differ-
ent methods to complete this project following permutation 
guidelines.

Step-by-step process for utilizing the MOPSO to address 
the TCTPs is given below:

(2)PC =
∑

A

D.C + I.C per day × PT in days

Fig. 1  Chromosomal solution
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Step‑1: Initial population (Pt) Generation of size N

In the first step, an initial population  (Pt) of size N is generated, 
comprising N swarm particles. Each particle is represented 
by a chromosome, and their fitness values, which represent 
the estimated PT and PC values, are computed using Eqs. (1) 
and (2).

Step‑2: Evaluation of local best (Lbest) and global 
best (Gbest) of P particles

Lbest ( XiL ) represents the value of alternative assigned to 
each activity. To determine their global best positions ( XG ), 
the non-leaders are categorized into groups F1, F2, F3, and 
so forth. Given the objective of minimizing objectives, F1 
is identified as the leading group. In the current iteration, 
Gbest ( XG ) emerges from solutions outside of F1. The top 
solution within F1, exhibiting the greatest average Euclidean 
distance, is designated as the G-best position ( XG ). The 
density or sparsity of non-dominated solutions is assessed 
similarly to the boundary of a rectangle formed by adjacent 
non-dominated solutions, known as the average Euclidean 
distance. For instance, the average Euclidean distance ( E.Dk ) 
for a non-dominated solution Xk is calculated as follows:

here, f1
(

Xk

)

 and f2
(

Xk

)

 represent the values of objectives 1 
and 2 for the solution Xk . The non-dominated solution with 
the largest average Euclidean distance is given priority as 
Gbest ( XG).

Step‑3: Update particle position

The location of P particles is restored using the following 
formulas:

when t varies from 1 to maximum number of iterations (T), 
i = 1,…,P, and P stands for the total number of particles as 
previously explained, V stands for the particle velocity, X 
stands for the particle position, c1 and c2 for the learning 
factors, r1 and r2 for random numbers between 0 and 1, 
and w(t) for the inertia weight that regulates the influence 
of previous velocities on current velocities. In process of 
updating particle positions within the MOPSO algorithm, 

(3)
E.Dk = 0.5

(
√

(

f1
(

Xk
)

− f1
(

Xk−1
))2 +

(

f2
(

Xk
)

− f2
(

Xk−1
))2

+
√

(

f1
(

Xk
)

− f1
(

Xk+1
))2 +

(

f2
(

Xk
)

− f2
(

Xk+1
))2

)

(4)
Vi(t) = w(t)Vi(t − 1) + c1r1

(

XL
i
−Xi(t − 1)

)

+ c2r2
(

XG − Xi(t − 1)
)

(5)Xt
i
= Vi(t) + Xi(t − 1)

the particle; s current location undergoes two stages of 
refinement during subsequent rounds. Initially, the modified 
position is assessed to determine whether it surpasses the 
existing one. This evaluation involves comparing the 
fitness or objective function values associated with the 
modified position against those of the current position. If 
the modified position yields superior performance in terms 
of the optimization objectives, it is adopted as new position 
for particle.

Following this evaluation, if the updated position and 
the current position are not dominated by each other, the 
decision of accepting the updated position is made at random 
from the current position. In other words, if neither position 
dominates the other in terms of objective function values, 
randomness is introduced to decide whether to retain the 
current position or adopt the updated position. This random 
selection mechanism helps in maintaining diversity within 
the population and prevents premature convergence towards 
a single solution.

These two stages of updating particle positions contribute 
to the exploration–exploitation trade-off inherent in 
MOPSO, enabling the algorithm to efficiently navigate 
the search space and discover diverse sets of high-quality 
solutions to complex multi-objective optimization problems.

Step‑4: Generation of new position of particles

In the process of generating new positions for particles 
within the MOPSO algorithm, potential revisions that could 
lead to extended project durations or increased costs are 
addressed by selecting a random updated location to ensure 
alignment with intended project constraints. After this 
selection, further evaluation is conducted: if the duration and 
cost of the chosen location are below the desired thresholds, 
it may be adopted as the new position. This iterative process 
is applied to each particle, ensuring consistency in constraint 
adherence and solution evaluation. By integrating these 
considerations into position updates, MOPSO effectively 
balances exploration of the solution space with the necessity 
of meeting project constraints, facilitating the discovery of 
optimal solutions that fulfil both optimization objectives and 
practical project requirements.

Step‑5: Evaluating the updated position

After population members; positions have been updated, 
each population member is assessed using PT and PC; s 
objective functions.
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Step‑6: NDS of updated population

After generation of updated positions for particles, the revised 
population undergoes non-dominated sorting to organize and 
distribute particles into distinct fronts based on their domi-
nance relationships. This sorting process, illustrated in Fig. 2, 
classifies particles into non-dominated fronts, where each 
front consists of particles that are not dominated by any other 
particle in terms of all optimization objectives. By categoriz-
ing particles in this manner, non-dominated sorting provides 
insights into the trade-offs between different objectives and 
helps identify the Pareto-optimal solutions. These fronts repre-
sent different levels of solutions, with the first front containing 
the most optimal solutions and subsequent fronts representing 
progressively less optimal solutions. This organization aids 
in identifying diverse sets of high-quality solutions that offer 
different trade-offs between conflicting objectives, enabling 
decision-makers to make informed choices during the opti-
mization process.

Step‑7: Pareto‑optimal front

The first non-dominant front is closest to the objective axis, 
as shown in Fig. 2. As a result, the Pareto-Optimal front can 
be identified as the first non-dominated front in minimization 
problems.

Step‑8) Selection of one solution 
from Pareto‑optimal solutions

To start the real construction work required to finish the 
project, the project team must select one ideal option. Ferreira 
et al. (2007) discussed a number of strategies for selecting one 
solution from the resulting Pareto-optimal set. The weighted 
sum technique, which uses Eqs. (6) and (7) as inputs, is one 
of its techniques:

where wi denotes the weight of the ith objective and xij 
denotes the jth solution to the ith objective. For example, 
the project team might believe that addressing the TCTPs 
requires equal amounts of time and money.

Case study and results

This research demonstrates the adaptability, efficiency, 
and effectiveness of established MOPSO model through 
resolution of a real case study project, despite numerous 
completed case studies supporting the proposed concept. 
The case study involves construction of a three-story struc-
ture in Delhi, India, as outlined in Table 1. The project 
comprises 19 activities, and each task can be executed 
in three different ways, each associated with a distinct 
set of resources, estimating unique durations and costs. 
Table 1 presents the values of AT and AC for each option 
and activity before the commencement of actual construc-
tion. AON network diagram for project is shown as Fig. 3. 
With 319 different ways to complete tasks based on various 
combinations of alternate options, a robust optimization 
algorithm becomes imperative for selecting the optimal 
approach. After assigning the best alternative for each 
project activity, a singular approach is chosen to achieve 
project completion while optimizing both time and cost.

The MOPSO-based scheduling model is applied to 
identify Pareto-optimal solutions for scheduling phase 
of the previously mentioned case study project. The 
programming of developed MOPSO-based TCT model 
was executed on a computer equipped with an i7 CPU, a 
64-bit operating system, and configured with 8 GB RAM. 
To ensure optimal performance, a thorough consideration 
of iterations was undertaken. The current instance involved 
running between 10 and 200 trials and iterations, with the 
most favorable outcomes observed after 120 iterations.

At the 120th iteration, the analysis yielded ten distinct 
Pareto-optimal solutions, as detailed in Table 2. The TCT 
curve for this scheduling period is illustrated in Fig. 4. The 
PT values span from 124 to 148 days, while the PC values 
range from 12,286,155 to 13,653,118 INR. It is evident 
that the solution with the highest PC value corresponds to 
the lowest PT value.

Figure 4 clearly shows that obtained Pareto-optimal 
solutions are diverge and converge, which shows the 
efficiency of proposed model in determining the optimal 

(6)Min

n
⋁

j=1

∑m

i=1
wixij

(7)s.to
∑m

i=1
wi = 1

Fig. 2  Pareto-optimal front
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Table 1  Case study project 
(Delhi, India)

Activity ID Name of activity Immediate 
successor

Alternatives AT (in days) AC (in INR)

1 Foundation 2, 3, 5 1 3 1,326,324
2 5 1,032,641
3 8 923,634

2 Wall for 1st floor 4 1 5 1,026,756
2 9 914,737
3 9 849,627

3 Beam for 1st floor 4, 6 1 14 118,404
2 15 107,573
3 15 103,734

4 Stair between 1st floor and 2nd floor 8 1 10 1,626,972
2 13 1,472,345
3 14 1,391,235

5 Ground on 1st floor 6, 7 1 16 1,026,756
2 19 962,438
3 20 923,593

6 Wall for 2nd floor 8 1 13 117,144
2 14 102,312
3 14 101,231

7 Beam plate for 2nd floor 9 1 10 1,626,972
2 14 1,531,267
3 16 1,492,451

8 Stair between 2nd floor and 3rd floor 9 1 7 118,404
2 8 109,212
3 14 92,101

9 Wall for 3rd floor 10, 11 1 5 1,200,036
2 9 1,026,384
3 14 885,738

10 Beam plate for 3rd floor 12, 13 1 6 1,626,972
2 8 1,512,438
3 9 1,442,733

11 Roof 12, 13 1 9 759,780
2 11 683,412
3 12 652,846

12 Door and windows for 1st floor 14 1 20 815,964
2 25 753,578
3 25 713,580

13 Equipment for 1st floor 15, 16 1 4 180,744
2 5 162,358
3 8 136,489

14 Door and windows for 2nd floor 16 1 12 783,984
2 13 732,678
3 15 697,896

15 Equipment for 2nd floor 18 1 18 180,744
2 20 114,678
3 20 101,569

16 Door and windows for 3rd floor 17, 18 1 10 783,984
2 12 735,675
3 20 634,568

17 Equipment for 3rd floor 19 1 8 180,744
2 9 163,848
3 12 136,385

18 Decoration on wall 19 1 11 674,952
2 13 643,782
3 13 618,904

19 Bench and drain system - 1 4 66,060
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solutions for TCT optimization. The solutions are widely 
distributed over Pareto-optimal front and highly converged 
towards origin point.

The proposed MOPSO-based TCT model should be 
compared with the results obtained from existing TCT 
models based on MOGA, MOTLBO, and MOACO. 
According to the findings presented in Table 3, the suggested 
MOPSO approach yielded the lowest PT and PC values for 
the case study project.

Then, one of the Pareto optimal solutions is selected to 
complete the project, employing Eqs. (6) and (7). In this 
selection process, the best options for the 19 projects are 
determined by assigning equal weight (0.5) to both time 
and cost considerations. The selected alternatives for each 

activity are presented in Table 4, where the project dura-
tion (PT) and project cost (PC) values are provided.

Thus, time and cost are contradictory and conflicting 
objectives, and establishing an equilibrium between time 
and cost is more essential to effectively execute the project. 
For this purpose, this paper has been successfully provided 
a suitable procedure to solve the TCT type problems.

Discussion over findings

The findings from the proposed research methodology 
provide valuable insights into the optimization of TCT 
problems in construction projects. Firstly, the utilization 
of MOPSO demonstrates its effectiveness in generating 

Table 1  (continued) Activity ID Name of activity Immediate 
successor

Alternatives AT (in days) AC (in INR)

2 5 63,321
3 6 61,456

Fig. 3  AON network diagram

Table 2  Obtained pareto-optimal front solutions

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 PT (days) PC (INR)

1 1 2 2 1 2 1 1 1 3 2 1 1 2 1 2 2 2 1 124 13,653,118
1 3 2 2 3 1 2 1 1 1 1 1 2 2 2 2 2 3 2 128 13,440,491
2 2 1 3 2 1 2 2 1 3 2 1 1 1 3 1 3 1 2 130 13,044,162
3 2 2 2 1 2 3 2 1 2 2 1 2 1 2 2 3 3 2 132 12,976,175
2 2 3 2 3 1 2 1 2 3 1 1 2 1 3 2 3 2 2 133 12,885,800
2 3 3 2 3 3 2 2 2 2 1 1 2 2 2 2 3 1 2 134 12,858,263
2 3 2 2 1 1 3 3 2 2 1 1 1 2 2 3 3 1 2 136 12,842,530
2 2 2 3 2 3 3 2 2 2 2 3 1 1 1 2 3 1 3 138 12,801,272
2 3 2 3 1 2 2 3 1 2 3 3 2 2 2 3 2 1 1 139 12,761,554
2 3 2 2 2 2 3 2 2 3 2 2 2 2 3 3 2 2 1 141 12,539,569
2 3 2 2 2 2 1 2 3 3 3 2 2 2 3 3 1 2 1 147 12,519,774
3 3 1 3 3 3 2 1 3 3 2 2 2 2 2 3 1 1 2 148 12,286,155
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Pareto-optimal solutions, which are crucial for balancing 
conflicting objectives such as project time and cost. By inte-
grating non-dominant sorting (NDS) into the PSO process, 
the model efficiently identifies solutions that are not domi-
nated by others, offering a diverse set of trade-off options 
for project stakeholders.

The case study conducted on a construction project in 
Delhi, India, illustrates the practical application of the 
MOPSO-based optimization model. With 19 activities 
and multiple alternatives for each, the project presents 
a complex scheduling problem. However, the MOPSO 
model efficiently evaluates various combinations of activity 
alternatives, considering their respective durations and costs. 
This results in the identification of Pareto-optimal solutions 
that represent the trade-offs between project time and cost, 
providing decision-makers with a range of feasible options 
to choose from.

Furthermore, the comparison of the proposed MOPSO 
approach with existing TCT models based on different 
meta-heuristic techniques highlights its superiority in terms 
of minimizing both project time and cost. The MOPSO 
approach consistently outperforms other algorithms such 
as MOGA, MOTLBO, and MOACO, yielding lower pro-
ject time and cost values. This indicates the robustness 

and efficiency of the MOPSO-based optimization model 
in tackling complex TCT problems in construction project 
scheduling.

The selection of a final solution from the Pareto-optimal 
set involves considering various factors such as project 
priorities, resource constraints, and stakeholder preferences. 
Strategies like the weighted sum technique offer a systematic 
approach to selecting the most suitable solution based on 
predefined criteria. This ensures that the chosen solution 
aligns with the project objectives while optimizing both time 
and cost aspects.

In conclusion, the findings of the research highlight the 
importance of adopting advanced optimization techniques 
like MOPSO for addressing TCT problems in construction 
projects. By simultaneously optimizing project time and 
cost objectives, the proposed model facilitates informed 
decision-making, enhances project efficiency, and ultimately 
contributes to the successful execution of construction 
projects. Moreover, the comparative analysis underscores 
the effectiveness of the MOPSO approach, emphasizing its 
potential for improving scheduling choices and maximizing 
project outcomes in the construction industry.

Fig. 4  TCT for scheduling 
phase

C
os
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n
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R

Table 3  Comparison of results Algorithm objectives MOGA MOTLBO MOACO MOPSO

Time (in days) 129 127 128 124 days
Cost (in INR) 12,793,645 INR 12,937,192 INR 13,056,766 INR 12,286,155 INR

Table 4  Selected alternatives of activities

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 PT (days) PC (INR)

2 2 1 3 2 1 2 2 1 3 2 1 1 1 3 1 3 1 2 130 13,044,162
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Conclusion

In conclusion, the research provides a comprehensive 
examination of the efficacy of MOPSO in addressing TCT 
problems within construction projects. Through a detailed 
case study conducted in Delhi, India, the study effectively 
demonstrates the applicability and efficiency of the MOPSO 
model in real-world project scheduling scenarios. By 
considering multiple project activities and their respective 
alternatives, the MOPSO model efficiently navigates the 
complexities of scheduling, ultimately yielding Pareto-
optimal solutions that strike a balance between project time 
and cost objectives.

Moreover, the practical application of the MOPSO model 
underscores its relevance in the construction industry, 
where project timelines and budget constraints are critical 
considerations. The ability of the model to handle diverse 
activity combinations and resource allocations exemplifies 
its utility in optimizing project scheduling decisions. This 
not only enhances project efficiency but also empowers 
decision-makers with a range of feasible options to achieve 
project completion while minimizing costs and adhering to 
deadlines.

The comparative analysis conducted against other TCT 
optimization techniques further solidifies the superiority 
of the MOPSO approach. Consistently outperforming 
alternative methods such as MOGA, MOTLBO, and 
MOACO, the MOPSO model demonstrates its robustness 
and effectiveness in minimizing project time and cost values. 
This comparative advantage positions the MOPSO model 
as a preferred choice for addressing TCT challenges in 
construction project scheduling.

Furthermore, the study emphasizes the importance of 
advanced optimization techniques in tackling complex 
scheduling problems inherent in construction projects. By 
simultaneously optimizing project time and cost objectives, 
the MOPSO model facilitates informed decision-making, 
enhances project efficiency, and contributes to the successful 
execution of construction projects. Strategies such as the 
weighted sum technique provide a structured approach to 
selecting the most suitable solution based on predefined 
criteria, ensuring alignment with project goals and priorities.

In conclusion, the research findings underscore the 
potential of MOPSO-based optimization models to 
improve scheduling choices, maximize project outcomes, 
and enhance decision-making processes in the construction 
industry. As construction projects continue to grow 
in complexity, the adoption of advanced optimization 
techniques like MOPSO becomes increasingly vital for 
optimizing project performance and delivering successful 
outcomes.
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