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Abstract
The study addresses the significant challenge of rework in the construction industry by leveraging machine learning tech-
niques. Specifically, the aim is to develop models that accurately classify the impact of rework causes on the cost performance 
of bridge projects using objective data sources. Pertinent rework sources and determinants were identified, and a multivariate 
dataset of prior projects’ cost performance was assembled. Additionally, a structural equation model was developed to calcu-
late the impact of these factors on cost performance in bridge projects. To create a suitable dataset for machine learning, 272 
responses from subject matter experts were utilized. The study explores Ensemble techniques, K-Nearest Neighbors (KNN), 
Artificial Neural Networks (ANN), and Support Vector Machines (SVM). Cross-validation tests were conducted to assess 
the predictive abilities of the models, and the evaluation results indicated that the SVM model provides superior predictive 
performance for the dataset examined. SVM achieves 98.53% (89.54%) accuracy in training (testing) with a 1.47% (10.46%) 
misclassification error. Comparisons were made regarding the impact of rework on cost, with SVM achieving the highest 
recognition rate across all data divisions, followed by ANN. Conversely, KNN exhibited the lowest recognition rate among 
the classifiers. With a maximum recognition rate of 97%, SVM emerged as the best classifier. The optimal data separation 
for testing and training data was determined to be 10% and 90%, respectively. Overall, this study harnesses the power of 
machine learning to facilitate evidence-based decision-making, enabling proactive prediction of the impact of rework on 
cost performance in bridge projects.
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Introduction

The construction industry is plagued by the problem of 
rework, which results in significant cost overruns, delays, 
and lower quality of work (Flapper et al., 2002); (Mohamed 
et al., 2021). Despite the efforts of various quality man-
agement philosophies such as lean and total quality man-
agement, rework remains a prevalent issue (Khalesi et al., 

2020). The cost of rework represents a substantial portion of 
a project’s overall cost, and it can even result in the failure of 
an entire project (P. Love & Smith, 2018); (Al-Janabi et al., 
2020). Rework can be reduced, and construction cost per-
formance can be improved by understanding the influence 
of rework costs and its (Hwang et al., 2009). Despite the 
extensive research on building cost estimation, forecasting 
construction cost overruns caused by rework has received 
very little attention (Ye et al., 2015); (Shoar et al., 2022); 
(de Oliveira et al.’s, 2024)]. According to (Jafari & Rod-
chua, 2014) the nonconformance cost accounted for more 
than 12% of the overall contract value. (P. E. D. Love & 
Sing, 2013) determined the direct and indirect impacts of 
rework on overall construction cost to be 26% and 52%, 
respectively, by a questionnaire survey on various project 
types and procurement routes. Rework expenses hurt the 
associated plans, such as those for time, cost, and human 
resources, which lowers construction productivity and costs 
the project participants money and harms their reputation. 
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Contractors frequently use an internal quality assurance and 
control system and proactive methods to foresee potential 
rework and associated costs to lessen the severity of this 
issue. Therefore, it is crucial to estimate the Cost for each 
work item to improve decision-making and planning, as well 
as to raise the likelihood that a construction project will be 
successful (Badawy et al., 2021).

Recent developments in civil engineering technology 
necessitate higher levels of accuracy, efficiency, and speed 
in the analysis and design of the relevant systems (A Kaveh 
et al., 2017). Artificial intelligence (AI) and structural equa-
tion modeling (SEM) were chosen for testing due to their 
distinct capabilities in addressing different aspects of the 
research problem. Firstly, artificial intelligence, including 
techniques such as support vector machines (SVM), artifi-
cial neural networks (ANN), and k-nearest neighbors (kNN), 
offers a powerful toolset for data analysis and pattern rec-
ognition. These algorithms can handle complex, nonlinear 
relationships between variables and have been successfully 
applied in various predictive modeling tasks. In the context 
of our research, AI provides a robust framework for forecast-
ing the impact of rework on construction costs by leveraging 
historical data and identifying underlying patterns.

On the other hand, structural equation modeling (SEM) 
is a statistical technique used to test and validate complex 
theoretical models. SEM allows researchers to examine the 
relationships between latent variables and observed indica-
tors, providing insights into the underlying structure of a 
phenomenon. In our study, SEM enables us to explore the 
causal relationships between different factors contributing 
to rework and its impact on project costs. By incorporat-
ing SEM into our analysis, we can assess the theoretical 
validity of our proposed model and identify key drivers of 
rework-related cost overruns in bridge projects. Overall, the 
combination of artificial intelligence and structural equation 
modeling offers a comprehensive approach to understand-
ing and predicting the impact of rework on construction 
costs. By harnessing the strengths of both techniques, we 
aim to develop a robust predictive model that can inform 
decision-making and resource allocation in bridge construc-
tion projects.

Machine learning is a reliable tool for informed deci-
sion-making based on historical data, but there's a lack of 
advanced strategies like ensemble learning in predicting 
construction costs and rework. Existing studies don't delve 
into the resilience of these estimators or their applicability 
across datasets. This research aims to fill this gap by inves-
tigating rework causes, using structural equation modeling, 
and employing machine learning to forecast rework costs in 
bridge projects. The study employs sophisticated ML per-
spectives to address the diversity in the construction industry 
and aims to enhance strategies for mitigating rework and 
improving cost performance in bridge projects.

Overview about cost of rework 
in construction

While there has been significant focus on the estima-
tion of construction costs in past studies, there has been 
comparatively less emphasis on predicting instances of 
construction cost overruns (Dahanayake & Ramachandra, 
2016); (Taha et al., 2022);(Yap et al., 2016); (Fayek et al., 
2004). Inadequate attention has been given to accurately 
estimating the cost overruns associated with construction 
rework. This review examines the existing literature on 
predicting the cost impact of construction cost overruns 
and explores various construction cost estimation meth-
ods within a wider context. The literature reviewed in this 
study shows a consensus regarding the adverse effects of 
COR on the total construction cost, but the impact per-
centages vary depending on the characteristics and types 
of the construction projects being evaluated (Chidiebere 
& Ebhohimen, 2018). Rework on building projects is 
directly related to cost and time overruns. This includes 
the increased time required to complete rework, additional 
costs associated with fixing the defect, increases in mate-
rial usage brought on by rework, wastes, and rising labor 
costs associated with fixing the defects (Palaneeswaran 
et al., 2005).Rework expenses and initial costs, cost over-
runs, initial times, and time overruns all significantly cor-
relate with one another (Oke & Ugoje, 2013). (Oyewobi 
et al., 2016) reported a correlation between time overrun 
and rework costs that was positive, indicating that process-
ing nonconforming work would cost more and take longer 
to complete.

It's important to note that rework is not always a frus-
trating problem in building projects—quite the opposite, 
in fact (Shoar et al., 2022). Rework is caused by four main 
factors: mistakes, omissions, revisions, and damages dur-
ing construction. A thorough evaluation of the rework 
literature in construction projects found that expenses 
associated with rework ranged from 1 to 20% of the con-
tract price (P. Love & Smith, 2018). Various evaluations 
have been done on the cost of rework in the construction 
industry; for instance, it has been projected that the over-
all cost of rework in infrastructure projects will be close 
to 10% of the contract value (P. E. D. Love et al., 2010). 
The mean cost of rework in residential projects is between 
10 and 15% (Mahamid, 2022). (Meshksar, 2012) declared 
that rework cost between 1.30% and 3.30% of the contract 
value and took between 3.0% and 8.0% of the project's 
total time to complete. (Wasfy, 2010)discover that the 
rework expansions in the expense as 2–30% and schedule 
delay ranged between 10–70% for various work classes. 
According to (Abeku et al., 2016), a building project in 
Nigeria had rework costs of 12.58% and time overruns of 
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38%. Typically, the cost of rework includes both direct and 
indirect costs. The indirect costs of rework include costs 
that have no replacement in terms of money, like wear 
and tear on employees, inertia with clients, and customer 
dissatisfaction at the project level, as well as diminished 
benefits, conflicts, and lost opportunities for future work at 
the organizational level. Rework can cost up to (3–6) times 
as much directly as actual work (P. E. d. Love, 2002b). 
According to (P. E. D. Love, 2002a), the direct and indirect 
costs of rework were 6.4% and 5.6% of the total contract 
value. The average cost of rework in New South Wales, 
Australia, was 5.5% of the contract's value; it consisted 
of 2.75% direct costs, 1.75% indirect costs for key project 
participants, and 1% indirect costs for individual subcon-
tractors (Marosszeky, 2006).

Overview about machine learning 
techniques

One of the most exciting techniques in predictive data ana-
lytics is machine learning. To extract trends, correlations, 
patterns of interest, and practical insights from large, com-
plex data sets, it combines techniques from statistics, data-
base analysis, data mining, pattern recognition, and artificial 
intelligence (Flath et al., 2012). Metaheuristics are algo-
rithms used to tackle complex optimization problems that 
are challenging for traditional techniques (A Kaveh et al., 
2023). Neural networks estimate seismic damage in struc-
tures (Rofooei et al., 2011). Neural networks are trained and 
applied for predicting natural frequencies (A Kaveh et al., 
2015). A summary of the popular modern machine learning 
algorithms employed in this work (ANN, KNN, and SVM) 
is provided in this section. References that are pertinent will 
provide detailed mathematical descriptions of these strat-
egies (Witten et al., 2005); (Olatunji, 2017); (Sethi et al., 
2017). Based on classes related to the k-instances in the 
training set, the k-nearest neighbour (KNN) classifier pre-
dicts new classes using a simple majority decision method. 
KNN is a popular and straightforward technique that uses 
historical data to locate a data point's closest neighbours 
(Wauters & Vanhoucke, 2017). The value of k has a signifi-
cant impact on how accurately predictions made using the 
k-NN model turn out (Sethi et al., 2017) For instance, when 
there are k143 neighbours, the instance belongs to the class 
that the three closest neighbours make up the majority (Lar-
rañaga et al., 2018).

According to (Witten et  al., 2005), support vector 
machines combine instance-based learning with linear mod-
elling. Support Vector Machine (SVM) analysis is conducted 
on the standard penetration test (SPT) dataset, both with and 
without incorporating weights obtained from all the utilized 
objective weighting methods (Alla et al., 2023). SVM is one 

of the most popular machine learning methods now used 
for both classification and regression issues (Olatunji, 2017) 
In order to identify the hyperplane (decision boundaries) 
that results in an effective separation of classes, the theo-
retical foundation of SVM is built on structural risk mini-
mization and statistical learning theory (Sethi et al., 2017) 
The borders are created by choosing a few crucial boundary 
instances known as support vectors. Using this, a linear dis-
criminant function is constructed to separate them as broadly 
as possible. By employing additional nonlinear elements in 
the function through its instance-based methodology, SVM 
can create quadratic, cubic, and higher-order decision lim-
its (Witten et al., 2005) Rework literature lacks exploration 
of ML techniques like KNN and SVM. Their effectiveness 
in cost performance compared to existing methods needs 
examination. ML can enhance construction cost estimation. 
(Yi & luo, 2023). Prior studies examined rework causes' 
impact on cost, with limited machine learning use or accu-
racy comparisons to traditional methods. Existing classifica-
tion methods may be subjective or lack complexity consid-
eration. This study explores machine learning's potential to 
predict rework impact on bridge project cost, contributing 
to proactive understanding. Insights gained may extend to 
applying machine learning in various industries or contexts.

Methodology

Significant machine learning technology is used with struc-
tural equation modelling (SEM) in this study. The analysis 
is divided into two stages. The first phase is concerned with 
SEM, which is separated into two steps: measurement model 
validation and structural model hypothesis testing. Machine 
learning (ML) is used in the second phase to train and test 
the proposed model, as well as to quantify the effectiveness 
of independent factors on the dependent factor. Machine 
learning may be beneficial in research contexts with predic-
tive scope, weak theory, and little requirement for compre-
hension of underlying links.

The primary causes of rework on bridge constructions 
will be initially determined through this study. Then, based 
on the likelihood and seriousness of the measured variables 
and the latent variables, create a model utilizing the struc-
tural equation model to forecast the overall impact of rework 
in bridge projects. By contrasting the SEM model's output 
with the actual output from the site, the model will then be 
validated. The stages of a comprehensive approach to this 
research are depicted in Fig. 1. The following is a list of the 
study's itemized methodology:

1.	 Defining the research problem and goals, which involve 
investigating the specific causes and determinants of 
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rework in bridge projects and understanding their impact 
on cost performance.

2.	 Conducting a comprehensive literature review to identify 
previous studies on rework in bridge projects, particu-
larly those that have used objective data sources and 
machine learning techniques.

3.	 Developing a research framework that incorporates 
structural equation modelling (SEM) and machine learn-
ing (ML) to investigate the causes and impact of rework 
on cost performance in bridge projects.

4.	 Using a combination of objective data sources, such as 
project reports and financial statements, and subjective 
data sources, such as expert opinions and surveys, to 
identify and classify the specific causes and determi-
nants of rework in bridge projects.

5.	 Conducting field visits to bridge projects to collect data 
on the identified causes and determinants of rework and 

assessing their likelihood and impact using a five-point 
Likert scale questionnaire.

6.	 Using SEM to validate the proposed model and test the 
hypotheses on the relationships between the identified 
causes and determinants of rework, and their impact on 
cost performance in bridge projects.

7.	 Developing ML-based perspectives to forecast the cost 
of rework associated with various bridge operations, 
considering both measured and latent variables.

8.	 Applying the ML-based perspectives to a case study to 
ensure the validity and accuracy of the proposed model, 
in addition to the possibility of applying it to future pro-
jects.

9.	 Drawing conclusions and providing recommendations 
on how to mitigate the risk of rework and improve cost 
performance in bridge projects based on the findings of 
the study.

Fig. 1   The Methodology of research
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SEM (Structural Equation Modeling) served as the ini-
tial step, enabling the modeling of intricate relationships 
and hypothesis testing about causal connections among 
variables. This approach aids in identifying latent variables 
linked to rework costs, integrating them into machine learn-
ing models. SEM facilitates the assessment of various fac-
tors' impact on rework costs, pinpointing the most influential 
contributors to overruns. It proves to be a robust tool for 
comprehending intricate relationships in bridge construc-
tion projects, enhancing the accuracy and effectiveness of 
machine learning models for predicting rework costs.

The study aimed to develop an accurate and implementa-
ble predictor for construction cost overrun impact without 
employing techniques like dimension reduction or class 
imbalance adjustments. Instead, a voting classifier with 
various ML models was utilized, adjusting members based 
on performance to expedite training. ML, in this context, 
specifically refers to predicting rework costs in bridge con-
struction. The authors leveraged ML to identify rework 

causes, offering a nuanced understanding of factors influ-
encing cost performance. Essential parameters were set as 
benchmarks, with default options for others, excluding fea-
ture engineering and optimization due to the study's scope. 
Strong and weak ML models enhanced accuracy and overall 
model performance without employing complex optimiza-
tion techniques.

Questionnaire Design

After reviewing prior research on rework in construction 
projects, 86 variables were identified and grouped into 
human resources, construction phase, design phase, external 
factors, and a special group for bridge projects. Thirty-three 
components remained after omitting those not cited at least 
three times. Fifteen experts with over 14 years of combined 
experience in road and bridge projects used Delphi technol-
ogy to reach consensus on bridge rework reasons in Egypt. 

Fig. 2   Causes of rework in final structural equation modeling
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Through a three-step process, the initial list was refined to 
27 relevant elements in (Fig. 2).

The questionnaire comprises two main sections. The first 
covers participants' introductory characteristics, while the 
second explores rework problems in Egypt's bridge pro-
jects. For each element, respondents answer three ques-
tions regarding frequency, cost impact, and timeline effect. 
Weights are assigned using a five-point Likert scale: 1 for 
insignificance, 2 for low significance, 3 for medium signifi-
cance, 4 for high significance, and 5 for potential criticality.

Data collection

The survey targeted diverse respondents, including owners, 
consultants, and contractors engaged in bridge projects, aim-
ing for varied perspectives and data richness (Elseufy et al., 
2022). To ensure broad participation, 300 survey forms were 
emailed, with a sample size determined using the Cochrane 
formula. Follow-up reminders were employed, resulting in 
a 86.7% (260) genuine response rate within 8 weeks, sur-
passing the 30% threshold for reliable statistical analysis 
(Ye et al., 2015). The respondents comprised 24.6% own-
ers, 38.5% consultants, and 36.9% contractors. On average, 
39.2% of Egyptian bridge projects had at least 14 years of 
experience. More than 55.4% of respondents were involved 
in new bridge construction projects, contrasting with the 
44.6% participating in bridge restoration projects.

Data Analysis

To make sure the information from the questionnaire was 
accurate and could be applied to structural equation model-
ling, it was analysed using the SPSS program Version 26 
(Elseufy et al., 2022). The validity of the data was examined, 
as well as the compatibility of all participants in completing 
the questionnaire. The indications from the questionnaire 
yielded a Cronbach's alpha coefficient of 0.917, which is 
more than the lower limit for constructing a good internal 
consistency (0.7) (Hair et al., 2010). The study data was 
then further analysed utilizing supplementary methods and 
statistical measures as described by (Yap et al., 2019).

Spearman's rank correlation, a non-parametric measure, 
assessed the relationship strength between variables' groups 
on an ordinal scale. The Relative Significance Index (RII), 
depicting Spearman test results, indicates strong agreement 
among project partners on factors influencing bridge project 
rework. Owners and contractors exhibit the lowest agree-
ment (around 76%), while consultants and contractors dem-
onstrate the highest (approximately 89%), enhancing result 
consistency.

Model Specification

According to (Brown et al., 2017), AMOS is a program that 
integrates multivariate frameworks for inspection and analy-
sis, such as factor correlation, variance analysis, regression, 
and factor analysis (Elseufy et al., 2022). Models produced 
by AMOS are more precise than those obtained by using 
conventional multivariate statistical techniques. AMOS's 
graphical user interface makes it simple to use (Arbuckle, 
2011). Even when conventional indicators are not met, a 
structural equation model based on speculative projections 
and prior empirical findings is initially appropriate (Brown 
et al., 2017). The latter model ought to meet the suggested 
goodness of fit metrics (GOF). AMOS 26.0 was used to cre-
ate the suggested second-order primary confirmation factor 
analysis model. Structural equation modeling was utilized to 
investigate the interconnections between these criteria and 
the overall desirability (Ojghaz et al., 2023).

The 27 rework causes in bridge projects were categorized 
into five groups. A second-order confirmatory factor analysis 
model, with overall rework as a second-order latent variable, 
included human resources, construction, design process, 
external factors, and bridge groups as first-order latent vari-
ables. Both exogenous and endogenous constructs influenced 
rework. Table 1 outlines the study's hypotheses.

Model Refinements

The goal of the outer measurement model is to determine 
the validity, internal consistency, and reliability of both 
observable and latent variables. The reliability test, which 

Table 1   The model hypotheses

Hypothesis The latent variable Descriptions

Hypothesis (H1) The human resources factors has a significant and positive effect on the overall impact of rework on cost’s bridge project 
performanceHypothesis (H2) The construction process factors

Hypothesis (H3) The design process factors
Hypothesis (H4) The external factors
Hypothesis (H5) The bridge-related factors
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is monitored by the physical model, is dependent on the 
assessment of consistency between latent components. To 
evaluate legitimacy, convergent and discriminatory valid-
ity are used. Variables reported with an outer loading of 
0.50 or above are regarded as highly accepted (Hair et al., 
2012). It is recommended to remove any factor with an 
outside loading of less than 0.50 (Chen, 2007). Figure 3 
shows the SEM Model after deleting the elements that 
have an influence factor of less than 0.5.

One of the final model's outputs is the regression anal-
ysis for overall rework impact on cost. Equation No. 5 
expresses the effect of rework on the cost performance of 
bridge projects (Elseufy et al., 2022).

After verifying the accuracy and reliability of measure-
ments in the outer model, the inner structural model's valid-
ity was assessed, focusing on predictive utility and inter-con-
struct connections. The primary evaluation criterion is the 
Goodness-of-Fit (GOF) index, ranging from 0 to 1. A model 

(1)
Re − work = 0.93C + 0.69E + 0.85H + 0.52B + 0.43D

is deemed reasonable and realistic with strong fit indicators 
(Hair et al., 2012). Table 2 presents the GOF measures, ensur-
ing the model faithfully represents observed data.

Machine Learning

Machine learning is an emerging area of artificial intelli-
gence that is used for data modelling, or creating mathe-
matical abstractions of data that computers can use to make 

Fig. 3   Causes of rework in bridge projects: structural equation model

Table 2   Goodness-of-Fit

GOF measures Final SEM

The goodness-of-fit index (GFI) 0.926
Root means-square-error-of-approximation (RMSEA) 0.057
The comparative-fit-index (CFI) 0.964
The Tucker-Lewis coefficient (TLI) 0.942
The normed-fit-index (NFI) 0.927
The incremental-fit-index (IFI) 0.965
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precise predictions. A significant subset of machine learning 
issues is supervised classification. The primary goal of the 
proposed methodology is to train diverse supervised learn-
ing classifiers using a designated training dataset (Entezami 
et al., 2020). The instance space, which contains a set of 
independent variables, the label space, which contains the 
dependent variable for each instance, and the machine learn-
ing algorithm are the three basic components of supervised 
classification (Larrañaga et al., 2018).

Data pre‑processing

Identifying the optimal feature combination is crucial for 
improving a model's predictive ability and addressing the 
"curse of dimensionality" in machine learning challenges. 
MATLAB R2022b was employed for the optimization 
process, leveraging its well-suited features and resources 
for machine learning applications (A Kaveh et al., 2022). 
The dataset, consisting of 272 bridge projects with varying 
rework impacts on cost performance, was used to construct 
a predictive analytics tool. Each data record represents a 
unique project linked to six variables. The first variable, 
representing the predicted impact of rework on bridge costs 
based on a structural equation model, serves as the depend-
ent variable. The remaining five variables, reflecting rework 
causes, are considered independent. The dependent variable 
was categorized into three labels (< 30% LOW, 30–60% 
MEDIUM, and > 60% HIGH) based on its frequency dis-
tribution. The dataset was split into a 70% training and 30% 
testing ratio.

Evaluate machine learning algorithms

The fine-tuning of optimization hyperparameters affects how 
well ML algorithms work. In this work, a systematic search 
was used, and the model was gradually trained using dif-
ferent sets of hyperparameters until sufficient results were 
attained. In machine learning, ensemble approaches can 
enhance the performance of base classifiers. Because the 
classification technique is good at dealing with categorical 
variables and can manage complex-related variables, it was 
the focus of the current investigation. This strategy involves 
combining the base classifiers' predictions through a set 

process. The ML algorithms used in this study are described 
as follow: (artificial neural network (ANN), K nearest neigh-
bors (KNN) and support vector machine (SVM)).

Performance measurement

Confusion matrices were employed to assess algorithm per-
formance, providing values for True Positives (TP), False 
Positives (FP), False Negatives (FN), and True Negatives 
(TN). In binary classification, these metrics indicate cor-
rect and incorrect classifications. For multi-class matrices, 
these values are computed independently for each class, and 
a weighted average is calculated. TPs are correct classifi-
cations, TNs are correctly identified instances outside the 
considered class, FNs are instances mistakenly categorized, 
and FPs are samples from other classes. Classification accu-
racy and Cohen's kappa statistic are used for performance 
evaluation in cases of asymmetrical class distribution. The 
confusion matrices for ANN, KNN, and SVM classifiers are 
presented in Table 3.

where N = No. of samples & Misclassification Error = (1 _ 
Accuracy).

Cohen�s kappa statistic =
TP

N
+

TN

N
−A

1−A
;where 

A = (FN+TP
N

)
(

FP+TP

N

)

+
(

FP+TN

N

)

(
FN+TN

N
) (3)

Validation approaches

Two validation approaches were employed. Initially, models 
were trained on the complete dataset, predicting class labels 
of the same data used for training due to dataset limitations. 

(2)Classification Accuracy =
TP + TN

N
;

(4)Precision (Positive PredictiveValue) =
TP

TP + FP

(5)TPRate (Sensitivity) =
TP

TP + FN

(6)FPRate (1_Specif icity) =
FP

FP + TN

Table 3   Confusion matrix for 
all performing models

Actual class Predicted class

MODEL (1) (SVM) MODEL (2) (KNN) MODEL (3) (ANN)

High Medium Low Total High Medium Low Total High Medium Low Total

High 42 0 1 43 43 0 0 43 43 0 0 43
Medium 0 62 2 64 0 60 4 64 0 61 3 64
Low 0 3 162 165 0 5 160 165 0 4 161 165
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Subsequently, class labels were predicted for the remaining 
dataset (testing set) after training on a subset (training set) 
for objective evaluation. The holdout approach, randomly 
dividing the dataset for training and testing, was used. 
K-fold cross-validation, dividing the dataset into k subsets, 
was preferred for unbiased results. The process repeats k 
times, using one-fold as the test set and the remaining k-1 
for training. Confusion matrices are created for each repeat, 
and performance indices are derived. These k indices are 
averaged for final cross-validation results. This technique 
benefits from utilizing the full dataset for training and testing 
in each iteration, contrasting with the holdout approach. The 
study employed tenfold cross-validation, a common choice 
for computational efficiency and error estimation accuracy.

Analysis Results and Discussion

The study evaluated the training and testing performances 
of KNN, ANN, and SVM classifiers through tenfold cross-
validation. However, due to the dataset's moderate size 
(272 records), the model's predictive capacity for the 

testing set appeared unrepresentative. Three initial mod-
els (MOD-1, MOD-2, and MOD-3) were developed and 
assessed using confusion matrices to derive performance 
metrics. While MOD-1 and MOD-3 showed similar high 
classification accuracy (above 98%), MOD-2 performed 
less well, achieving 97%. Despite MOD-1 and MOD-3's 
good performance, further investigation explored whether 
ensemble approaches could enhance outcomes. MOD-1 
was identified as the best-performing model, supported 
by the findings in Table 6. Notably, MOD-1’s confusion 
matrix (Table 4, 5) indicated only six misclassified cases, 
resulting in a low misclassification error of 1.47%, high-
lighting its exceptional accuracy.

Table 6 compares SVM, KNN, and ANN classifier per-
formance indices. SVM achieves 98.53% (89.54%) accu-
racy in training (testing) with a 1.47% (10.46%) misclas-
sification error. KNN shows 97.79% (81.2%) accuracy and 
2.21% (18.8%) misclassification error. ANN exhibits 98.28% 
(87.26%) accuracy and 1.72% (12.74%) misclassification 
error. SVM outperforms in both training and testing.

In both training and testing scenarios, after conducting 
parameter analysis for each classifier, a comparison was 
made regarding the impact of rework on cost. Figure 4 
illustrates that SVM achieved the highest quantification of 
rework impact on cost across all data divisions, followed 
by ANN with the second highest rate. Conversely, KNN 
yielded the lowest quantification rate among the classifi-
ers, indicating it as the least favorable option for quantify-
ing the rework impact on the cost of bridge projects. With 
a maximum quantification rate of 97%, SVM emerged as 

Table 4   Illustrative example

Given for model (1) True posi-
tive (TP)

False 
negative 
(FN)

True nega-
tive (TN)

False 
positive 
(FP)

High 42 0 229 1
Medium 62 3 205 2
Low 162 3 104 3

Table 5   The performance 
measure of the computational 
model

Performance measure High Medium Low Weighted average

Classification Accuracy (%) 0.9963 0.9816 0.9779 0.9853
Misclassification Error (%) 0.0037 0.0184 0.0221 0.0147
A 0.7363 0.3506 0.5175 0.5348
Cohen’s Kappa Statistic 0.9861 0.9717 0.9543 0.9707
Precision 0.9767 0.9688 0.9818 0.9758
TP Rate 1.0000 0.9538 0.9818 0.9786
FP Rate 0.0043 0.0097 0.0280 0.0140

Table 6   Performance of initial 
ML models

Performance measure MOD (1) SVM MOD (2) KNN MOD (3) ANN

Classification Accuracy (%) 0.9853 0.9779 0.9828
Misclassification Error (%) 0.0147 0.0221 0.0172
A 0.5349 0.5413 0.3018
Cohen’s Kappa Statistic 0.9707 0.9595 0.9811
Precision 0.9758 0.9691 0.9763
TP Rate 0.9786 0.9662 0.9732
FP Rate 0.0140 0.0219 0.0172
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the best classifier. The optimal data separation was deter-
mined to be 10% for testing data and 90% for training data.

The study's goal is a platform for continuous forecast-
ing improvement in cost performance through rework cause 
adjustments, achieved by training ML models for dynamic 
analysis, a crucial step toward the long-term objective. The 
key finding emphasizes the numerous benefits of using 
machine learning to enhance rework in construction projects:

1.	 Improving forecasting and planning: Machine learning 
can analyze historical data to predict potential project 
issues, enabling teams to plan rework more effectively.

2.	 Enhancing feasibility estimates: AI techniques can accu-
rately analyze project costs and financial feasibility, aid-
ing better decisions on whether to continue or rework.

3.	 Reducing human errors: ML minimizes potential human 
errors in estimating rework percentages, enhancing 
result accuracy.

4.	 Improving risk management: AI can analyze potential 
risks, directing attention to areas needing rework and 
enhancing overall project risk management.

5.	 Enhancing time management: Machine learning ana-
lyzes project schedules and forecasts rework time, con-
tributing to improved time management.

6.	 Increasing efficiency and performance: ML helps opti-
mize resource usage and enhance operational perfor-
mance, reducing the need for rework.

7.	 Predicting problems early: ML aids in early prediction 
of potential issues, allowing technical teams to intervene 
effectively and avoid rework later.

8.	 Promoting smart technology: Machine learning inte-
grates smart technologies like intelligent sensing and 
automated control, boosting construction process effi-
ciency.

This study proposes a novel approach, combining struc-
tural equation modeling and machine learning, to forecast 
rework costs in bridge projects. By leveraging historical 
data, we aim to provide stakeholders with accurate predic-
tions, facilitating proactive decision-making. Emphasizing 
the importance of understanding root causes, our research 
aims to inform targeted interventions, reducing rework 
occurrence. The application of machine learning, particu-
larly ensemble learning, represents a significant advance-
ment, enhancing the reliability of cost predictions across 
diverse datasets. Overall, our study underscores the impor-
tance of addressing rework and highlights machine learn-
ing's potential to improve construction project management.

Conclusion

In this study, machine learning (ML) and structural equa-
tion modeling (SEM) were distinct analytical methods. SEM 
assessed rework impact on project costs initially, validating 
variables affecting rework. Subsequently, ML classification 
forecasted fundamental rework causes more precisely. This 
two-stage predictive analytical methodology provides com-
prehensive insights, making a substantial methodological 
contribution. Outputs from the first phase trained and tested 

Fig. 4   Comparison of aver-
age rework's impact on cost of 
SVM, ANN and KNN classifier
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ML classifiers to anticipate rework impact and compare it 
to overall rework values in bridge projects. The SEM model 
served as the foundation for ML, emphasizing the value of a 
dual analytical approach and SEM in assessing total rework.

To assess the overall impact of rework in Egyptian bridge 
construction, a structural equation model was constructed, 
examining rework causes based on likelihood and conse-
quences. A theoretical framework was constructed using 
AMOS 26, employing a second-order model that considers 
rework occurrence and impact. The root mean square error 
of approximation for the testing sample was 5.7%, within 
acceptable bounds. The model highlighted construction pro-
cess factors as key contributors to rework. An ML-based 
strategy proved most effective for managing interdependent 
variables. Three ML algorithms were carefully chosen based 
on project data characteristics, yielding accurate predictive 
models. SVM outperformed decision tree models in overall 
and class performance during tenfold cross-validation, con-
firming the initial hypothesis of data variables’ conditional 
independence.

The study employed confusion matrices and various per-
formance metrics, including classification accuracy, Cohen's 
kappa statistic, precision, true positive rate, and false posi-
tive rate, to evaluate the effectiveness of KNN, ANN, and 
SVM classifiers in predicting the impact of rework on pro-
ject costs. Initial models (MOD-1, MOD-2, and MOD-3) 
were developed and assessed, with MOD-1 identified as 
the best-performing model. Further investigation explored 
ensemble approaches to enhance outcomes. The perfor-
mance of SVM, KNN, and ANN classifiers was compared, 
with SVM demonstrating superior accuracy and reliability in 
both training and testing scenarios. SVM achieved the high-
est quantification rate for rework impact on project costs, 
followed by ANN, while KNN exhibited the lowest quan-
tification rate. SVM achieves 98.53% (89.54%) accuracy in 
training (testing) with a 1.47% (10.46%) misclassification 
error. This underscores SVM's effectiveness in quantifying 
rework impact and its potential to inform decision-making 
in bridge construction projects. Overall, the study highlights 
the importance of employing advanced machine learning 
techniques for proactive prediction and evidence-based 
decision-making to mitigate rework and improve cost per-
formance in construction projects.

However, the methods outlined in the study can be used 
with data sets from other projects, as opposed to the one 
assembled here, which was primarily examined to aid com-
prehension and show the viability of the suggested ML anal-
ysis technique. Consequently, it is necessary to make some 
suggestions for the future use of the approach covered in the 
study. Also, this model is not limited to implementation in 
Egypt because the factors are the same in all countries, but 
the coefficients can differ depending on the impact and the 

probability of factors, so it must be noted that this model is 
valid for application in all countries, but some changes and 
adjustments must be made to suit the conditions of each 
country.
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