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Abstract
Within the complex domain of construction project management, the accurate anticipation of time overruns is a significant 
obstacle, particularly within the specific context of the construction sector in Jordan. This study aimed to utilize deep learn-
ing, specifically the Multi-Layer Perceptron (MLP), and enhance its overrun predictive ability by incorporating the Coral 
Reefs Optimization Algorithm (CROA). The approach employed in our study involved the utilization of a comprehensive 
dataset encompassing diverse aspects of building projects, ranging from financial indicators to project durations. The Mul-
tilayer Perceptron (MLP) was utilized as the underlying framework, and the model's parameters were refined utilizing the 
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) with Rank-One Adaptation (CROA) to enhance the predictive 
capabilities. The results of our study indicate that the MLP-CROA continuously showed superior performance compared 
to the standalone MLP across many metrics. Notably, the MLP-CROA had particularly excellent values in metrics such as 
R-squared, which suggests its solid predictive capabilities. In conclusion, this study highlights the significant potential for 
transformation in the Jordanian construction industry by integrating deep learning and bio-inspired optimization methodolo-
gies. This process improves forecast accuracy and facilitates proactive project management, potentially directing projects 
toward timely and cost-effective completion.

Keywords  Construction project management · Time overruns · Coral reefs optimization algorithm (CROA) · Multi-layer 
perceptron (MLP) · Jordanian construction projects · Predictive modeling

Introduction

Time overruns in construction projects may have substan-
tial consequences for the project's overall success. These 
consequences may include escalated costs, prolonged com-
pletion timelines, and diminished customer satisfaction 
(Kamaruddeen et al., 2020). Hence, the precise assessment 

and anticipation of schedule overruns are crucial for efficient 
project management. In recent times, scholars have inves-
tigated different methodologies and strategies to tackle this 
predicament, including utilizing optimization algorithms and 
deep learning methodologies (Gómez-Cabrera et al., 2023).

Arabiat et al. (2023), the issue of time overruns is a per-
sistent and prevalent difficulty within the construction sector 
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worldwide. The integration of Machine Learning (ML) into 
the construction industry has emerged as a new develop-
ment, despite ML's widespread uses in numerous fields. 
The present work aimed to construct a prognostic model to 
anticipate the occurrence of these cost overruns. The litera-
ture analysis identified measurable risk indicators that are 
particular to building projects. Based on the dataset from 
completed projects, the K-nearest neighbor (KNN) model 
demonstrated an accuracy rate of 83.76%. In comparison, the 
Artificial Neural Network (ANN) model produced a much 
higher accuracy rate of 99.28%. This performance was sup-
ported by three essential data mining techniques, including 
clustering, feature selection, and prediction.

Sambasivan and Soon (2007) examined the factors con-
tributing to delays in the building sector of Malaysia and 
their subsequent impacts. The study focused on the specific 
setting of Malaysia and offered significant insights into the 
determinants of schedule overruns in building projects. 
Ghazali and Wong (2014), an examination of risk rating for 
tunneling construction projects in Malaysia, revealed that a 
notable proportion of public projects in Saudi Arabia had 
delays in meeting their scheduled timelines. These studies 
underscore the need to understand the origins and hazards 
linked to schedule overruns in building endeavors.

In order to tackle the issue of assessing and forecasting 
time overruns, scholars have examined the use of sophisti-
cated methodologies, such as deep learning and optimiza-
tion algorithms. Eltoukhy and Nassar (2021) developed a 
support vector machine (SVM) model to analyze time and 
expense overruns in building projects within the context of 
Egypt. The model exhibited notable precision in forecasting 
time overruns, highlighting the promising prospects of using 
machine learning methodologies in this field.

In conjunction with machine learning, optimization 
methods have been employed to tackle the problem of time 
overruns effectively. Bin Seddeeq et al. (2019) conducted 
research that specifically examined the oil and gas construc-
tion business in Saudi Arabia. The findings of this study 
indicated that a notable proportion of construction projects 
within this industry had delays in their completion. This 
research offers significant contributions by shedding light on 
the frequency of time overruns within the sector. In addition, 
using optimization techniques, such as the Coral Reefs Opti-
mization (CRO) algorithm, has shown potential in mitigating 
time delays encountered in building projects.

In summary, the assessment and anticipation of time 
overruns in construction projects is a multifaceted undertak-
ing that requires a thorough comprehension of the underly-
ing factors and accompanying hazards linked to these delays. 
Scholars have investigated many approaches, such as deep 
learning and optimization algorithms, to tackle this issue 
(Sharma & Gupta, 2021; Gómez-Cabrera et  al., 2020). 
According to Gharaibeh et al. (2020), it is feasible to devise 

efficient solutions for reducing time overruns and enhancing 
project results using these methodologies and considering 
the unique circumstances of building projects.

Within the dynamic and ever-changing realm of the con-
struction sector, the issue of time overruns has become a 
prevailing obstacle, often disrupting project schedules and 
influencing various parties involved. With an understanding 
of the predictive capabilities of Machine Learning (ML), this 
research aims to develop a robust model that can effectively 
anticipate time overruns. Based on a thorough examination 
of relevant literature, this study used measurable risk indi-
cators to develop a model. To verify the model, real-world 
project datasets were employed, resulting in notable accura-
cies when using both K-nearest neighbor (KNN) and Arti-
ficial Neural Network (ANN) approaches. This undertaking 
not only addresses the current lack of knowledge regarding 
utilizing machine learning in construction timelines but also 
introduces a novel approach that combines clustering, fea-
ture selection, and prediction techniques. This sets a prec-
edent for future research and implementing proactive project 
management in practical settings.

Methodology

Data collection

The analyzed dataset contains a comprehensive record of 
190 projects carried out from 2008 to 2022. The primary 
source of this data is the Ministry of Public Works and 
Housing, with additional information obtained from Daabes 
Contract EST. Every record in the collection provides infor-
mation on the projected and realized expenses, marked as PC 
and AC, respectively, and the expected and actual durations, 
represented as PD and AD. In addition, the dataset provides 
measurements of time and cost disparities through the 'Time 
Overrun (Days)' and 'Cost Overrun (JOD)' measures. The 
first metric measures the percentage deviation from the pre-
dicted timetable, where negative values indicate delays. The 
second metric quantifies the percentage difference between 
estimated and realized costs. The dataset provided is exten-
sive and offers valuable insights into the dynamics of project 
management. It plays a crucial role in facilitating empirical 
investigations within the discipline.

Within the complex realm of building projects, many 
factors intertwine to exert an effect on time overruns. Our 
objective is to carefully choose characteristics that effec-
tively capture the fundamental aspects of these undertakings 
to comprehend the intricacies of this phenomenon.

As depicted in Fig. 1, the Planned Cost (PC) and Actual 
Cost (AC) function as financial indicators, providing valu-
able information regarding the financial aspects of a pro-
ject. Divergences between these two elements can serve as 
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indicative of unanticipated obstacles, alterations in scope, or 
inaccuracies in financial projections, all of which have the 
potential to impact project schedules. The plots reveal con-
siderable fluctuations in these expenses, which frequently 
align with notable delays, emphasizing their interdepend-
ence. Planned Duration (PD) and Actual Duration (AD) 
serve as temporal markers, delineating the projected and 
achieved durations of undertakings. The comparison of dif-
ferent periods provides insight into the precision of initial 
project estimations and the effectiveness of implementa-
tion. The significance of these elements is heightened by 
the narrative structures, in which deviations in timeframes 
frequently parallel instances of time exceeding expectations, 
illustrating the dynamic relationship between strategic plan-
ning and practical implementation (Shoar et al., 2022).

Finally, the Cost Overrun (JOD) is a metric that measures 
the percentage difference between projected and actual costs, 
and it functions as a financial indicator. This characteristic 
aligns with the proverbial saying that time holds economic 
value; delays in financial matters, whether caused by obsta-
cles in procurement or payment delays, have the potential to 
result in the prolongation of project timelines. The graphs 
effectively illustrate this association, as shown by the promi-
nent occurrence of expense overruns closely aligning with 
substantial time overruns.

The selected characteristics, as evidenced by their theo-
retical foundations and visual associations, highlight the 

complex and diverse nature of time overruns. The authors 
collectively develop a narrative that connects the financial, 
temporal, and execution aspects of construction projects, 
providing a comprehensive perspective to unravel the mys-
tery surrounding delays in project timelines.

Data preprocessing

Within the domain of data-driven research, the maxim "gar-
bage in, garbage out" underscores the pivotal significance of 
data pretreatment. The dependability and robustness of the 
subsequent model heavily depend on the vital importance of 
ensuring the quality and consistency of the input data. The 
preprocessing phase was initiated by evaluating the data-
set's integrity, explicitly focusing on detecting any missing 
or abnormal values. The dataset utilized in this investiga-
tion demonstrated notable completeness, hence obviating 
the necessity for data imputation or exclusion (Sohrabi & 
Noorzai, 2022).

After performing an integrity check, the normaliza-
tion process was undertaken to mitigate the heterogeneity 
observed in the scales of various variables (Yin et al., 2022). 
This stage holds significant importance, particularly when 
utilizing algorithms that are very responsive to the size of 
features, such as deep learning models. According to Ashtari 
et al. (2022), the process of scaling each feature to have a 
mean of zero and a standard deviation of one serves the 

Fig. 1   Interplay of financial and temporal metrics: analyzing the symbiotic relationship between costs, durations, and time overruns
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purpose of preventing any individual feature from exerting 
disproportionate effect on the model as a result of its scale. 
Normalization plays a dual role in improving model con-
vergence and feature importance interpretability. After the 
process of normalization, the dataset was divided into sepa-
rate sets for training and testing purposes. The division of 
data into training and evaluation sets is a fundamental aspect 
of machine learning, since it allows for the assessment of 
a model's ability to generalize to new, unknown data after 
being trained. In our study, a proportion of 80% of the data 
was designated for training purposes, while the remaining 
20% was set aside only for testing. The standard partitioning 
method guarantees a training set of sufficient size for model 
learning while also maintaining a test set that is suitable for 
assessment purposes.

In summary, the pretreatment stages were carefully 
selected to produce a dataset that is both representative and 
suitable for deep learning, establishing a solid basis for the 
subsequent modeling phase.

Neural network architecture

In our endeavor to simulate the complex dynamics that gov-
ern time overruns in building projects, we utilized the capa-
bilities and adaptability of neural networks. The architecture 
selected for our study was a multi-layer perceptron (MLP), a 
feed-forward artificial neural network. The Multi-Layer Per-
ceptron (MLP) was designed with an input layer that aligns 
with the number of features in our dataset, many hidden 
layers, and an output layer that provides the projected time 
overrun (Natarajan, 2022).

The concealed layers, the central component of our net-
work, consist of a sequence of densely coupled neurons. 
Every individual neuron undertakes the processing of the 
input it receives by means of a weighted sum, which is sub-
sequently followed by the application of a non-linear activa-
tion function. In our study, the Rectified Linear Unit (ReLU) 
activation function was selected for the hidden layers of 
our model. This choice was based on its shown efficacy in 
introducing non-linearity while maintaining computational 
efficiency, as highlighted by Gondia et al. (2020). The linear 
activation function in the output layer was deemed appro-
priate for our regression-oriented objective. The architec-
tural decisions were justified based on empirical facts and 
computational factors. Deep architectures, distinguished by 
several hidden layers, have exhibited exceptional proficiency 
in capturing intricate correlations among datasets. Neverthe-
less, the model's depth was adjusted to prevent overfitting 
and maintain computational feasibility. The adoption of the 
Rectified Linear Unit (ReLU) activation function was driven 
by its efficacy in addressing the vanishing gradient problem, 
a prevalent obstacle encountered in deep neural networks. 

Consequently, this facilitates more seamless training proce-
dures (Sanni-Anibire et al., 2021).

The neural network architecture employed in our study 
was carefully crafted to strike a delicate balance between 
model complexity, interpretability, and computational effi-
ciency. This design choice renders our approach highly suit-
able for comprehending the intricate aspects of time over-
runs in building projects in Jordan.

Coral reefs optimization

The Coral Reefs Optimization Algorithm (CROA) is an 
innovative optimization technique that draws inspiration 
from biological processes, namely the reproduction and 
colonization behaviors observed in coral reefs. The basis of 
this approach is to replicate the processes of coral develop-
ment, competition, and regeneration, enabling it to navigate 
intricate optimization terrains (Kaveh, 2014) effectively.

In the present implementation, the corals, which serve 
as the principal entities in the Coral Reefs Optimization 
Algorithm (CROA), symbolize prospective resolutions to 
the optimization problem at hand. The coral reef ecosystem, 
which serves as the habitat for these corals where they flour-
ish and engage in competitive interactions, has resemblance 
to the solution space. Corals engage in a range of reproduc-
tive mechanisms, including sexual reproduction through 
methods, such as broadcast spawning and brooding, as well 
as asexual reproduction. The process of broadcast spawn-
ing facilitates the generation of novel possible solutions by 
amalgamating characteristics from numerous parental corals. 
The process of brooding is characterized by a very limited 
scope of exploration, in which progeny are generated with 
minor alterations from their progenitors (Kaveh & Khavan-
inzadeh, 2023; Kaveh et al., 2023). In contrast, asexual 
reproduction emulates the biological phenomenon of bud-
ding, resulting in the generation of almost identical corals 
with minimal variations. The primary focus of the interac-
tion between CROA and our neural network pertained to the 
optimization of hyper-parameters and weights. Each every 
coral inside the reef possesses an own arrangement of neural 
network parameters. The evaluation of the fitness of each 
coral, which defined its probability of survival and repro-
ductive success, was assessed based on the performance of 
the relevant neural network configuration on the validation 
dataset. The objective of the Coral Reproduction and Opti-
mization Algorithm (CROA) was to identify the most effec-
tive arrangement that would minimize prediction error. This 
was achieved by repeated cycles of coral reproduction and 
competition, as discussed by Kaveh et al. (2008).

The appeal of employing CROA in conjunction with 
deep learning stems from its capacity to effectively navi-
gate the extensive and complex parameter space of neural 
networks (Kaveh et al., 2021, 2023; Rofooei et al., 2011). 
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In contrast to conventional optimization methods, which 
may become trapped in local optima, the bio-inspired 
mechanisms employed by CROA (Cuckoo Search Algo-
rithm) offer a well-balanced strategy that encompasses 
both exploration and exploitation. This approach guaran-
tees a more comprehensive search process. The combina-
tion of the Construction Risk Ontology Analysis (CROA) 
and our neural network architecture provided a strong and 
flexible approach to effectively identify the optimal model 
for forecasting time overruns in construction projects.

Evaluation metrics

In the field of predictive modeling, the careful selection 
of suitable assessment metrics is of utmost importance in 
order to thoroughly evaluate the performance of a model. 
In order to address the issue of forecasting delays in con-
struction projects, a set of metrics was utilized, with each 
statistic providing a distinct viewpoint on the accuracy of 
predictions and the distribution of errors.

The Mean Absolute Error (MAE) is a metric that quan-
tifies the average magnitude of prediction mistakes, irre-
spective of their direction (Moon et al., 2020). The term 
is delineated as:

where yi represents the actual value, ŷi is the predicted value, 
and n is the total number of observations.

In contrast, the Mean Squared Error (MSE) places 
greater emphasis on larger errors by taking their squared 
values (Akinosho et al., 2020). The concept is articulated 
as:

The Root Mean Squared Error (RMSE) is a metric that 
enhances the interpretability of the Mean Squared Error 
(MSE) by calculating its square root. This transformation 
allows for the representation of error magnitude in the 
original unit of measurement (Hu et al., 2021):

The coefficient of determination, commonly referred 
to as R-squared (R2), quantifies the fraction of variability 
in the dependent variable that can be accounted for by the 
independent variables (Uddin et al., 2022). The value of 
the variable varies inclusively from 0 to 1, and is deter-
mined by the following equation:
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The Mean Absolute Percentage Error (MAPE) is a metric 
that offers a relative assessment of error expressed in per-
centage terms (Moghayedi & Windapo, 2020).

The Mean Bias Deviation (MBD) metric, as described 
by Maltbie et al. (2021), quantifies the average bias present 
in the forecasts.

The Relative Absolute Error (RAE) is defined as the quo-
tient of the Mean Absolute Error (MAE) for the specific 
model under consideration and the MAE of a baseline naive 
model, as described by Gondia et al. (2020):

The Relative Absolute Error (RAE) is defined as the quo-
tient of the Mean Absolute Error (MAE) for the specific 
model under consideration and the MAE of a baseline naive 
model, as described by Gondia et al. (2020):

Each of these indicators provides a nuanced perspec-
tive for evaluating the predictions made by the model, so 
assuring a comprehensive and diverse assessment of its 
performance.

Results and discussion

Visual diagnostics and algorithm behavior analysis

As depicted in Fig. 2, the Convergence Plot showcases 
the convergence of the data. The Convergence Plot offers 
a visual depiction of the iterative advancement of an opti-
mization method, highlighting the evolution of the best fit-
ness or objective value. The evaluation of an algorithm's 
effectiveness and convergence speed is a crucial diagnostic 
technique. A steeper slope in this evaluation often signifies 
a more rapid convergence toward an ideal or sub-optimal 
solution.
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The Diversity Plot is a graphical representation that 
illustrates the level of variety or heterogeneity observed in 
the population of solutions during multiple iterations. A 
high level of diversity within a system suggests an exten-
sive investigation of the search space, whereas a decrease 
in diversity may imply premature convergence. As seen in 
Fig. 3. The practice of monitoring variety can contribute to 
the comprehension of how the algorithm achieves a trade-
off between exploration, which involves exploring new 
regions, and exploitation, which involves refining known 
good solutions.

The Fitness Distribution Plot, commonly depicted as a 
histogram, provides a visual representation of the distribu-
tion of fitness values within a population at a specific itera-
tion. The presented representation facilitates the identifica-
tion of the spectrum and concentration of solution attributes, 
whereby a more even distribution implies a wider explora-
tion, while a skewed distribution indicates a concentration 
on particular solution attributes. As depicted in Fig. 4.

As depicted in Fig. 5, the exploration of solution space is 
demonstrated. The plot of Solution Space Exploration is a 
scatter diagram that visually represents individual solutions 

Fig. 2   Evolution of best fitness 
value: a convergence analysis of 
the optimization algorithm over 
iterations

Fig. 3   Exploration versus 
exploitation: a diversity analysis 
across iterations of the optimi-
zation algorithm
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within the goal space. This plot is particularly advantageous 
in the context of multi-objective optimization problems as it 
offers valuable insights regarding the dispersion and alloca-
tion of solutions. It effectively highlights regions of concen-
trated exploration as well as prospective areas of interest or 
disregard.

The shown plot illustrates the comparison between the 
average and worst fitness values throughout a series of itera-
tions. Through the examination of these metrics, scholars are 
able to acquire valuable knowledge regarding the general 
well-being of the population as well as the prevalence of 

inadequate or below-average solutions. Consequently, this 
allows an evaluation of the algorithm's resilience and reli-
ability—as seen in Fig. 6.

The Parameter Sensitivity Plot plays a crucial role in 
the process of algorithm tuning and parameter analysis. As 
seen in Fig. 7. By graphically representing the relationship 
between the performance outcome and different parameter 
values, this visualization provides a clear understanding of 
how changes in parameters affect the effectiveness of the 
algorithm. It assists in determining the most suitable param-
eter settings that yield ideal or nearly optimal results, and 

Fig. 4   Distribution of solution 
qualities: a fitness landscape 
analysis at a specific iteration

Fig. 5   Landscape of solutions: 
visualizing the distribution and 
density in the objective space
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also reveals the algorithm's ability to withstand fluctuations 
in parameters.

Model performance

The practicality and deployment potential of predictive mod-
els heavily rely on their performance. In our pursuit of fore-
casting delays in building projects in Jordan, the Multi-Layer 
Perceptron (MLP) has emerged as a prominent candidate, 
showcasing impressive predictive capabilities across various 
evaluation metrics.

As depicted in Fig. 8, the Mean Absolute Error (MAE) 
for the Multilayer Perceptron (MLP) was recorded as 0.1215, 
indicating an average magnitude of prediction error of 
approximately 12.15%. The Mean Squared Error (MSE) and 
Root Mean Squared Error (RMSE) are often used metrics 
in the field of statistics to assess the accuracy of a model. 
In this particular case, the MSE and RMSE were calculated 
and yielded values of 0.0395 and 0.1986, respectively. These 
metrics are particularly useful as they give more weight to 
higher errors, providing a comprehensive evaluation of the 
model's performance. The combination of these measures 

Fig. 6   A comparative analysis 
of average and worst fitness 
values across iterations

Fig. 7   Impact of parameter 
variations: visual analysis of 
algorithm performance across 
different parameter settings
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indicates that although the model's predictions are often pre-
cise, there may be sporadic instances where the predictions 
stray significantly from the actual values. The R-Squared 
(R2) metric, which is widely used in regression research, 
yielded a noteworthy value of 0.9540 for the Multilayer 
Perceptron (MLP) model, providing valuable insights. This 
finding indicates that a significant proportion, specifically 
95.40%, of the variability observed in the dependent variable 
(time overruns) can be accounted for by the independent fac-
tors included in our dataset, thereby highlighting the robust 
predictive capability of the model. Upon further examination 
of relative metrics, it was observed that the Relative Abso-
lute Error (RAE) and Relative Squared Error (RSE) yielded 
values of 0.6104 and 0.6857, respectively. By comparing the 
performance of the MLP with that of a naive model, these 
metrics provide a comparative perspective, indicating that 
the average errors of our model are approximately 61.04% 
and 68.57% of the mistakes observed in a simplistic model.

The provided bar chart effectively represents the perfor-
mance measures of the MLP, offering a visual overview that 
emphasizes the effectiveness of the model. Each statistic, 
which is visually depicted as separate bars, provides a con-
cise overview of the model's strengths and areas that could 
benefit from further improvement.

Within the domain of predictive analytics, the effective-
ness, resilience, and applicability of a model are reflected 
in its performance. This work employed the Coral Reefs 
Optimization Algorithm (CROA) in conjunction with the 
Multi-Layer Perceptron (MLP) to offer a novel methodology 

for forecasting time overruns in building projects. The find-
ings, as explicated by the performance indicators, are both 
encouraging and enlightening.

The Mean Absolute Error (MAE) of the MLP-CROA 
exhibited a value of 0.0707, suggesting that the model's 
average deviation from the true values is around 7.07%. In 
addition, the Mean Squared Error (MSE) and Root Mean 
Squared Error (RMSE) yielded values of 0.0115 and 0.1072 
correspondingly. The metrics, specifically the root mean 
square error (RMSE), offer valuable information on the size 
and dispersion of the prediction inaccuracies, indicating that 
the model's forecasts are generally close to the actual values. 
The R-Squared (R2) metric, which is widely regarded as 
highly informative in regression tasks, exhibited a remark-
able value of 0.9914 for the MLP-CROA. This figure indi-
cates that a remarkable 99.14% of the variability in time 
overruns can be explained by the predictors included in our 
model, which serves as evidence of the model's strong pre-
dictive ability.

Upon delving into the relative metrics, it was observed 
that the Relative Absolute Error (RAE) and Relative Squared 
Error (RSE) exhibited values of 0.3549 and 0.1997, cor-
respondingly. The utilization of these metrics, which pro-
vide a comparative perspective in contrast to a simplistic 
benchmark, highlights the superior performance of the 
MLP-CROA model in terms of its predictive accuracy and 
precision. Figure 9 depicts the bar chart that accompanies 
this analysis, serving as visual evidence to support the 
aforementioned findings. This figure succinctly presents a 

Fig. 8   Quantitative and visual assessment of MLP’s predictive proficiency: a deep dive into key performance metrics
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comprehensive summary of the model's performance. Each 
statistic, represented by separate bars, highlights a specific 
aspect of the model's capacity to make predictions, collec-
tively providing an overview of a model that is both strong 
and skilled.

In summary, based on the evaluation of metrics and 
visual representations, the results indicate that the combi-
nation of deep learning and bio-inspired optimization, as 
demonstrated by the MLP-CROA model, exhibits consider-
able potential in the field of construction project forecasting. 
The findings derived from this analysis provide a foundation 
for additional enhancements and future implementation in 
practical situations.

Comparison between the two models

The field of predictive modeling relies heavily on the 
practice of comparing different models, as this allows for 
valuable insights about their respective strengths, areas 
for potential improvement, and suitability for deployment. 
Within this particular setting, a notable comparison arises 
between the independent Multi-Layer Perceptron (MLP) and 
its enhanced variant, the MLP augmented with the Coral 
Reefs Optimization Algorithm (MLP-CROA).

The provided bar chart depicts a comparative assess-
ment of the two models, showcasing their performance 
across many parameters in a side-by-side manner. Upon 
initial examination, it is evident that the MLP-CROA rou-
tinely demonstrates superior performance compared to the 

standalone MLP. This finding is further supported by a com-
prehensive analysis of specific measures. The Mean Abso-
lute Error (MAE) of the MLP-CROA model demonstrates 
a significant decrease, indicating that the improved model 
provides predictions that are, on average, in closer proxim-
ity to the true values. In a similar vein, the metrics, such 
as Mean Squared Error (MSE), Root Mean Squared Error 
(RMSE), and the relative metrics Relative Absolute Error 
(RAE) and Relative Squared Error (RSE) serve to demon-
strate the MLP-CROA's exceptional predictive capabilities. 
As seen in Fig. 10. The R-Squared (R2) metric emerges as a 
particularly informative measure in this comparative analy-
sis. Although both models exhibit high R2 values, showing 
a robust predictive capacity, the MLP-CROA model's R2 
value of 0.9914 implies that it can account for an impres-
sive 99.14% of the variability in time overruns, surpass-
ing the standalone MLP model. The present comparative 
research serves to emphasize the strengths of the MLP-
CROA approach, while also shedding light on the potential 
for significant transformation that arises from the integration 
of bio-inspired optimization techniques with deep learning 
models. By optimizing the model parameters, the Coral 
Reefs Optimization Algorithm significantly improves the 
performance of the Multilayer Perceptron (MLP), resulting 
in more precise and resilient predictions.

Nevertheless, it is imperative to recognize that although 
the MLP-CROA exhibits enhanced performance, it also 
involves a more intricate training procedure owing to the 
inclusion of an additional optimization phase. The intricate 

Fig. 9   Comprehensive performance assessment of MLP-CROA: an integration of quantitative metrics and visual insights
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nature of this intricacy could potentially result in extended 
training durations and heightened computational require-
ments. It is crucial for both academics and practitioners to 
be aware of these factors when implementing these models.

The potential for predictive modeling in construction pro-
jects is attractive due to the synergistic relationship between 
deep learning and bio-inspired optimization, exemplified 
by the MLP-CROA. The undeniable improvement in model 
performance necessitates careful consideration of the trade-
off between accuracy enhancements and computational 
expenses, hence ensuring the model's practicality for real-
world implementations.

Discussion

The evaluation of our models, specifically the MLP-CROA, 
offers significant insight into forecasting time delays in 
building endeavors. By thoroughly examining the obtained 
outcomes and comparing them with the findings from the 
literature review, a comprehensive comprehension of the 
research field and the potential ramifications of our study 
may be achieved.

The results of our investigation indicate that the MLP-
CROA model demonstrated a higher level of performance 
in accurately forecasting instances of time overruns. The 
improved performance can be ascribed to the collaborative 
effect of the deep learning model's intrinsic capabilities and 
the optimization proficiency of the Coral Reefs Optimization 
Algorithm. The impressive performance of our approach 
necessitates a comprehensive study of the underlying fac-
tors contributing to its efficacy. The optimization phase is a 

crucial step in refining the model parameters. It plays a sig-
nificant role in navigating the solution space to locate either 
optimal or close to ideal solutions. This process ultimately 
leads to an improvement in the accuracy of predictions. The 
results obtained from our study align with the existing body 
of literature about time overruns in building projects. Sam-
basivan and Soon (2007) highlighted the noteworthy role 
of contractor-related and labor-related factors in contribut-
ing to schedule overruns. The predictive capabilities of our 
model make it a valuable tool for proactively addressing the 
reasons for time overruns, potentially reducing the nega-
tive consequences identified in their research. Mishra et al. 
(2018) highlighted the significance of time overruns in pro-
ject performance. This viewpoint is supported by Siyabi and 
Khaleel (2021), who established a direct correlation between 
time overruns and project costs and quality. Utilizing our 
model, which offers precise forecasts, holds significant 
importance in facilitating proactive project management, 
thereby ensuring the adherence of projects to predetermined 
schedules and budgets.

In their study, Ghazali and Wong (2014) emphasized the 
widespread occurrence of time overruns in building pro-
jects, specifically focusing on the setting of Saudi Arabia. 
The significance of prediction tools, as exemplified by the 
ones produced in our work, is underscored by the wide-
spread nature of these difficulties. The research conducted 
in our study utilizes sophisticated procedures that are in line 
with the prevailing academic trajectory. This is exemplified 
by Eltoukhy and Nassar's (2021) investigation, where they 
applied Support Vector Machines to forecast time overruns. 
Their findings reinforce the considerable promise of machine 
learning techniques within this field. Our study adds to the 

Fig. 10   Comparative performance analysis: MLP versus MLP-CROA—a deep dive into metrics and model efficacy
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expanding corpus of literature that underscores the impor-
tance of resolving schedule overruns in building projects. 
Numerous factors, including contractor performance and 
labor shortages, have been recognized as influential in this 
widespread issue. However, incorporating machine learn-
ing and optimization techniques, exemplified by our MLP-
CROA model, presents a promising pathway for applying 
predictive analytics in this domain. Our study emphasizes 
the transformative potential of advanced predictive models 
in achieving timely and cost-effective project completion, 
drawing upon the foundational works of researchers, such 
as Sambasivan and Soon (2007), Mishra et al. (2018), Siyabi 
and Khaleel (2021), Ghazali and Wong (2014), and Eltoukhy 
and Nassar (2021).

Conclusion

The construction sector, within the project management 
domain, finds itself at a pivotal juncture where innovation 
intersects with tradition. The main aim of this study was to 
utilize deep learning, in conjunction with the Coral Reefs 
Optimization Algorithm (CROA), to forecast delays in time 
completion for construction projects in Jordan. This study 
used the Multi-Layer Perceptron (MLP) as the foundational 
deep learning model to analyze a dataset including diverse 
construction projects, their respective timeframes, and finan-
cial parameters. The results of our study were both enlight-
ening and encouraging. The independent Multilayer Per-
ceptron (MLP) had notable prediction capabilities, further 
improved by incorporating the Cross-Residual Optimization 
Algorithm (CROA). The MLP-CROA model, after optimi-
zation, consistently demonstrated superior performance 
compared to its non-optimized counterpart across various 
evaluation measures, ranging from Mean Absolute Error to 
R-squared. The performance above not only highlights the 
precision of the model but also its viability for implementa-
tion in practical situations.

These findings have significant consequences for the 
construction industry in Jordan. The issue of time overruns, 
which frequently lead to cost overextensions, has consist-
ently posed a significant difficulty. The research provides 
a comprehensive set of tools, including a predictive model, 
enabling the proactive identification of probable time over-
runs. This allows project managers to implement correc-
tive measures promptly. Furthermore, the incorporation of 
bio-inspired optimization methods, shown by the demon-
strated effectiveness of the CROA, implies the existence of 
a broader scope for further investigation. Methods such as 
CROA can play a crucial role in enhancing forecasting accu-
racy and optimizing multiple aspects of project management. 
Upon reflection, it is crucial to recognize the intricacies that 
arise from the optimization process, notwithstanding the 

hopeful outcomes. The intricate nature of these phenom-
ena might result in significant computational requirements, 
a factor that stakeholders need to be aware of. Nevertheless, 
based on our research findings, the trade-off favors improved 
accuracy and predictive capacity. In Jordan's construction 
industry, integrating conventional methodologies with 
emerging technologies, such as deep learning and optimi-
zation algorithms, can serve as a guiding beacon, facilitating 
the timely and cost-efficient execution of projects.
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