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Abstract
In this paper, a convolutional neural network (CNN)-based deep learning architecture is proposed to identify joint damage 
in a steel plane frame structure with welded connections under temperature variability. For that purpose, a laboratory-based, 
single-story steel plane frame is considered. A base excitation is utilized to vibrate the structure and collect the time-domain 
acceleration response from various points under healthy and damaged conditions. From the responses, time–frequency-
domain scalogram images are generated and fed into the CNN architecture. Initially, the study was carried out without 
considering the temperature changes in the data, and the average training, validation and testing accuracy were found to be 
100%, 94.88%, and 94.07%, respectively. Then, the temperature variability is considered in the data, and the average train-
ing, validation, and testing accuracy were found to be 100%, 94.33%, and 91.85%, respectively, to identify the location and 
quantification of the damage. Finally, the architecture is tested with the data obtained from different locations (undamaged 
case), and different damaged conditions are tested with the CNN architecture, and the testing accuracy was found to be 
90.37%. This paper also implemented the idea of class activation maps, which are visual representations of the input image’s 
regions that primarily contribute to a class’s classification score. The proposed CNN-based DL architecture can accurately 
distinguish the healthy and damaged classes, which indicates its efficiency as an automation tool for joint damage detection 
in a plane frame structure.
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Introduction

Civil asset owners often put the safety of civil infrastructure 
ahead of everything else because it directly affects human 
lives (Flah et al., 2021). Civil infrastructures such as build-
ings, bridges, wind turbines, and electrical transmission 
towers are prone to member or joint damage during their 
service periods due to operational and environmental vari-
ability (Sohn, 2007). If the damage present in the structures 
is not detected in its early stages, it leads to the catastrophic 
failure of the structures (Paral et al., 2021). In this aspect, 

structural health monitoring (SHM) provides useful infor-
mation by analyzing the responses of the structure under 
external loads and detecting damage, as well as the current 
state of the structure (Avci et al., 2021).

The SHM strategies are divided into two types: the first 
is traditional based, and the second is vibration based. In 
the past, traditional methods such as the impedance method 
(Chen & Xu, 2012), the ultrasonic method (Fakih et al., 
2018), and the acoustic emission method (Liu et al., 2017), 
modal strain energy methods (Pal & Banerjee, 2015), static 
displacement measurements (Park et al., 2015), the fre-
quency response function method (Pal et al., 2013), mode 
shape changes (Görl & Link, 2003), and mode shape curva-
ture (Roy, 2017) have also been utilized for the identifica-
tion of joint damage in steel frame structures. Although the 
traditional methods are not suitable for identifying damage 
in large-scale structures, their data collection range is com-
paratively small (Magalhães et al., 2012).
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In recent years, machine learning (ML) techniques have 
been extensively used in vibration-based health monitoring 
techniques. SHM using ML techniques addresses the pattern 
identification problem (Fallahian et al., 2022). However, the 
performance of the ML-based techniques depends on the 
selected ML model, samples, and number of learning data-
sets. Among the ML models, deep learning (DL) models 
have already become the most popular with their impressive 
performance in many scientific areas (Lecun et al., 2015; Sil-
ver et al., 2016). DL models use several learning layers that 
are multi-layered to find out how input and output datasets 
are related. Convolutional neural networks (CNN) are newly 
developed DL techniques that adopt how the visual brain of 
humans works (Oh et al., 2020). CNNs are an amazing tool 
for extracting and classifying features. They are mostly used 
to recognize data like pictures and videos (Konstantinidis 
et al., 2020). The complete overview and working procedure 
of CNN are explained in “CNN-based methodology”.

The study (González & Zapico, 2008) proposed an ML-
based method for member damage assessment in a multi-
story steel building based on the Artificial Neural Network 
(ANN) architecture and modal parameters. In the work, the 
modal parameter data were used as input to the ANN algo-
rithm, which evaluated the mass and stiffness to provide the 
damage index. However, it was found that the technique 
was quite sensitive to modal errors. Similarly, Chang et al., 
(2018) presented an ANN-based approach for damage iden-
tification in a 7-story 3D steel frame structure using natural 
frequency and mode shape. The authors concluded that the 
approach was quite effective in identifying damage if the 
modal data were relatively accurate. Qian and Mita (2008) 
proposed the technique by utilizing time-history acceleration 
data as the input of the ANN framework to identify damage 
in a 5-story frame structure. Beheshti Aval et al., (2020) 
proposed a combination of the ANN model and different 
signal processing techniques to identify member damage 
in an ASCE benchmark building under seismic conditions. 
Dackermann et al., (2013) presented an SHM technique at 
the joint of a steel frame structure using frequency response 
function (FRFs) and ANN architecture. Moreover, the lit-
erature Kaveh and Iranmanesh (1998) discussed the use of 
several ANN models employed in structural analysis and 
optimization techniques. Kaveh et al. (2020) presented a 
boundary strategy-based approach for damage identification 
in truss structures using meta-heuristic algorithms Accord-
ing to Kaveh and Khavaninzadeh (2023), the ANN and four 
meta-heuristic optimization methods have been employed in 
other domains. Naresh and Vimal Kumar (2023) presented a 
joint damage identification in a single-story 2D frame struc-
ture using an SVM algorithm based on statistical features of 
vibration data. The combination of speeded-up robust fea-
tures and KNN, SVM-based health monitoring techniques 
was presented by Naresh et al., (2023).

Using the modal parameters, Kaveh and Maniat (2015) 
studied an optimization-based technique for structural 
damage identification in different types of civil engineer-
ing structures. In the work, the modal parameters were con-
sidered the objective functions, and the Magnetic Charged 
System Search (MCSS) and Particle Swarm Optimization 
approaches were used to optimize both. It was noticed that 
MCSS delivers more accurate results than Particle Swarm 
Optimization. They stated that the damage can be accurately 
estimated even with measurement data contaminated with 
noise. A complete overview of the MCSS application in 
civil engineering was presented (Kaveh, 2016). The study 
Kaveh and Zolghadr (2015) developed an improved Charged 
System Search (CSS) algorithm for damage assessment in 
truss-type structures using modal parameters. Kaveh (2017) 
presented a damage detection method for skeleton-type 
structures using a CSS algorithm and incomplete modal 
data. Likewise, Kaveh et al., (2022a, 2022b) used a newly 
developed guided water algorithm-based optimization tech-
nique for damage detection in different types of civil engi-
neering structures using incomplete modal data. Kaveh and 
Iranmanesh (1998) presented the application of backpropa-
gation neural network and the improved counter propagation 
neural network along with neuro-optimization technique for 
analysis and design of the structure. Kaveh et al., (2022a, 
2022b) used a Q-learning-based water strider model for the 
selection of sensor optimal positions in order to evaluate the 
health condition of the structure.

Recently, a CNN-based deep learning technique has been 
utilized for crack detection in pavements (Song & Wang, 
2021), crack damage detection in concrete structures (Bark-
hordari et al., 2023; Yang et al., 2020), health monitoring of 
wind turbine blades (Yang et al., 2021; Zou & Cheng, 2022), 
and damage detection in bridge structures (Fu et al., 2021; 
Hajializadeh, 2023).

The fact that structural vibration characteristics, such 
as natural frequencies and modes, change with changes in 
environmental conditions, especially temperature variations. 
Changes in the natural frequencies of steel-framed structures 
have not been studied as broadly as bridge structures (Xia 
et al., 2012). Cornwell et al., (1999) presented the variability 
of modal frequencies with the temperature of a bridge. In the 
work, the first three natural frequencies decreased by 4.7, 
6.6, and 5%, correspondingly, over a day with a variation 
of 22 °C in temperature. Fu and DeWolf (2001) discovered 
that the expansion bearings were partly restricted below 
15.6 °C. The temperature reached from − 17.8 to around 
15.6 °C, while the first three frequencies were reduced by 
12.3, 16.8, and 9.0%, consecutively. The first three frequen-
cies of a bridge decreased according to Liu and DeWolf 
(2006), who found that as temperatures increased by 0.8%, 
0.7%, and 0.3% per °C, frequencies dropped by 0.7%, 0.8%, 
and 0.7% Hz. Likewise, a 17-story steel frame structure was 
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observed by Nayeri et al., (2008), who found a significant 
relationship between frequencies and air temperature, but 
that frequency variations lagged temperature variations by 
a few hours. Using the Bayesian spectral density procedure, 
Yuen and Kuok (2010) obtained the modal frequencies of 
a building structure for a year. In contrast to their analyti-
cal findings, they discovered that the first three frequencies 
increased when ambient temperature increased.

From the literature, it is evident that most of the studies 
have been focused on SHM of members’ damaged identifica-
tion as compared to joint damage identification. Moreover, 
in the ML/DL domain, there is no guarantee that a certain 
feature or classifier set will be the best option for all types 
of structural damage. Therefore, it is always an important 
area for research. In this work, a convolutional neural net-
work (CNN)-based DL architecture is proposed to identify 
joint damage in a steel plane frame structure with welded 
connections using scalogram images of vibration data yet to 
be addressed. The main contributions of the current study 
include the following aspects:

1.	 Development of a CNN-based architecture for joint dam-
age identification in a 2D steel plane frame structure 
under temperature variability.

2.	 The current investigation proposes the application of 
scalogram images for joint damage detection in a steel 
plane frame structure.

3.	 The effectiveness of the architecture for joint damage 
detection in a steel plane frame structure is further veri-
fied through an unseen dataset

CNN‑based methodology

In the current research, base excitation is used to excite the 
structures in order to measure the time-history accelera-
tion data in both healthy and variously damaged circum-
stances. Using the continuous wavelet transform (CWT) tool 
in MATLAB, the time-history acceleration responses are 
transformed into frequency-domain scalogram images. Then 
CNN is utilized to train and test the scalogram image data 
set and to categorize healthy and various damaged condi-
tions. Figure 1 provides a comprehensive overview of the 
methodology involved in the study.

CNN architecture

CNNs are composed of layers, including artificial neurons, 
which are organized in three dimensions, width, height, and 
depth (Meghana et al., 2021). It is very suitable for process-
ing structured grid data such as images and videos (Kon-
stantinidis et al., 2020). Convolution layers, pooling layers, 

and fully connected layers are the basic three layers in CNN 
architectures, as shown in Fig. 2.

Convolutional layer

The basic component of CNN is the convolutional layer 
(CL). The learnable variables, such as weights (filters) and 
biases, were included in each CL. The width and height of 
the filter are spatially smaller than the input, but the depth 
is the same. The preceding layer’s feature maps were com-
pressed using filters to generate the output using the activa-
tion function. The formula for CL for a pixel is as follows:

where a and b are the dimensions of the filters, n is the 
number of channels of each input image, B is the bias of the 
vector, � activation function, and W is the weight matrix.

For understanding the convolutional operation, con-
sider a 4 × 4 matrix as shown in Fig. 3. The filter size of 
the 3 × 3 matrix was the first step, randomly generated and 
updated from the architecture using a backward propagation 
approach. Since the stride was set to 1, sliding along the 
width and height of the input array produced four subarrays 
that were the same size as the filter. The filter matrix was 
multiplied by each subarray’s elements. The output value 
was subsequently generated by adding the values that had 

(1)CLX,Y = �

(

a
∑

i=1

∑b

j=1

∑n

k=1
Wijk × Xx+I,Y+J−1,K + B

)

Start

Healthy Damaged

Acceleration data

Creation of scalogram images

CWT in MATLAB

CNN

Training TestingValidation

Classification of damage

Fig. 1   Flowchart indicates research methodology



2080	 Asian Journal of Civil Engineering (2024) 25:2077–2089

1 3

been multiplied and the bias. Because of the stride, the out-
put’s size was less than that of the preceding layer.

A nonlinear activation function was employed to add non-
linearity to the architecture after the CL. The rectifier linear 
unit (ReLU) and SoftMax are two of the most often utilized 
activation functions in neural networks. ReLU and SoftMax 
both perform the following functions:

Pooling layer

For quicker computation and improved reliability of feature 
recognition, the size of the feature maps was reduced using 
the pooling layer. The most popular techniques were average 
and maximum pooling. The result of max pooling was the 
highest value in the filter region, as depicted in Fig. 4. In 
this case, the max pooling filter, dimension 2 × 2, was used 
to operate the input layer, a 4 × 4 matrix. Since the stride is 
two, the following filter should shift two things to the right 
or below. Then, the output’s dimension was reduced to 2 × 2, 
and the value reflected the maximum number of things in 
the response field. It used the average value in the filter area 

(2)f (x) = (0, x)

(3)f (x)i =
exi

∑k

j=1
exj

as the average pooling. In the present study, average pooling 
is utilized.

Fully connected layer

The layer of the whole network that comes before the output 
layer is the fully connected (FC) layer. All the neurons are 
related to the features created by the preceding layer in this 
layer. In addition, this layer’s weights and biases transformed 
the feature into the appropriate class. The output of xl equa-
tion is displayed:

(4)Xl = �(Xl−1 × w + b)

Fig. 2   Basic concept of CNN 
architecture

Fig. 3   Convolutional layer 
operation

Fig. 4   Pooling layer operation
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where w and b represent both the weights and bias vectors in 
the in-FC layer and σ is the activation function.

In the current study, the adopted architecture layers graph 
is shown in Fig. 5, which is described by layers in the design 
of a DL architecture with a more complex graph structure in 

which levels may receive inputs from other layers and send 
outputs to other layers.

Experimental study

For the validation of the proposed architecture and the 
identification of joint damage in a steel frame structure 
with welded connections, a one-story, one-bay steel frame 
is considered in the engineering mechanics laboratory of 
IIT Bombay, India as shown in Fig. 6a. Table 1 provides 
the frame model’s dimensions and physical properties. The 
joints between beams and columns are made with welding. 
The base plate is joined to the columns tightly using weld-
ing, and the base plate is fastened to the shaking table using 
bolts. In Fig. 6b and Table 2, healthy and various damaged 
cases are depicted. As seen in Fig. 6b, the damage in the 
experimental investigation is produced by decreasing the 
cross-section of the member close to the joints.

A base acceleration that sweeps from 5.0 to 30.0 Hz 
at an interval of 0.50 Hz excites the frame. As shown in 
Fig. 6a, accelerometers are installed at each column close to 
the joints, 2 cm apart. The MGCplus DAQ from the HBM 
system is used to acquire acceleration signals at a sampling 
rate of 800.0 Hz. Figure 7a and b displays typical accelera-
tion data for the healthy (HA1) and damage case 2 (DA2), 
respectively.

Results and discussion

In the CNN-based DL architecture (Fig. 2), the accel-
eration signals in the time-history domains (Fig. 7) are 
received from five accelerometers under healthy and 
variously damaged conditions. In the present work, each 
experimental case was repeated 15 times. By adopting 
the continuous wavelet transform (CWT) in MATLAB, 

Fig. 5   Layer graph of the 
architecture

Fig. 6   a Experimental setup and 
b damage created near the joint
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generate the frequency-domain scalogram images as 
shown in Fig.  8. The size of the scalogram images is 
[875 × 656 × 3]. The imresize function is used to reduce 
the image’s size (224 × 224) to minimize the computing 
work. As per the literature (Dang et al., 2021; Ray, 2019), 
it is mentioned that ML and DL architectures require huge 
datasets for training and testing purposes. In this context, 
the data augmentation process is achieved by adding dif-
ferent levels of Gaussian noise to the resized image to 
generate a huge dataset, as shown in Fig. 9.

In this work, among the five accelerometers, four are used 
for training and validation purposes, and one is used for test-
ing. The distribution of image data for training, validation, 
and testing is given in Table 3.

The graph in Fig. 10 represents the training accuracy 
(100%) and validation accuracy (95%) of the proposed 
architecture carried out without considering the tempera-
ture changes in the data (HA1, DA1, and DA2), along with 
the loss for each case. For training the network, 80 epochs, a 
batch size of 30, and 168 iterations per epoch are considered. 
The figure also shows that the CNN architecture consistently 
enhances its confidence in the prediction of damage classes. 
At the earlier stage, few oscillations are spotted in both the 
cases of loss and validation accuracy, which is because of 
the limited image dataset used in a single batch. The small 
portion of the images in each batch passes through the CNN 
architecture and updates the weights in the architecture.

The entire image set is divided into ten parts in order to 
conduct a tenfold test to improve the architecture’s degree 
of confidence. Out of these ten, nine are maintained for train-
ing the architecture during the operation, and one is pre-
served for validation. The tenfold test gives the confusion 

Table 1   Details of the parameters of the frame model

Physical parameters of the frame Dimensions

Length of column 50 cm
Length of beam 30 cm
Cross-section 3.2 cm × 0.6 cm
Node-to-node distance 20 mm
Young’s modulus 200.0 GPa
Poison’s ratio 0.3
Density 7850.0 kg/m3

Table 2   Detail of the different experimental cases

Cases Detail descriptions

HA1 No damage
DA1 Reduction of the cross-section at the left column near the joint by 2 mm for a length of 2 cm
DA2 Reduction of the cross-section at each of the column-near joints by 4 mm for a length of 2 cm
Unseen dataset tested with pre-trained architecture
 HA2 No damage but the sensor position moved by 1 cm
 DA3 Reduction of the cross-section at the right column near the joint by 4 mm for a length of 2 cm
 DA4 Reduction of the cross-section at each of the column-near joints by 2 mm for a length of 2 cm

Fig. 7   Raw acceleration signal a healthy and b damaged (D2) case
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matrix’s (CM) typical results, which are given in Table 4. In 
the study, the average training accuracy is computed as 
((

45

45
+

41

45
+

41

45

)

∕3
)

× 100 = 94.07%.

Temperature variability

In this section, both the localization and quantification 
assessment of damages to the plane frame structure are car-
ried out under temperature variability using the CNN-based 
architecture mentioned earlier. In this context, temperature 
variability was taken as the origin of environmental changes 
(Sohn, 2007).

Certain earlier research (Cornwell et al., 1999; Kim 
et al., 2007) pretended that the most impacted parameters 
by changes in temperature were either the material’s den-
sity or Young’s modulus. They found that the frequency 
of the steel tower changes by 0.5% hourly for every 3 °C 

variation in temperature. The frequency variation for 
bridge-type structures was between 5 and 10% on a daily 
or seasonal basis. In the current study, it was shown that 
the natural frequency range changed by 0.2–2.85% for 
every 10 °C increase in temperature. For that purpose, in 
this study, a novel approach (circular shifting) was sug-
gested to generate synthetic data when the temperature 
changes.

In the beginning, the time-domain data were modified 
to produce frequency bands (Eq. 5) shown in Fig. 11a 
to identify the structure’s inherent frequencies. The first 
natural frequency was then shifted by + 0.30%, − 0.30%, 
+ 1.0%, − 1.0%, + 1.50%, and − 1.50%, which may rep-
resent a wide range of temperature variations (± 9 °C). 
An example of a frequency shift of + 0.3% will be used to 
determine the process. As a result of the shifting, certain 
bands will extend outside of the 400 Hz range, which was 
chosen and placed at the beginning of the bands. There are 
no changes in energy during this procedure:

To shift the frequency bands into the time-domain, Eq. 6’s 
inverse cosine transform was used. This modified dataset 
is used to represent the structure’s synthetic experimental 
time-domain response at various temperatures as shown in 
Fig. 11b. The dataset was produced similarly for the other 
situations stated in the previous paragraph. The schematic 
view of the shifting procedure is shown in Fig. 12.

(5)Xc(�) =

√

2

�

�

∫
0

x(t)cos(�t)dt

Fig. 8   a Scalogram image of a healthy state, b scalogram image of 
damaged (DA2) case

Fig. 9   Data augmented proce-
dure

Table 3   Distribution of image 
dataset

Damage case Original image dataset (experimental) Total image dataset (original and augmented)

Training and valida-
tion (15 trials × 4 
sensors)

Testing 15 
(trial) × 1 (sen-
sors)

Training and validation Testing 15 
(trial) × 1 (sen-
sors)

Training 
(90%)

Validation 
(10%)

Training (90%) Validation 
(10%)

HA 54 6 15 162 18 45
DA1 54 6 15 162 18 45
DA2 54 6 15 162 18 45
Total images 486 54 135
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By locating and quantifying the damage under tempera-
ture variations, three classes HA1, DA2, and DA3 are con-
sidered for this purpose. The robustness of the developed 
CNN-based architectures is further trained and validated 
with accuracies of 100% and 94.33% as shown in Fig. 13. 
As described in the previous section, the temperature vari-
ation (± 9 °C temperature variation) included six different 

(6)x(t) =

√

2

�

�

�
0

Xc(t)cos(�t)d�t ≥ 0,

Fig. 10   Training, validation, and loss curve of the CNN-based SHM architecture (without considering temperature changes)

Table 4   The CM indicates the 
mean testing outcome of CNN 
using 45 images

Cases HA1 DA1 DA2

HA1 45 0 0
DA1 1 41 3
DA2 0 4 41

Fig. 11   a Original experimental data and b shifted data
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changes in temperature. Table 5 provides the average tenfold 
classification testing accuracy of 91.85%.

In order to examine the effectiveness of the architecture, it 
is tested with pre-trained architecture (considering tempera-
ture changes) based on unseen images that were not used in 
the training and validation. The unseen images are created 
by considering the shift of sensor position data and different 
damaged data. For that purpose, one healthy (HA2) and two 
different damaged cases (DA3, DA4) (Table 2) are consid-
ered, and the outcomes are given in Table 6. The findings 
show a 90.37% accuracy rate, indicating that even if the 

location of sensors changed and different damaged data was 
used to test the architecture, each case remains capable of 
being classified. This shows that even when the network has 
not been trained on the unseen data, the architecture is still 
able to identify the type of damage.

Neural models’ interpretability

The broad adoption of DL architectures that are becoming 
more complex contributed to the concept that neural net-
works have become black boxes, increasing uncertainties 

Fig. 12   Shifting procedure

Fig. 13   Training, validation, and loss curve of the CNN-based SHM architecture (with considering temperature changes)

Table 5   The CM indicates 
the average testing outcome 
of CNN under temperature 
variability

Cases HA2 DA3 DA4

HA2 44 1 0
DA3 2 40 3
DA4 1 4 40

Table 6   The CM indicates the 
mean testing outcome of CNN 
using the unseen image

Cases HA2 DA3 DA4

HA2 43 2 0
DA3 1 40 4
DA4 2 4 39
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about the interpretability of neural architectures in the scien-
tific community over the last few decades. Indeed, it became 
quite difficult to clarify in detail how the architecture devel-
oped to recognize an image as belonging to one class over 
another. Therefore, it is possible to emphasize the strong 
localization capabilities of CNN architectures, even when 
trained purely for classification purposes and not specifi-
cally, for example, for object identification tasks, according 
to the authors (Rosso et al., 2023; Zhou et al., 2016). They 
achieved this by introducing class activation maps (CAM), a 
visual representation of those input image areas that mostly 
contribute to the classification score for a certain class, and 
not using the global average pooling layer in a particular 
method. It was suggested to use a gradient-weighted CAM 
or, as an example, the most recent gradient-free Score-CAM 
approach (Wang et al., 2020). In the current work, the MAT-
LAB function “grad-CAM” is used to carry out gradient 
CAM. In contrast, it appears that the architecture primarily 
concentrates on the middle portions of the image for class 
HA, while in contrast, concentrating on the middle and top 
sections of the image for classes DA1 and DA2, in level, 

exhibits a different pattern of grad-CAM. This is evident 
in Fig. 14, which compares healthy and various damaged 
classes level by level.

Conclusions

In the present work, a convolutional neural network (CNN)-
based deep learning architecture is proposed to identify joint 
damage in a steel plane frame structure with welded con-
nections under temperature variability. For that purpose, a 
laboratory-based, single-story steel plane frame is consid-
ered. Initially, the study was carried out without considering 
the temperature changes in the data. Then, the localization 
and quantification of the damage are identified under tem-
perature variability. Finally, the architecture is tested with an 
unseen dataset with the pre-trained architecture (temperature 
variability).

•	 The training and validation accuracy is found 100% and 
94.88%, whereas the testing accuracy is 94.07%, which 

Fig. 14   Actual images of differ-
ent classes and corresponding 
activation map
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shows that the architecture can differentiate the healthy 
and different damaged cases.

•	 The study assumes that temperature changes that may 
encompass (± 9 °C) variations are caused by the shift-
ing of natural frequencies (+ 0.30%, − 0.30%, + 1.0%, 
− 1.0%, + 1.50%, and − 1.50%). The findings indicate 
that the architectures can be localization and quantifica-
tion of the damage with a testing accuracy of 91.85% 
with these variants.

•	 The proposed architecture can automatically classify the 
unseen with an accuracy of 90.37%. It represents that 
the health monitoring architecture has the potential to 
identify the damage near the joints.

•	 The architecture needs only acceleration time-history 
data for the feature’s extraction which was used for the 
damage identification of the planer frame structures that 
require the minimum labor intervention.

•	 Significant variations between the different classes are 
shown by the class activation map. Overall, it shows that 
the design architecture is strong enough to localize dam-
aged regions.

•	 Further, the results show that the proposed architecture 
has come up as a potential automated and mechanized 
tool for the health monitoring of joints of planer frame 
structures.
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